
Zynq UltraScale+ MPSoC
Base Targeted Reference
Design
User Guide

UG1221 (v2020.1) June 3, 2020

Revision History
The following table shows the revision history for this document.

Date Version Revision
06/03/2020 2020.1 Updated Appendix A, References.
10/31/2019 2019.2 Migrated from the SDSoC environment to the Vitis software development platform.
05/31/2019 2019.1 Released with Vivado Design Suite 2019.1 with no changes from previous version.
12/10/2018 2018.3 Added information about xlnxvideosrc and xlnxvideosink GStreamer plugins,

information about gstsdx GStreamer plugins, and information about the clocking
wizard used in the TPG capture pipeline. Updated Table 2-2 and Design Components
in Chapter 2. Updated Video Library and GStreamer Video Library, added Xilinx Video
Source and Sink GStreamer Plugins and GStreamer Plugins in Chapter 3. Updated
Video Pipelines and Clocks, Resets and Interrupts in Chapter 8. Updated Figure 3-1
and Figure 3-2, added Figure 3-12 and Figure 3-13, updated Figure 6-2, Figure 7-2,
and Figure 7-4.

07/13/2018 2018.2 Released with Vivado Design Suite 2018.2 with no changes from previous version.
06/14/2018 2018.1 Ported reference design software stack to use GStreamer multimedia framework.

Added file source support. Updated for Vivado Design Suite 2018.1 SDSoC tools.
Updated Table 2-2. Updated Figure 1-1, Figure 1-2, Figure 3-1, Figure 3-2, added
Figure 3-6, deleted Figure 3-9, added Figure 3-9 and Figure 3-10, updated
Figure 3-11, updated Figure 7-1, Figure 7-2, and Figure 7-3. Updated Design
Components in Chapter 2, Added File Source Settings Panel in Chapter 3. Updated
Video Library in Chapter 3.

02/06/2018 2017.4 Updated Figure 1-2, Figure 3-1, Figure 3-5, Figure 7-1, Figure 7-2, Figure 7-3, and
Figure 8-7. Updated APU Design Components in Chapter 2 and Table 2-2. Added
IMX274 image sensor controls under CSI Settings Panel, updated Performance
Monitor Client Library, and function names under Optical Flow GStreamer Plugin in
Chapter 3. Added IMX274 Image Sensor driver to Table 7-1 and deleted note under
Vision in Chapter 7. Updated IDs in Table 8-4 and added the paragraph following the
table.

09/20/2017 2017.2 Added information about the FMC daughter card with an image sensor connected via
MIPI CSI-2 Rx throughout the document. Added CSI Settings Panel in Chapter 3.
Updated I2C Bus Topology in Chapter 8. Updated Figure 1-2, Figure 1-3, Figure 3-1,
Figure 3-2, Figure 4-2, Figure 6-2, Figure 7-1, Figure 7-1, Figure 8-1, and Figure 8-10.
Updated Table 7-1, and Table 8-2 through Table 8-4.

07/19/2017 2017.1 Updated Reference Design Overview. Add description of the Optical Flow GStreamer
Plugin and the Optical Flow M2M Pipeline. Updated performance metrics based on
2160p60. Updated QoS for HDMI Tx. Updated V4L driver stack for HDMI Rx capture
pipeline (added HDMI Rx Capture Pipeline). Updated DRM driver stack for HDMI Tx
display pipeline (added HDMI Tx Display Pipeline). Updated Global Address Map.
Updated Clocks, Resets and Interrupts. Updated I2C Bus Topology. Updated Auxiliary
Peripherals. Added Demo Mode Settings Panel description.

03/22/2017 2016.4 Released with Vivado Design Suite 2016.4 with no changes from previous version.
Zynq UltraScale+ MPSoC Base TRD 2
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=2

12/15/2016 2016.3 Updated for Vivado Design Suite 2016.3:
Updated Reference Design Overview. Replaced Chapter 2, Reference Design. Updated
Figure 3-1 and the following paragraph. Updated Figure 4-1 and perfapm library
descriptions in Chapter 4, RPU-1 Software Stack (Bare-metal). Updated Figure 6-1,
Figure 6-2, and DDR region descriptions under Memories in Chapter 6. Updated
Figure 7-1, Figure 7-4, and Figure 7-5. Added X11 section, deleted first paragraph
under EGLFS QPA, and modified “Evdev” section to “Libinput” in Chapter 7, APU
Software Platform. Updated Table 8-2 and clock descriptions under Clocks, Resets and
Interrupts in Chapter 8.

07/22/2016 2016.2 Updated for Vivado Design Suite 2016.2:
Added “GPU” to hardware interfaces and IP under Key Features. Changed link under
Design Modules from the wiki site to the HeadStart Lounge and updated link under
Tutorials to the Base TRD wiki site. Deleted steps 2 and 4 under Tutorials and added
reference tutorial (last bullet). Added second to last sentence to second paragraph
under Boot Process. Added “Load PMU FW” component to Figure 6-1. Clarified
Message Passing section (text only). Changed “PCA9546” to PCA9548” in Figure 8-11.

06/29/2016 2016.1 Initial Xilinx release.

Date Version Revision
Zynq UltraScale+ MPSoC Base TRD 3
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=3

Table of Contents
Revision History . 2

Chapter 1: Introduction
Zynq UltraScale+ MPSOC Overview . 7
Reference Design Overview . 8
Key Features. 11

Chapter 2: Reference Design
Design Modules . 13
Design Components . 15

Chapter 3: APU Application (Linux)
Introduction . 18
GUI Application . 20
Video Library . 26
GStreamer Video Library . 27
Performance Monitor Client Library. 32
Xilinx Video Source and Sink GStreamer Plugins . 32
SDx GStreamer Plugins . 34

Chapter 4: RPU-1 Software Stack (Bare-metal)
Introduction . 38
Performance Monitor Library . 39
Performance Monitor Applications . 41
Bare-metal BSP. 41

Chapter 5: RPU-0 Software Stack (FreeRTOS)
Introduction . 42
Heartbeat Application . 43
FreeRTOS BSP . 43

Chapter 6: System Considerations
Boot Process. 44
Global Address Map. 46
Video Buffer Formats. 48
Zynq UltraScale+ MPSoC Base TRD 4
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=4

Performance Metrics . 50

Chapter 7: APU Software Platform
Introduction . 54
Video. 56
Display . 61
Graphics . 66
Vision . 69
Inter-process Communication. 69

Chapter 8: Hardware Platform
Introduction . 74
Video Pipelines. 75
Clocks, Resets and Interrupts . 86
I2C Bus Topology . 89
Auxiliary Peripherals . 90

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 91
Solution Centers. 91
Documentation Navigator and Design Hubs . 91
References . 92
Please Read: Important Legal Notices . 93
Zynq UltraScale+ MPSoC Base TRD 5
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=5

Chapter 1

Introduction
The Zynq® UltraScale+™ MPSoC base targeted reference design (TRD) is an embedded
video processing application that is partitioned between the SoC's processing system (PS)
and programmable logic (PL) for optimal performance. The design demonstrates the value
of offloading computation intensive image processing tasks such as a 2D-convolution filter
from the PS onto PL. The benefits achieved are two-fold:

1. Ultra HD video stream real-time processing up to 60 frames per second.
2. Freed-up CPU resources for application-specific tasks.

This user guide describes the architecture of the reference design and provides a functional
description of its components. It is organized as follows:

• This chapter provides a high-level overview of the Zynq UltraScale+ MPSoC device
architecture, the reference design architecture, and a summary of key features.

• Chapter 2, Reference Design gives an overview of the design modules and design
components that make up this reference design. It also provides a link to the associated
design files and the Base TRD wiki which contains design tutorials.

• Chapter 3, APU Application (Linux) describes the Linux software application running on
the application processing unit (APU).

• Chapter 4, RPU-1 Software Stack (Bare-metal) describes the bare-metal software
application and stack running on the second core of the real-time processing unit
(RPU-1).

• Chapter 5, RPU-0 Software Stack (FreeRTOS) describes the FreeRTOS software
application and stack running on the first core of the real-time processing unit (RPU-0).

• Chapter 6, System Considerations details system architecture considerations including
boot flow, system address map, video buffer formats, and performance analysis.

• Chapter 7, APU Software Platform describes the APU software platform covering the
middleware and operating system layers of the Linux software stack.

• Chapter 8, Hardware Platform describes the hardware platform of the design including
key PS and PL peripherals.

• Appendix A, Additional Resources and Legal Notices lists additional resources and
references.
Zynq UltraScale+ MPSoC Base TRD 6
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=6

Chapter 1: Introduction
Zynq UltraScale+ MPSOC Overview
The Zynq device is a heterogeneous, multi-processing SoC built upon the 16 nm FinFET
process node from TSMC. Figure 1-1 shows a high-level block diagram of the device
architecture and key building blocks inside the processing system (PS) and the
programmable logic (PL).

The following summarizes the MPSoC’s key features:

• Application processing unit (APU) with 64-bit quad-core Arm Cortex-A53 processor
• Real-time processing unit (RPU) with 32-bit dual-core Arm Cortex-R5 processor
• Multimedia blocks

° Graphics processing unit (GPU), Arm Mali-400MP2

° Video encoder/decoder unit (VCU) up to 4K 60 fps

° DisplayPort interface up to 4K 30 fps

X-Ref Target - Figure 1-1

Figure 1-1: Zynq UltraScale+ MPSoC Block Diagram

UG1221_102931

Zynq UltraScale+ MPSoC Processing System

Application Processing Unit Memory High-Speed
Connectivity

GIC-400 SCU CCI/SMMU 1MB L2 w/ECC

ARM®

Cortex™-A53

NEON™

Floating PointUnit

32KB
I-Cache
w/Parity

32KB
D-Cache
w/ECC

Memory
Mgmt
Unit

Trace
Macro
Cell

Real-Time Processing Unit

21
3 4

Graphics Processing Unit
Arm Mali™-400 MP2

Geometry
Processor

Two Pixel
Processors

Memory Management Unit

64KB L2 Cache

DDR4/3/3L, LPDDR4/3
ECC Support

256KB OCM
with ECC

DisplayPort

USB 3.0

SATA 3.1

PCIe Gen2

PS-GTR

2

GIC

ARM
Cortex-R5 Memory Protection Unit

Vector Floating Point Unit

128KB
TCM

w/ECC

32KB
D-Cache
w/ECC

32KB
I-Cache
w/ECC

Trace
Macro
Cell 1

Configuration &
Security Unit

Config AES
Decryption,

Authentication,
Secure Boot

DMA, Timers,
WDT, Resets,

Clocking, and Debug
TrustZone

Voltage/Temp
Monitor

Platform
Management Unit

System
Control

System
Management

Power

SD/eMMC
NAND

Quad SPI NOR
SPI

UART
CAN
GigE

Zynq UltraScale+ MPSoC Programmable Logic

Storage & Signal Processing

Block RAM

UltraRAM

DSP

General-Purpose I/O

High-Performance HP I/O

High-Density HD I/O

High-Speed Connectivity

GTH

GTY

Interlaken

100G EMAC

PCIe Gen4

Video Codec
H.265/H.264

System Monitor

General
Connectivity
Zynq UltraScale+ MPSoC Base TRD 7
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=7

Chapter 1: Introduction
• High-speed peripherals

° PCIe root complex (Gen1 or Gen2) and endpoint (x1, x2, and x4 lanes)

° USB 3.0/2.0 with host, device, and OTG modes

° SATA 3.1 host
• Low-speed peripherals

° Gigabit Ethernet, CAN, UART, SPI, Quad-SPI, NAND, SD/eMMC, I2C, and GPIO
• Platform management unit (PMU)
• Configuration security unit (CSU)
• 6-port DDR controller with ECC, supporting x32 and x64 DDR4/3/3L and LPDDR4/3

Reference Design Overview
The MPSoC device has a heterogeneous processor architecture. The TRD makes use of
multiple processing units available inside the PS using the following software configuration:

• The application processing unit (APU) consists of four Arm Cortex-A53 cores
configured to run in SMP (symmetric multi-processing) Linux mode. The application's
main task is to configure and control the video pipelines via a graphical user interface
(GUI). It also communicates with one of the RPU cores to visualize system performance.

• The real-time processing unit (RPU) consist of two Arm Cortex-R5 cores configured to
run in split mode (asymmetric multi-processing).

° RPU-0 is configured to run FreeRTOS, an embedded real-time operating system. It is
booted very early in the boot process to enable execution of safety/security-critical
or real-time applications before the rest of the system is booted (see Boot Process,
page 44). The application is a simple multi-threaded heartbeat example that
continuously prints to the UART showing that the system is alive. It serves as a
placeholder for user created applications.

° RPU-1 is configured to run bare-metal. It is booted as a slave to the APU which
downloads the firmware code after Linux has booted and provides performance
monitoring capabilities by reading the AXI performance monitors (APM) inside the
PS. RPU-1 communicates with the APU via the Xilinx® OpenAMP framework (see
Inter-process Communication, page 69 for details on inter-process communication).
Zynq UltraScale+ MPSoC Base TRD 8
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=8

Chapter 1: Introduction
Figure 1-2 shows the software state after the boot process has completed and the
individual applications have been started on the target processing units. The TRD does not
make use of virtualization and therefore does not run a hypervisor on the APU.

The APU application controls the following video data paths implemented in a combination
of PS and PL (see Figure 1-3):

• Capture pipeline capturing video frames into DDR memory from: an HDMI source
connected through the PL, an image sensor on an FMC daughter card connected via
MIPI CSI-2 Rx through the PL, a test pattern generator implemented inside the PL (TPG
(PL)), a USB webcam using the USB interface inside the PS, and a test pattern generator
emulated in pure software (TPG (SW)) as a virtual video device (vivid).

• Memory-to-memory (M2M) pipeline implementing typical video processing
algorithms: a programmable 2D convolution filter and a dense optical flow algorithm.
The algorithms can be implemented inside the PS as software functions or as hardware
accelerators inside the PL. Video frames are read from DDR memory, processed by the
software function or accelerator, and then written back to memory.

• Display pipeline reading video frames from memory and sending them to a monitor
via: DisplayPort Tx inside the PS or HDMI Tx through the PL. Both support two layers:
one for video, the other for graphics. The graphics layer is rendered by the GPU.

RPU-1 reads performance metrics from the AXI performance monitor (APM) and sends the
data to the APU via IPC using shared virtual ring (vring) buffers in DDR memory. The same
DDR memory is shared between the APU, RPU, and GPU.

X-Ref Target - Figure 1-2

Figure 1-2: Key Reference Design Components by Processing Unit

gst SDx plugins video_qt2

APU

ARM
Cortex-A53-2

ARM
Cortex-A53-1

ARM
Cortex-A53-0

SMP Linux

ARM
Cortex-A53-3

RPU

ARM
Cortex-R5-1

ARM
Cortex-R5-0

perfapm-client

perfapm-server

FreeRTOS

heartbeat

Bare-metal

perfapmIPC

PL
TPG2D Filter

OpenAMPremoteprocRPMsg

PS

A
pp
lic
at
io
n

O
S

P
ro
ce
ss
or

P
er
ip
he
ra
ls

HDMI Rx

HDMI Tx

Optical
Flow

DisplayPort
Tx

GPU

USB
(UVC)

AXI
Performance

Monitor
CSI Rx

gst_libsdxfilter2d

DRMV4L2

sdxopticalflow

zocl

video_lib

X17236-092419
Zynq UltraScale+ MPSoC Base TRD 9
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=9

Chapter 1: Introduction
X-Ref Target - Figure 1-3

Figure 1-3: Base TRD Block Diagram
X17251-051418
Zynq UltraScale+ MPSoC Base TRD 10
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=10

Chapter 1: Introduction
Key Features
The following summarizes the TRD's key features.

Target platforms and extensions:

• ZCU102 evaluation board (see ZCU102 Evaluation Board User Guide (UG1182) [Ref 1])
• LI-IMX274MIPI-FMC image sensor daughter card (optional) [Ref 2]

Xilinx tools:

• Vitis™ software development platform
• PetaLinux Tools
• Vivado Design Suite

Hardware interfaces and IP:

• GPU
• Video Inputs

° TPG (PL) - referred to as TPG from here on

° HDMI Rx

° MIPI CSI-2 Rx

° USB Webcam

° TPG (SW) - referred to as vivid (virtual video device) from here on

° File (raw input only)
• Video Outputs

° DisplayPort Tx

° HDMI Tx
• Video Processing

° 2D Convolution Filter

° Dense Optical Flow
• Auxiliary Peripherals

° SD

° I2C

° GPIO
Zynq UltraScale+ MPSoC Base TRD 11
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.leopardimaging.com/LI-IMX274MIPI-FMC.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=11

Chapter 1: Introduction
° Ethernet

° UART

° USB

° APM

Software components:

• Operating systems

° APU: SMP Linux

° RPU-0: FreeRTOS

° RPU-1: Bare-metal
• Linux frameworks/libraries:

° Video: Video4Linux (V4L2), Media Controller

° Display: DRM/KMS, X-Server (X.Org)

° Graphics: Qt5, OpenGL ES2

° Vision: OpenCV

° Inter-process communication: OpenAMP
• User applications:

° APU: Video control application with GUI

° RPU-0: Multi-threaded heartbeat application

° RPU-1: Performance monitoring application

Supported video formats:

• Resolutions:

° 720p60

° 1080p60

° 2160p30

° 2160p60 (HDMI Tx only)
• Pixel formats:

° YUV 4:2:2 16 bit for video

° ARGB 32 bit for graphics
Zynq UltraScale+ MPSoC Base TRD 12
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=12

Chapter 2

Reference Design

Design Modules
The Base TRD consists of ten design modules (DM) that build on top of each other or are a
combination or previous modules where DM10 is the full-fledged reference design as
summarized in the previous chapter. The following listing gives a short summary of each of
the ten design modules:

DM1 - APU SMP Linux
This module shows how to build and run a SMP Linux image for the APU. The Linux image
boots a serial console on UART0. The Linux rootfs is pre-configured with selected
open-source libraries and applications such as bash or vi. The Linux image enables
Ethernet and USB host mode, and supports external file systems on SD, USB or SATA.

DM2 - RPU0 FreeRTOS Application
This module shows how to build and run a FreeRTOS application on RPU0. The application
periodically prints messages to UART1 to demonstrate continuous operation.

DM3 - RPU1 Bare-metal Application
This module shows how to build and run a bare-metal application on RPU1. The application
implements a performance monitor that measures DDR throughput and prints the results to
UART1.

DM4 - APU/RPU1 Inter Process Communication
This module combines DM1 and DM3. The RPU1 (remote) application is booted by the APU
(master) using the remoteproc framework. Both processors communicate via IPC using
the RPMsg (APU) and OpenAMP (RPU1) frameworks. The performance monitor server
running on RPU1 sends data to a client running on the APU. The client prints the received
data to UART0.

DM5 - APU GUI Application
This module shows how to build and run an application with a graphical user interface (GUI)
on the APU using the Qt toolkit with OpenGL acceleration by the GPU. The application
demonstrates how to capture video from a virtual video device (vivid) or optionally a USB
webcam, and display the video on the monitor through the DisplayPort (DP).
Zynq UltraScale+ MPSoC Base TRD 13
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=13

Chapter 2: Reference Design
DM6 - PL Video Capture
This module extends DM5 and shows how to capture video from an HDMI source, an image
sensor connected via CSI-2 Rx, or a test pattern generator (TPG) implemented in the PL. The
video can displayed via DP Tx through the PS or via HDMI Tx through the PL.

DM7 - Image Processing using OpenCV
This module extends DM6 and shows how to implement an image processing algorithm
running on the APU using the OpenCV libraries. A simple 2D convolution filter is used as an
example.

DM8 - PL Acceleration
This module extends DM7 and shows how to refactor the image processing function so it
can be accelerated in the PL. The Vitis™ development platform allows estimation of
increased performance, use of high-level synthesis (HLS) to create RTL from a C algorithm,
and automatic insertion of data movers along with the required drivers.

DM9 - Multiple PL Accelerators
This module extends DM8 and shows how to add a second accelerator to the design using
the same Vitis development flow as in DM8. The algorithm is a dense optical flow computer
vision function.

DM10 - Full-fledged Base TRD
This module combines DM2, DM4 and DM9. The data provided by the performance monitor
server running on RPU1 is now plotted on the Qt GUI. In parallel, the FreeRTOS application
is continuously printing messages on UART1 without interfering with RPU1 or the APU. The
following metrics are visualized to compare the performance between the OpenCV
implementation of the algorithm (DM7) and the two PL accelerators (DM9): CPU utilization,
memory bandwidth, and frame rate.

Table 2-1 shows for each design module (rows), which other modules (columns) it builds
upon or is a combination of.

Table 2-1: Design Module Dependency Matrix
DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9

DM1
DM2
DM3
DM4 + +

DM5 +

DM6 + +

DM7 + + +

DM8 + + + +
Zynq UltraScale+ MPSoC Base TRD 14
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=14

Chapter 2: Reference Design
The Base TRD wiki at
http://www.wiki.xilinx.com/Zynq+UltraScale+MPSoC+Base+TRD provides additional
content including:

• Prerequisites for building and running the reference design
• Instructions for running the pre-built SD card image on the evaluation board
• Detailed step-by-step design and tool flow tutorials for each design module
• Required hardware for design implementation

Design Components
The reference design zip files can be downloaded from the Zynq UltraScale+ MPSoC
Evaluation Kit website. The file contains the following components grouped by target
processing unit or PL:

• APU

° perfapm-client: Library that receives data from the perfapm-server
application running on RPU1 using the RPMsg framework.

° perfapm-client-test: Application that uses the perfapm-client library and
prints the received performance numbers on UART0.

° petalinux_bsp: PetaLinux board support package (BSP) to build a pre-configured
SMP Linux image for the APU. The BSP includes the following components: PMU
firmware, first-stage boot loader (FSBL), Arm trusted firmware (ATF), u-boot, Linux
kernel, device tree, and root file system (rootfs). It largely serves as the Vitis
software platform.

° gstsdxbase: Library and GStreamer base class that provides common functionality
for Xilinx GStreamer plugins.

° gstxclallocator: Library that provides sds memory allocator for Xilinx GStreamer
plugins and applications.

° gstsdxfilter2d: GStreamer plugin for a 2D convolution filter image processing
kernel. The algorithm can run as pure software implementation using the OpenCV
libraries or as a Vitis target platform hardware accelerator using the xfOpenCV
libraries.

DM9 + + + + +

DM10 + + + + + + + + +

Table 2-1: Design Module Dependency Matrix (Cont’d)

DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9
Zynq UltraScale+ MPSoC Base TRD 15
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.wiki.xilinx.com/Zynq+UltraScale+MPSoC+Base+TRD
https://www.xilinx.com/products/boards-and-kits/zcu102.html#documentation
https://www.xilinx.com/products/boards-and-kits/zcu102.html#documentation
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=15

Chapter 2: Reference Design
° gstsdxopticalflow: GStreamer plugin for the Lukas Kanade dense optical flow
algorithm implemented as a Vitis target platform hardware accelerator using the
xfOpenCV libraries.

° xlnxvideosrc: GStreamer bin plugin on top of v4l2src element to select and
configure video source type.

° xlnxvideosink: GStreamer bin plugin on top of kmssink element to select and
configure display sink type.

° gst_lib: Library that creates and manages GStreamer pipelines of up to three
video components (capture, processing and display).

° video_lib: Library that manages the media initialization of video capture
pipelines using the media controller framework. It also manages certain aspects of
display controller initialization using the DRM framework.

° video_qt2: Application that uses the video_lib and gst_lib libraries and
provides a GUI to control and visualize various parameters of this design.

• PL

° vivado: Vivado IP Integrator design that implements the TPG capture pipeline in
the PL. It serves as the Vitis target platform hardware which inserts accelerator and
data movers into this design.

• RPU0

° heartbeat: Application that periodically prints messages to UART1 to
demonstrate continuous operation.

• RPU1

° perfapm: Library that reads performance numbers from AXI performance counters
(APM) inside the PS.

° perfapm-ctl: Application that uses the perfapm library and prints the
performance numbers on UART1.

° perfapm-server: Application that uses the perfapm library and sends data to
the perfapm-client library running on the APU using the OpenAMP framework.

Table 2-2 lists all the design components delivered with the TRD and what components are
used for each design module.

Table 2-2: Design Component to Design Module Mapping

Design Component
Design Module

1 2 3 4 5 6 7 8 9 10
heartbeat √ √
perfapm-ctl √
perfapm-server √ √
Zynq UltraScale+ MPSoC Base TRD 16
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=16

Chapter 2: Reference Design
perfapm-client √
video_qt2 √ √ √ √ √ √
gstsdxfilter2d √ √ √ √
gstsdxopticalflow √ √

Table 2-2: Design Component to Design Module Mapping (Cont’d)

Design Component
Design Module

1 2 3 4 5 6 7 8 9 10
Zynq UltraScale+ MPSoC Base TRD 17
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=17

Chapter 3

APU Application (Linux)

Introduction
The APU Linux software stack is divided into an application layer and a platform layer. The
application layer is purely implemented in Linux user-space whereas the platform layer
contains middleware (user-space libraries) and operating system (OS) components
(kernel-space drivers etc.). Figure 3-1 shows a simplified version of the APU Linux software
stack. This chapter focuses on the application layer implemented in user-space. Chapter 7,
APU Software Platform, describes the platform layer.

X-Ref Target - Figure 3-1

Figure 3-1: Linux Software Stack and Vertical Domains

video_qt2

sdxfilter2d

perfapm-client

libv4lsubdev

libmediactl

xrtutils

libopencv_*libQt5*

libMali

Graphics Display Video Vision/Accelerator IPC

ARM
Mali Xilinx DRM Xilinx VIPP V4L

subdev Zocl UIO remote
proc rpmsg

GPU DP
Tx Filter2D IPI

A
pp
lic
at
io
n

(u
se
r)

M
id
dl
ew
ar
e

(u
se
r)

O
S

(K
er
ne
l)

H
W

X.Org

libdrm

perfapm-
client-test

xfopencv_*

Optical_FlowHDMI
Tx

sdxopticalflow

TPG

UVC

MIPI CSI

HDMI Rx

v4l2src

filter2d_optflow_xclbi
n

video_lib / gst_lib

kmssink

X17274-092419
Zynq UltraScale+ MPSoC Base TRD 18
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=18

Chapter 3: APU Application (Linux)
Two APU applications are provided. The first application perfapm-client-test is a
simple test application that builds on top of the perfapm-client library and prints the
performance numbers received from the perfapm-server application running on RPU-1
on UART0. The second application video_qt2 is a multi-threaded Linux application with
the following four main tasks:

• Display unprocessed video from one of the sources
• Apply processing function in either software or hardware
• Provide a GUI for user input
• Interface with lower level layers in the stack to control video pipeline parameters and

video data flow

The application consists of multiple components that have been specifically developed for
the Base TRD and are explained in more detail in the following:

• GUI application (video_qt2)
• Video library (video_lib)
• GStreamer video library (gst_lib)
• Performance monitor client library (perfapm-client)

Figure 3-2 shows a block diagram of the application interfaces between the individual
components.

X-Ref Target - Figure 3-2

Figure 3-2: Video Application Interfaces

video_qt2

video_lib gst_lib perfapm-client

video.hvcap_tpg.h filter.h

video.h

vgst_sdxfilter2d.h perfapm-client.hhelper.h vcap_csi.h vgst_lib.h

X17258-110518
Zynq UltraScale+ MPSoC Base TRD 19
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=19

Chapter 3: APU Application (Linux)
GUI Application
The video_qt2 application is a multi-threaded Linux application that uses the Qt graphics
toolkit to render a graphical user interface (GUI). The GUI provides control knobs for user
input and a display area to show the captured video stream. The following resolutions are
supported: 720p, 1080p and 2160p.

The GUI shown in Figure 3-3 contains the following control elements displayed on top of
the video output area:

• Control bar (bottom)
• Video info panel (top-left)
• System performance panels (top-right)

X-Ref Target - Figure 3-3

Figure 3-3: Control Elements Displayed on Top of the Video Output Area

Video Info Panel

Control Bar

System Performance Panels

X17325-071516X17325-061917
Zynq UltraScale+ MPSoC Base TRD 20
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=20

Chapter 3: APU Application (Linux)
Control Bar

The control bar is displayed at the bottom of the screen. It contains the following control
items, from left to right:

• Start/stop manual mode
• Start/stop demo mode
• Video source selection and settings
• Accelerator selection and settings
• Accelerator mode selection
• Show/hide video info panel
• Show/hide system performance panels
• Pin/un-pin control bar
• Exit application

Video Info Panel

The video info panel displays the following information:

• Display device
• Display resolution
• Frame rate (in fps)
• Video source
• Accelerator
• Accelerator mode
• 2D filter preset

System Performance Panels

Two panels for system performance monitoring are shown in the top-right corner in
Figure 3-3. The view can be toggled between numerical and graph view upon mouse-click:

• The first panel prints or plots the CPU utilization for each of the four A53 cores inside
the APU.

• The second panel prints or plots the memory throughput for accumulated AXI read and
write transactions on the DDR controller ports connected to video capture, video
processing (2D filter), and DisplayPort.
Zynq UltraScale+ MPSoC Base TRD 21
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=21

Chapter 3: APU Application (Linux)
TPG Settings Panel

This panel (Figure 3-4) can be accessed from the video source settings icon. It provides the
following control knobs:

• TPG pattern (color bar, zone plate, checkerboard, tartan bars, etc.)
• Motion speed
• Foreground overlay (moving box or cross hairs)
• Box color
• Box size
• Horizontal zone plate speed/delta
• Vertical zone plate speed/delta
• Cross hairs X/Y coordinates
X-Ref Target - Figure 3-4

Figure 3-4: TPG Settings Panel
Zynq UltraScale+ MPSoC Base TRD 22
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=22

Chapter 3: APU Application (Linux)
CSI Settings Panel

This panel (Figure 3-5) can be accessed from the video source settings icon. It provides the
following control knobs:

• IMX274 image sensor

° Test Pattern

° Exposure

° Gain

° Vertical Flip
• Gamma

° Red gamma correction

° Green gamma correction

° Blue gamma correction
• CSC

° Brightness

° Contrast

° Red gain

° Green gain

° Blue gain
X-Ref Target - Figure 3-5

Figure 3-5: CSI Settings Panel
Zynq UltraScale+ MPSoC Base TRD 23
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=23

Chapter 3: APU Application (Linux)
File Source Settings Panel

This panel (Figure 3-6) can be accessed from the video source settings icon. It provides the
following control knobs:

• File Browser to select video file for playback

2D Filter Settings Panel

This panel (Figure 3-7) can be accessed from the filter mode settings icon. It provides the
following control knobs:

• Filter Presets (blur, sharpen, emboss, sobel, custom, etc.)
• Coefficients

X-Ref Target - Figure 3-6

Figure 3-6: File Browser Panel

X-Ref Target - Figure 3-7

Figure 3-7: 2D Filter Settings Panel
Zynq UltraScale+ MPSoC Base TRD 24
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=24

Chapter 3: APU Application (Linux)
Demo Mode Settings Panel

This panel (Figure 3-8) can be accessed from the demo mode settings icon. It provides the
following control knobs:

• Time Interval
• Demo Sequence Count
• Per sequence drop down menus for video source, accelerator, and accelerator mode
X-Ref Target - Figure 3-8

Figure 3-8: Demo Mode Settings Panel
Zynq UltraScale+ MPSoC Base TRD 25
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=25

Chapter 3: APU Application (Linux)
Video Library
The video_lib library implements the following features:

• Display configuration
• Media pipeline configuration for video capture
• Video sub-device control

The video_lib library exports and imports the following interfaces as shown in Figure 3-2,
page 19:

• TPG video source controls (to video_qt2)
• CSI video source controls (to video_qt2)
• Media pipeline initialization (to xlnxvideosrc)
• Display initialization (to xlnxvideosink)
• Interfaces from middleware layers (media controller, DRM)

Display Configuration
The video_lib library uses the libdrm library to configure the CRTC based on the
monitor's EDID information with the video resolution of the display. It also configures plane
properties such as alpha value. The graphics plane is configured by the Qt EGLFS backend
outside of this library. The video data flow and buffer pools are manged by gst_lib and
the kmssink plugin, also outside of this library. The pixel format for each of the two planes
is configured statically in the device-tree.

Media Pipeline Configuration
The video_lib library implements a media controller interface that allows you to
configure the media pipeline and its sub-devices. It uses the libmediactl and
libv4l2subdev libraries which provide the following functionality:

• Enumerate entities, pads and links
• Configure sub-devices

° Set media bus format

° Set dimensions (width/height)

° Export sub-device controls

The video_lib library sets the media bus format and video resolution on each sub-device
source and sink pad for the entire media pipeline. The formats between pads that are
Zynq UltraScale+ MPSoC Base TRD 26
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=26

Chapter 3: APU Application (Linux)
connected through links need to match. The video data flow and buffer pools are managed
by gst_lib and the v4l2src plugin outside of this library.

GStreamer Video Library
GStreamer is a cross-platform open source multimedia framework that provides
infrastructure to integrate multiple multimedia components and create pipelines/graphs.
GStreamer graphs are made of two or more plugin elements which are delivered as shared
libraries.

The gst_lib library configures various GStreamer pipelines in the design and controls the
data flow through these pipelines. It implements the following features:

• Selection of a video-source GStreamer plugin
• Selection of a video-sink GStreamer plugin
• Selection of a video-processing GStreamer plugin
• Creation of a GStreamer graph based on above plugins plus capabilities
• Configuration of properties of above GStreamer plugins
• Control of a GStreamer pipeline/graph

The gst_lib library exports and imports the following interfaces as shown in Figure 3-2,
page 19:

• GStreamer pipeline control and configuration (to video_lib)
• GStreamer accelerator plugin properties (to video_qt2)

GStreamer Plugins
The following three GStreamer plugin categories are used by the Xilinx Gst Library:

• Available video-source options:

° xlnxvideosrc plugin: V4l2 sources e.g. USB webcam, Vivid, TPG, HDMI Rx, MIPI
CSI-2 Rx

° multisrc plugin: video file source for raw video files
• Available video-sink options:

° xlnxvideosink plugin: KMS display sinks e.g. DP Tx, HDMI Tx

° fpsidsplaysink plugin: frames-per-seconds information for above 2 sinks
Zynq UltraScale+ MPSoC Base TRD 27
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=27

Chapter 3: APU Application (Linux)
• Available video-processing options:

° sdxfilter2d plugin: 2D filter accelerator

° sdxopticalflow plugin: optical flow accelerator

GStreamer Capabilities
The pads are the element's interface to the outside world. Data streams from one element's
source pad to another element's sink pad. The specific type of media that the element can
handle will be exposed by the pad's capabilities.

The following capabilities are used between video-source plugin and its peer plugin (either
video-sink or video-processing). These capabilities (also called capsfilter) are specified by
gst_lib while constructing a GStreamer graph, for example:

"video/x-raw, width=<width of videosrc>, height=<height of
videosrc>, format=YUY2, framerate=<fps/1>"

If multisrc is used as video-source plugin, the videoparse element is used instead of a
capsfilter to parse the raw video file and transform it to frames:

“videoparse width=<width of filesrc> height=<height of filesrc>
format=yuy2 framerate=<fps/1>”
Zynq UltraScale+ MPSoC Base TRD 28
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=28

Chapter 3: APU Application (Linux)
GStreamer Graphs
There are only two data modifying elements in the pass-through graph: one from
video-source category and one from the video-sink category; video-processing elements
are absent. The capsfilter is an element that is linked as part of the pipeline between the
source and sink elements but does not modify the data as such. Figure 3-9 shows a
pass-through graph consisting of a video source connected to a display sink.

X-Ref Target - Figure 3-9

Figure 3-9: Passthrough Mode: xlnxvideosrc Connected to xlnxvideosink

GstCapsFilter
capsfilter0

[>]
parent=(GstPipeline) pipeline0

caps=video/x-raw, width=(int)3840, height=(int)2160,
format=(string)YUY2, framerate=(…

GstKMSSink
kmssink0

[-]

parent=(GstXlnxVideoSink) xlnxvideosink0
sync=FALSE

max-lateness=20000000
qos=TRUE

bus-id="\200\245\337\033"
connector-id=38

plane-id=34
display-width=3840
display-height=2160

fullscreen-overlay=TRUE

GstV4l2Src
v4l2src0

[-]
parent=(GstXlnxVideoSrc) xlnxvideosrc0

device-name="vcap_csi output 0"
device-fd=16
flags=capture

io-mode=dmabuf
pixel-aspect-ratio=NULL

Legend:
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking, [E]OS; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

src
[>][bfb]

proxypad0
[-][bFb]

sink
[-][bFb]

sink
[-][bfb]

src
[-][bfb]

device="/dev/video3"

X20874-111318

GstXlnxVideoSrc
xlnxvideosrc0

[-]
parent=(GstPipeline)pipelone0

async-handling=TRUE
device=”/dev/video3"

device name=vcap_csi output 0"
device-fd=16
flags=capture

io-mode=dmabuf
pixel-aspect-ratio=NULL

src-type=mipi

src
[-]bFb]

proxypad0
[-][bFb] sink

[-][bFb]

proxypad1
[-][bFb]

GstXlnxVideoSink
xlnxvideosink0

[-]
parent=(GstFPSDisplaySink) fpsdisplaysink0

sync=FALSE
max-lateness=20000000

qos=TRUE
bus-id=”fd4a0000.zynqmp-display”

connector-id=38
plane-id=34

display-width=3840
display-height=2160

Fullscreen-overlay=TRUE
sink-type=dp

GstFPSDisplaySink
fpsdisplaysink0

[-]
parent=(GstPipeline)pipelone0

sync=FALSE
text-overlay=FALSE

video-sink=(GstXlnxVideoSink) xlnxvideosink0
Frames-rendered=6
Zynq UltraScale+ MPSoC Base TRD 29
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=29

Chapter 3: APU Application (Linux)
In the accelerator GStreamer graph, a video-processing GStreamer element processes
incoming video form a video source before sending it to the video sink. There are three
plugins in the accelerator graph: one from the video-source category, one from the
video-processing category, and one from the video-sink category. Figure 3-10 shows a live
video source connected to an accelerator connected to a display sink.

GStreamer Pipeline Control
The GStreamer framework is used to control the GStreamer graph. It provides the following
functionality:

• Start/stop video stream inside a graph
• Get/set controls
• Buffer operations
• Get frames-per-second information

X-Ref Target - Figure 3-10

Figure 3-10: Accelerator Mode: xlnxvideosrc Connected to sdxfilter Connected to xlnxvideosink

GstCapsFilter
capsfilter0

[>]
parent=(GstPipeline) pipeline0

caps=video/x-raw, width=(int)3840, height=(int)2160,
format=(string)YUY2, framerate=(…

GstQueue
queue0

[>]
parent=(GstPipeline) pipeline0

GstSdxFilter2d
sdxfilter2d0

[>]
parent=(GstPipeline) pipeline0

filter-preset=blur

Legend:
Element-States: [~] void-pending, [0] null, [-] ready, [=] paused, [>] playing
Pad-Activation: [-] none, [>] push, [<] pull
Pad-Flags: [b]locked, [f]lushing, [b]locking, [E]OS; upper-case is set
Pad-Task: [T] has started task, [t] has paused task

sink
[>][bfb]

src
[>][bfb]

sink
[>][bfb]

src
[>][bfb]

sink
[>][bfb]

src
[>][bfb][T]

GstV4l2Src
v4l2src0

[-]
parent=(GstXlnxVideoSrc) xlnxvideosrc0

device-name="vcap_csi output 0"
device-fd=16
flags=capture

io-mode=dmabuf
pixel-aspect-ratio=NULL

src
[-][bfb]

device="/dev/video3"

GstXlnxVideoSrc
xlnxvideosrc0

[-]
parent=(GstPipeline)pipelone0

async-handling=TRUE
device=”/dev/video3"

device name=vcap_csi output 0"
device-fd=16
flags=capture

io-mode=dmabuf
pixel-aspect-ratio=NULL

src-type=mipi

src
[-]bFb]

proxypad0
[-][bFb]

GstKMSSink
kmssink0

[-]

parent=(GstXlnxVideoSink) xlnxvideosink0
sync=FALSE

max-lateness=20000000
qos=TRUE

bus-id="\200\245\337\033"
connector-id=38

plane-id=34
display-width=3840
display-height=2160

fullscreen-overlay=TRUE

proxypad0
[-][bFb]

sink
[-][bFb]

sink
[-][bfb]sink

[-][bFb]

proxypad1
[-][bFb]

GstXlnxVideoSink
xlnxvideosink0

[-]
parent=(GstFPSDisplaySink) fpsdisplaysink0

sync=FALSE
max-lateness=20000000

qos=TRUE
bus-id=”fd4a0000.zynqmp-display”

connector-id=38
plane-id=34

display-width=3840
display-height=2160

Fullscreen-overlay=TRUE
sink-type=dp

GstFPSDisplaySink
fpsdisplaysink0

[-]
parent=(GstPipeline)pipelone0

sync=FALSE
text-overlay=FALSE

video-sink=(GstXlnxVideoSink) xlnxvideosink0
Frames-rendered=6

X20873-111318
Zynq UltraScale+ MPSoC Base TRD 30
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=30

Chapter 3: APU Application (Linux)
There are four states defined in the GStreamer graph: “NULL”, “READY”, “PAUSED”, and
“PLAYING”. The gst_lib library sets the “PLAYING” state of a GStreamer graph to start the
pipeline and the “NULL” state to stop the pipeline.

GStreamer abstracts buffer allocation and pooling. Custom allocators and buffer pools can
be implemented to accommodate custom use-cases and constraints. The video source
controls buffer allocation, but the sink can propose parameters in the negotiation phase.

The DMABUF framework is used to import and export buffers in a 0-copy fashion between
pipeline elements, required for high-performance pipelines (see Figure 3-11). The v4l2src
element has a property named io-mode which allows allocation and export of DMABUFs to
its peer element. The kmssink element allows import as well as export of DMABUFs
to/from its peer element. The gstsdxbase class allows only import of DMABUFs, which
means it relies on DMABUFs being allocated by its peer elements connected to the source
and sink pads. Note that DMABUFs are not necessarily physically contiguous depending on
the underlying kernel device driver.

The gstxclallocator class implements a custom allocator for the gstsdxbase class
using the gst_xcl_allocator_alloc and gst_xcl_allocator_free XRT functions
which allows sharing buffers in a 0-copy fashion between two gstsdx elements.

X-Ref Target - Figure 3-11

Figure 3-11: DMABUF Sharing Mechanism

DisplayVideo Capture Video Processing

kmssinkv4l2src sdx

DMABUFImport/Export Import/Export

Import

X17252-051418
Zynq UltraScale+ MPSoC Base TRD 31
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=31

Chapter 3: APU Application (Linux)
Performance Monitor Client Library
The perfapm-client library provides an interface to the video_qt2 application for
reading memory throughput performance numbers. The perfapm-client implements an
OpenAMP interface that allows communication with the perfapm-server application
running on RPU-1 (see Chapter 1) through the remote processor messaging (RPMsg)
framework.

The perfapm-client requests data from the perfapm-server on a need basis. The following
steps are performed:

• Call perfoacl_init_all() function to initialize all available APM instances
• Call perfoacl_get_rd_wr_cnt() function to read the values of read/write counters

filled by the perfapm-server
• Call perfoacl_deinit_all() function to disables all available APM instances

The client application then passes the data to the GUI application where it is plotted on a
graph. This allows you to monitor and visualize the memory throughput caused by the
video traffic live at run-time.

Xilinx Video Source and Sink GStreamer Plugins
The Xilinx video source and sink GStreamer plugins are designed to simplify the usage of
the capture and display devices in this design as they take care of any initialization and
configuration that the user has to take care of otherwise. Figure 3-12 shows the general
architecture of the Xilinx video source and video sink GStreamer plugins. The gray-colored
boxes are components developed by Xilinx whereas the white boxes are open-source
components.
X-Ref Target - Figure 3-12

Figure 3-12: Gstreamer Xilinx Video Source and Sink Plugin Architecture

gstreamer video_lib

gstxlnxvideo[sink|src]

X21788-102418
Zynq UltraScale+ MPSoC Base TRD 32
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=32

Chapter 3: APU Application (Linux)
The Xilinx video source plugin xlnxvideosrc is a bin element that contains the v4l2src
element which is a standard GStreamer plugin. In addition, it uses the Xilinx video_lib
library to configure the media pipelines of the supported video sources in this design (see
Video Library, page 26 for details). The src-type property is used to select the video
source; valid options are:

• hdmi
• mipi
• tpg
• usbcam
• vivid

All other properties are inherited from the v4l2src element.

The Xilinx video sink plugin xlnxvideosink is a bin element that contains the kmssink
element which is a standard GStreamer plugin. In addition, it links in the Xilinx video_lib
library which is used to set QoS settings matching the selected display device. The
sink-type property is used to select the video sink; valid options are:

• dp
• hdmi

All other properties are inherited from the kmssink element.
Zynq UltraScale+ MPSoC Base TRD 33
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=33

Chapter 3: APU Application (Linux)
GStreamer Plugins
The Vitis™ unified software environment tool‘s GStreamer plugins are designed to
implement memory-to-memory accelerators that can easily and seamlessly interface with
other GStreamer elements such as video sources and sinks. Figure 3-13 shows the general
architecture of the GStreamer plugins. The gray-colored boxes are components developed
by Xilinx whereas the white boxes are open-source components.

An accelerator element has one source and one sink pad; it can consume N temporal input
frames from its source pad and produce one output frame on its sink pad. All accelerator
plugins inherit from the generic base class which in turn inherits from the GStreamer video
transform class.

The base class provides common infrastructure that is shared across all accelerators. It also
provides a generic filter-mode property which allows the user to switch between a
hardware-accelerated version of the algorithm or a pure software implementation. Note
that it is not mandatory for accelerator plugins to implement both modes. Accelerator
plugins can implement additional accelerator-specific properties. The allocator class wraps
the low-level memory allocation and dmabuf routines.

The plugins launch the PL-based kernel generated by the Vitis software platform. The
PL-based kernel uses the Xilinx xfopenCV libraries. These libraries provide
hardware-optimized implementations of a subset of the OpenCV libraries. They are
implemented in C-code that is then synthesized to FPGA hardware using high level
synthesis (HLS). The XRT and hls libraries are used for memory allocation as well as
memory and hardware interface generation.

X-Ref Target - Figure 3-13

Figure 3-13: GStreamer Plugin Architecture

gstsdxbase gstxclallocator

xrtutils

opencv*

gstsdx<accelerator>

gstreamer*

xilinxopencl

opencl

X21789-092419
Zynq UltraScale+ MPSoC Base TRD 34
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=34

Chapter 3: APU Application (Linux)
2D Filter GStreamer Plugin
In this example, a 2D convolution filter is implemented in two different versions: (1) as pure
software-implementation using the OpenCV library [Ref 4], and (2) as hardware-optimized
implementation using the Xilinx xfOpenCV library [Ref 5].

Convolution is a common image processing technique that changes the intensity of a pixel
to reflect the intensities of the surrounding pixels. This is widely used in image filters to
achieve popular image effects like blur, sharpen, and edge detection [Ref 3].

The implemented algorithm uses a 3x3 kernel with programmable filter coefficients. The
numbers inside the kernel determine how to transform the pixels from the original image
into the pixels of the processed image (see Figure 3-14).

The algorithm performs a two dimensional (2D) convolution for each pixel of the input
image with a 3x3 kernel. Convolution is the sum of products, one for each
coefficient/source pixel pair. As we are using a 3x3 kernel, in this case it is the sum of nine
products.

The result of this operation is the new intensity value of the center pixel in the output
image. This scheme is repeated for every pixel of the image in raster-scan order i.e.,
line-by-line from top-left to bottom-right. In total, width x height 2D convolution
operations are performed to process the entire image.

The pixel format used in this design is YUYV which is a packed format with 16 bits per pixel
(see Video Buffer Formats, page 48). Each pixel can be divided into two 8-bit components
(or channels): one for luma (Y), the other for chroma (Cb/Cr alternating).

X-Ref Target - Figure 3-14

Figure 3-14: 2D Convolution with 3x3 Kernel

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

1

1

2

1

2

0

1

1

1

2

2

2

0

1

1

1

1

2

2

0

1

0

1

1

1

1

0

0

0

0

0

0

0

0

0
4

0

0

-4

0
0

-8

0

1

Source Pixel

Convolution
kernel (emboss)

New pixel value
(destination pixel)

X17322-071917
Zynq UltraScale+ MPSoC Base TRD 35
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=35

Chapter 3: APU Application (Linux)
In this implementation, only the Y component is processed by the 2D convolution filter
which is essentially a grayscale image. The reason is that the human eye is more sensitive to
intensity than color. The combined Cb/Cr channel which accounts for the color components
is merged back into the final output image unmodified.

The library implements a transform function that takes an input frame and produces an
output frame. It also exports an interface that allows the user to program the kernel
coefficients. This can be done either by setting the numerical values, or by selecting from a
set of pre-defined filter presets such as blur, sharpen, edge detection, etc.

The Vitis software platform example uses three hardware-accelerated functions to process
the video:

• The first function, read_f2d_input, extracts the luma component from the input
image to prepare it for the next, main processing step that operates on luma only. The
main processing function, filter2d_sds uses the xfOpenCV function filter2D, as
described in the Xilinx OpenCV User Guide (UG1233) [Ref 5], with a 3x3 window size,
one pixel per clock and a maximum resolution of 3840x2160.

• As final step, the write_f2d_output function merges the unmodified UV component
with the modified luma component from the main processing function.

Optical Flow GStreamer Plugin
This example implements a dense optical flow algorithm. The algorithm processes two
consecutive frames and generates a 2D vector field of motion vectors, where each vector
represents the movement of points from first to second frame. For more details, refer to
Dense Non Pyramidal LK Optical Flow in the Xilinx OpenCV Library User Guide (UG1233)
[Ref 7]. The filter operates on a YUYV pixel format on the input and output side. The pixel
format YUYV is a packed format with 16 bits per pixel (see Video Buffer Formats, page 48).
Each pixel can be divided into two 8-bit components (or channels): one for luma (Y), the
other for chroma (U, V). The Vitis software platform example uses three
hardware-accelerated functions to process the video.

• The first function, read_optflow_input, extracts the luma component from the
input image to prepare it for the next, main processing step that operates on luma only.

• The main processing step uses the xfOpenCV function
xFDenseNonPyrLKOpticalFlow, as described in UG1233 [Ref 5], with a 25x25
window size, two pixel per clock and a maximum resolution of 3840x2160. The optical
flow algorithm computes the motion vectors from the luma components of two
consecutive input images.

• As final step, the write_optflow_output function maps the motion vectors to
individual components of the YUYV output image. In detail, motion in X-direction
(flowx) is mapped to the U and motion in the Y-direction (flowy) is mapped to the
V-component of the image. The magnitude of the motion;
Zynq UltraScale+ MPSoC Base TRD 36
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=36

Chapter 3: APU Application (Linux)
is mapped to the Y component (the output shows moving pixels in different colors
depending on the direction of their movement and at different intensity, depending on
their speed of movement). Figure 3-15 illustrates the UV color plane for Y=0.5.

X-Ref Target - Figure 3-15

Figure 3-15: UV Color Plane for Y=0.5

flowx2 flowy2
+()
Zynq UltraScale+ MPSoC Base TRD 37
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=37

Chapter 4

RPU-1 Software Stack (Bare-metal)

Introduction
Figure 4-1 shows the overall software stack running on RPU-1. The BSP layer contains the
bare-metal implementation along with the AXI performance monitor (APM) driver, inter
processor interrupt (IPI) driver, and OpenAMP library.

The application layer contains the perfapm library and the perfapm-ctl and
perfapm-server applications. The perfapm library uses APIs provided by the APM driver
to read various performance metrics from the APM hardware instances inside the PS.

The perfapm-ctl application uses APIs provided by the perfapm library and prints the
performance data on UART1. The perfapm-server application uses APIs provided by the
perfapm and OpenAMP libraries to package the performance data so it can be sent to a
remote application via the OpenAMP framework.
X-Ref Target - Figure 4-1

Figure 4-1: Bare-metal Software Stack Running on RPU-1

Application Layer

ARM Cortex R5-1

Board Support
Package (BSP)

perfapm-server
application

perfapm
library

openamp
library

APM
driver

IPI
driver

UART
driver

Other
drivers...

Standalone OS

Other
libraries...

perfapm-ctl
application

X17237-113016
Zynq UltraScale+ MPSoC Base TRD 38
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=38

Chapter 4: RPU-1 Software Stack (Bare-metal)
Performance Monitor Library
The AXI performance monitor (APM) block enables AXI system performance measurement.
The block captures configurable real-time performance metrics such as throughput and
latency of AXI interfaces. As shown in Figure 4-1, there are a total of four APMs monitoring
nine AXI interface points inside the PS:

• One OCM switch to OCM monitor point
• One LPD switch to FPD switch (CCI) monitor point
• One CCI to core switch monitor point
• Six DDR controller monitor points

° slot 0 for OCM switch to OCM

° slot 1 for CCI ACE-Lite master port 0 to DDR

° slot 2 for CCI ACE-Lite master port 1 to DDR

° slot 3 for DisplayPort + PL_HP0

° slot 4 for PL_HP1 + PL_HP2

° slot 5 for PL_HP3 + FPD-DMA
Zynq UltraScale+ MPSoC Base TRD 39
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=39

Chapter 4: RPU-1 Software Stack (Bare-metal)
The APMs are configured in profile mode, each providing an event count module that
includes two profile counters per APM monitor point. The two counters are software
configurable and can be used to monitor different metrics. Both profile counters are 32 bits
in size each.

The perfapm library is implemented in bare-metal targeting RPU-1. The library provides
APIs to configure above APMs to read various performance metrics:

• Read/write transaction count
• Read/write latency
• Read/write byte count
• Slave write/Master read idle cycle count

In this design, the two counters of each monitor point are configured to monitor total read
and write byte counts using the APM bare-metal driver. Read and write byte counts are then
added up in software to calculate the total throughput for each monitor point.

X-Ref Target - Figure 4-2

Figure 4-2: PS Interconnect with APM Monitor Points

OCM

RPU

USB1

IOU

LPD-DMA

CS-DAP

CSU

Slaves

GIC

APU

CCI-400

Programmable Logic (PL)

CoreSight

D
P

Tx

FP
D

-D
M

A

PC
Ie

G
PU

SA
TA

G
IC

/T
C

U
Sl

av
es

Core
Switch

DDR Subsystem

LPD

USB0

PMU

LPD

ACP_FPD
ACE_FPD

HPM0_LPD

APM monitor point

HPC0/1_FPD

HP[0:3]_FPD

2D
 F

ilt
er

O
pt

ic
al

Fl

ow

Measured data path
TP

G

H
D

M
I R

x

H
D

M
I T

x

M
IP

I C
SI

X15277-090817

HPM0/1
_FPD
Zynq UltraScale+ MPSoC Base TRD 40
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=40

Chapter 4: RPU-1 Software Stack (Bare-metal)
Performance Monitor Applications
The perfapm-ctl and perfapm-server applications sit on top of the perfapm library
and are implemented in bare-metal and executed on RPU-1. The perfapm-server
packages the data acquired by the library so it can be sent to a remote communication
endpoint using the OpenAMP framework whereas the perfapm-ctl application prints the
same data to the UART1.

Specifically, the applications read the following data using APIs provided by the perfapm
library:

• Two APM profile counters (total read and write byte counts) for the OCM monitor point
• Two APM profile counters (total read and write byte counts) for the LPD monitor point
• Ten APM profile counters (total read and write byte counts) for five out of six DDR

monitor points

The perfapm-server application acts as one endpoint of the OpenAMP communication
providing data to the remote endpoint running on the APU. On the client side, a small
library perfapm-client (see Performance Monitor Client Library, page 32) receives the
data from the perfapm-server.

The OpenAMP communication between the two endpoints follows the master
(perfapm-client) and slave (perfapm-server) concept at the protocol level where the
master initiates the communication.

Shared DDR memory is used to communicate between OpenAMP master and slave. The
remoteproc kernel module on the master side allocates this shared memory and updates the
slave about the memory location during firmware download.

The shared memory data structures are ring buffers provided by an underlying virtIO
component. There are two ring buffers, one for transmit (TX) and one for receive (RX). Each
ring buffer has 256 descriptors/buffers and each buffer is 512 bytes in size. Hence, the
remoteproc kernel module allocates 256 KB of memory that is shared between master and
slave plus an additional 32 KB for the descriptors themselves. See Inter-process
Communication, page 69 for more information.

Bare-metal BSP
The bare-metal board support package (BSP) is targeting RPU-1 and shared between the
perfapm library, perfapm-ctl, and perfapm-server applications. The BSP includes the
OpenAMP driver needed by the perfapm-server application.
Zynq UltraScale+ MPSoC Base TRD 41
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=41

Chapter 5

RPU-0 Software Stack (FreeRTOS)

Introduction
Figure 5-1 shows the overall software stack running on RPU-0. The BSP layer contains the
FreeRTOS OS along with required peripheral drivers and libraries. The application layer
contains the heartbeat application which is a simple dual-task application that prints
periodic status messages to the UART.

X-Ref Target - Figure 5-1

Figure 5-1: FreeRTOS Software Stack Running on RPU-0

Application Layer

ARM Cortex R5-0

Board Support
Package (BSP)

heartbeat
application

TTCPS
driver

UART
driver Other drivers...

XilFreeRTOS OS

Other libraries...

X17246-071917X17237-062916
Zynq UltraScale+ MPSoC Base TRD 42
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=42

Chapter 5: RPU-0 Software Stack (FreeRTOS)
Heartbeat Application
The heartbeat application executes on RPU-0 running FreeRTOS and performs the following
tasks:

• Creates two tasks, one for Tx and one for Rx. The Tx task is given a lower priority than
the Rx task, so the Rx task leaves the blocked state and pre-empts the Tx task as soon
as the Tx task places an item in the queue.

• Creates the queue used by the tasks. The Rx task has a higher priority than the Tx task
and preempts the Tx task and removes values from the queue as soon as the Tx task
writes to the queue. Therefore the queue can never have more than one item in it.

• Starts the tasks and timer. Both tasks send heartbeat messages to each other to
demonstrate uninterrupted communication, independent from the other processing
units in the system. The Tx task prints the messages to UART-1.

FreeRTOS BSP
The FreeRTOS BSP is targeting RPU-0. FreeRTOS is a popular real-time operating system
kernel for embedded devices that has been ported to the Zynq UltraScale+ MPSoC.
FreeRTOS is designed to be small and simple for very fast execution.

FreeRTOS provides methods for multiple threads or tasks, mutexes, semaphores and
software timers. FreeRTOS can be thought of as a thread library rather than a full-blown
operating system.

FreeRTOS implements multiple threads by having the host program call a thread tick
method at regular short intervals. The thread tick method switches tasks depending on
priority and a round-robin scheduling scheme. The interval is 1/1000 of a second via an
interrupt from a hardware timer.
Zynq UltraScale+ MPSoC Base TRD 43
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=43

Chapter 6

System Considerations

Boot Process
The reference design uses a non-secure boot flow and SD boot mode. The sequence
diagram in Figure 6-1 shows the exact steps and order in which the individual boot
components are loaded and executed.

The platform management unit (PMU) is responsible for handling the primary pre-boot
tasks and is the first unit to wake up after power-on-reset (POR). After the initial boot-up
process, the PMU continues to run and is responsible for handling various clocks and resets
of the system as well as system power management. In the pre-configuration stage, the
PMU executes the PMU ROM and releases the reset of the configuration security unit (CSU).
It then enters the PMU server mode where it monitors power.

The CSU handles the configuration stages and executes the boot ROM as soon as it comes
out of reset. The boot ROM determines the boot mode by reading the boot mode register,
it initializes the OCM, and reads the boot header. The CSU loads the PMU firmware into the
PMU RAM and signals to the PMU to execute the firmware which provides advanced power

X-Ref Target - Figure 6-1

Figure 6-1: Boot Flow Diagram

Release
CSUPMU Power Management

Load
FSBLCSU Tamper Monitoring

FSBLAPU ATF

RPU-1

video_qt2
Linux app

PL

perfapm-server
Bare-metal app

u-boot Linux
kernel

Load
RPU-1 FW

heartbeat
FreeRTOS app

Time

PL Bitstream

RPU-0

Load
PMU FW

X17235-111418
Zynq UltraScale+ MPSoC Base TRD 44
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=44

Chapter 6: System Considerations
management features instead of the PMU ROM. It then loads the first stage boot loader
(FSBL) into on-chip memory (OCM) and switches into tamper monitoring mode.

In this design, the FSBL is executed on APU-0. It initializes the PS and configures the PL, RPU
and APU based on the boot image header information. The following steps are performed:

1. The PL is configured with a bitstream and the PL reset is de-asserted.
2. The RPU-0 application executable is loaded into DDR.
3. The Arm trusted firmware (ATF) is loaded into OCM and executed on APU-0.
4. The second stage boot loader u-boot is loaded into DDR to be executed by APU-0.

After the FSBL finishes, RPU-0 is brought out of reset and starts executing. Note that at this
point, RPU-1 is still held in reset as no executable has been loaded thus far.

The heartbeat application starts executing on RPU-0. It is a simple, multi-threaded
application running on FreeRTOS. It demonstrates the interaction between two tasks within
the same application. This application runs independent from the APU and RPU-1 cores.

In parallel, the APU-0 runs u-boot which performs some basic system initialization and
loads the Linux kernel, device tree, and rootfs into DDR. It then boots the Linux kernel at
which point all four A53 cores inside the APU are run in SMP mode.

When Linux is fully booted, the APU master loads the perfapm-server bare-metal
firmware onto the RPU-1 slave using the remoteproc framework. A custom rpmsg user
driver kernel module establishes a communication channel between the APU and RPU-1
and allocates two ring buffers which are used to send messages between the two
processing units.

Lastly, the video_qt2 Linux user-space application is started which configures and
controls the video pipeline. The built-in perfapm-client library communicates with the
RPU-1 firmware to exchange system performance monitoring data.

For more information on the boot process, see chapters 2 and 7 in Zynq UltraScale+ MPSoC
Software Developer Guide (UG1137) [Ref 6], and chapter 8 in Zynq UltraScale+ MPSoC
Technical Reference Manual (UG1085) [Ref 8].
Zynq UltraScale+ MPSoC Base TRD 45
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=45

Chapter 6: System Considerations
Global Address Map
Peripherals
Figure 6-2 shows the global address map of the Zynq MPSoC device in the center with key
low-power domain (LPD) and full-power domain (FPD) PS peripherals on the right and PL
peripherals on the left. Both PS and PL peripherals are mapped to 32-bit address space so
they can be accessed from both APU and RPU. PL peripherals are mapped to two separate
256 MB address regions via dedicated high-performance master ports (HPM):

• IPs that have an AXI-lite interface with dedicated clock are connected to HPM0
• IPs that share a clock between AXI-lite and streaming or memory-mapped interfaces

(typically-HLS based IPs) are connected to HPM1.

For more information on system addresses, see chapter 8 in Zynq UltraScale+ MPSoC
Technical Reference Manual (UG1085) [Ref 8].

X-Ref Target - Figure 6-2

Figure 6-2: Global Address Map

0xA003_0000 Clocking Wizard

Sensor GPIO

Sensor I2C

MIPI CSI-2 Rx

0xFFFF_FFFF

0xFFFC_0000

0xFFE0_0000

0xFFD0_0000

0xFFC0_0000

0xFF16_0000

0xFF0F_0000

0xFF0B_0000

0xFF0A_0000

0xFF06_0000

0xFF04_0000

0xFF02_0000

0xFF00_0000

4GB

64GB

1TB
32-bit 36-bit 40-bit

0GB

2GB

3GB

0xFF9D_0000

0xFD0C_0000

0xFD0E_0000

0xFD4A_0000

0xFD4B_0000

On-Die Memories

LPD

FPD

Programmable Logic 2 (512 MB)

Programmable Logic 0 (256 MB)

Programmable Logic 1 (256 MB)

Quad-SPI (512 MB)

PCIe Low (256 MB)

Reserved (128 MB)

Processing System Registers (128 MB)

CSU, PMU, TCM, OCM (4 MB)

DDR Low (2 GB)

Reserved (12 GB)

PL (8 GB)

PCIe High (8 GB)

DDR High (32 GB)

PL (448 GB)

PCIe (256 GB)

Reserved DDR (256 GB)

OCM

R5 TCM

PMU ROM/RAM

CSU ROM/RAM

USB3 0/1

SD 0/1

Quad-SPI

GEM 0/1/2/3

GPIO

CAN 0/1

SPI 0/1

I2C 0/1

UART 0/1

GPU

DisplayPort

AXI PCIe

SATA
0xA000_0000

0xA002_0000

0xA008_0000

0xA100_0000

0xA3C2_0000

0xB003_0000

0xB005_0000

HPM0

Frmbuf Wr (TPG)

TPG

VTC

HDMI Rx

HDMI Tx

HDMI I2C

Video PHY

Frmbuf Wr (HDMI Rx)

Video Mixer

VPSS Scaler (HDMI Rx)

Gamma

Demosaic

0xB007_0000

0xB00C_0000

0xB010_0000

0xB001_0000

0xB004_0000

Frmbuf Wr (CSI Rx)

VPSS CSC (CSI Rx)

VPSS Scaler (CSI Rx)

HPM1

0xA00B_0000

0xB002_0000

0xB006_0000

0xB008_0000

0xA00A_0000

0xA006_0000

X17238-10241
Zynq UltraScale+ MPSoC Base TRD 46
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=46

Chapter 6: System Considerations
Memories
Figure 6-2 also shows the different DDR memory regions (split in low and high) and the
various on-die memories (top-right) used to store all program code and run-time data.
These DDR memory regions are:

• On-chip memory (OCM)
• RPU tightly-coupled memory (TCM)
• CSU ROM/RAM
• PMU ROM/RAM

The Framebuffer Write and Video Mixer instances in the PL are limited to a 32-bit address
space so they can only access the DDR Low address region for receiving and transmitting
video buffers to be shared with the APU application. Table 6-1 lists the APU and RPU
software components used in this design and where they are stored or executed from in
memory.

IMPORTANT: Great caution needs to be taken when assigning memory regions for the
individual components so they don't overlap each other and thus lead to run-time errors.

OCM is a shared resource and can be accessed by multiple processing units. The FSBL is
loaded into OCM by the boot ROM. The FSBL mapping leaves a gap toward the upper
section of OCM where the Arm trusted firmware (ATF) is loaded.

As the RPU is configured for split mode, the two RPU cores have their own private tightly
coupled memories, 128 KB each (TCM-0 and TCM-1). TCM cannot be accessed by any other
processing units.

The heartbeat application running on RPU-0 is loaded into DDR memory and the
perfapm-server firmware running on RPU-1 is loaded into a combination of TCM and
DDR memory. The DDR memory regions have to be reserved upfront in the device tree.

The Linux kernel components are loaded into DDR by u-boot. The flattened image tree (FIT)
image format is used which is a flexible, monolithic binary that contains all boot
components which ensures that the kernel, device-tree, and rootfs do not overlap. The
video_qt2 application is an executable in elf format. The Linux operating system takes
care of loading and executing the binary as well as mapping it into its virtual address space.

Table 6-1: Software Executables and their Memory Regions
Design Component Processing Unit Memory

FSBL APU-0 OCM
heartbeat RPU-0 DDR
Arm trusted firmware (ATF) APU-0 OCM
u-boot APU-0 DDR
Zynq UltraScale+ MPSoC Base TRD 47
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=47

Chapter 6: System Considerations
Table 6-2 lists important data structures stored in DDR memory and shared between
multiple processing units or hardware devices. Vring buffers and video buffers are allocated
by kernel drivers using the contiguous memory allocator (CMA).

For more information on TCM and OCM, see chapters 4 and 16 in Zynq UltraScale+ MPSoC
Technical Reference Manual (UG1085) [Ref 8].

Video Buffer Formats
The TRD uses two layers (or planes) that get alpha blended inside the display subsystem
which sends a single video stream to the DisplayPort or HDMI transmitter. The bottom layer
is used for video frames while the top layer is used for graphics. The graphics layer consist
of the GUI and is rendered by the GPU. It overlays certain areas of the video frame with GUI
control elements while other parts of the frame are transparent. A mechanism called pixel
alpha blending is used to control the opacity of each pixel in the graphics plane.

The pixel format used for the graphics plane is called ARGB8888 or AR24 (see Figure 6-3,
top). It is a packed format that uses 32 bits to store the data value of one pixel (32 bits per
pixel or bpp), 8 bits per component (bpc) also called color depth or bit depth. The individual
components are: alpha value (A), red color (R), green color (G), blue color (B). The alpha
component describes the opacity of the pixel: an alpha value of 0% (or 0) means the pixel is
fully transparent (invisible); an alpha value of 100% (or 255) means that the pixel if fully
opaque.

The pixel format used for the video plane is YUYV which is a packed format that uses 16 bpp
and 8bpc (see Figure 6-3, bottom). YUYV is commonly used for 4:2:2 sub-sampled YUV
images where the luma component Y has twice as many samples (or double the horizontal

Linux kernel/device tree/rootfs APU (SMP) DDR
video_qt2 APU (SMP) DDR
perfapm-server RPU-1 TCM + DDR

Table 6-2: Shared Data Structures in DDR Memory
Data Structure Shared Between Memory Properties

Video buffers • APU
• DPDMA (PS)
• Framebuffer Write, Video Mixer (PL)
• GPU
• Accelerators (PL)

Non-coherent, contiguous

Vring buffers (OpenAMP) • APU
• RPU-1 Coherent, contiguous

Table 6-1: Software Executables and their Memory Regions (Cont’d)

Design Component Processing Unit Memory
Zynq UltraScale+ MPSoC Base TRD 48
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=48

Chapter 6: System Considerations
resolution) as each of the U/V chroma components (also referred to as Cb/Cr components).
A 32 bit word is also referred to as macro-pixel as it holds information for two pixels where
Cb and Cr are common for both Y0 and Y1 samples. This results in an average value of
16 bpp.

Aside from the pixel format, a video buffer is further described by a number of other
parameters (see Figure 6-4):

• The active area is the part of the video buffer that is visible on the screen. The active
area is defined by the height and width parameters, also called the video dimensions.
Those are typically expressed in number of pixels as the bits per pixel depend on the
pixel format as explained above.

• The stride or pitch is the number of bytes from the first pixel of a line to the first pixel
of the next line of video. In the simplest case, the stride equals the width multiplied by
the bits per pixel, converted to bytes. For example: AR24 requires 32 bpp which is four
bytes per pixel. A video buffer with an active area of 1920 x 1080 pixels therefore has a
stride of 4 x 1920 = 7,680 Bytes. Some DMA engines require the stride to be power of
two to optimize memory accesses. In this design, the stride always equals the width in
bytes.

• The PS DP Tx display pipeline does not allow for setting the X and Y offsets unlike the
PL HDMI Tx display pipeline where the offsets are programmable. In this design, the X
an Y offsets are always set to 0 for both display pipelines.

X-Ref Target - Figure 6-3

Figure 6-3: AR24 (Top) and YUYV (Bottom) Pixel Formats in Little Endian Notation

8 8 8 8
Cr Y1 Cb Y0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8 8 8 8
A R G B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X17370-113016
Zynq UltraScale+ MPSoC Base TRD 49
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=49

Chapter 6: System Considerations
Performance Metrics
Memory Throughput
The following calculation represents the maximum performance of this design; similar
calculations can be made for lower performance points. Note that 2160p60 is only possible
via HDMI Tx while DP Tx is limited to 2160p30.

The memory throughput for a video stream of resolution 3840 by 2160 pixels at 60 frames
per second (2160p60) using a YUYV pixel format, is calculated as:

3840 x 2160 x 16 bits x 60/s ≈ 8 Gb/s

Or using a AB24 pixel format, as:

3840 x 2160 x 32 bits x 60/s ≈ 16 Gb/s

These numbers differ, depending on the targeted video resolution.

To calculate the total memory throughput, you simply need to multiply the throughput of a
single stream with the number of streams being read/written to/from memory. Assuming
the same resolution and frame rate as in above example and the following video pipeline
configuration:

• video capture: 1 YUYV stream
• video processing (optical flow): 2 YUYV input streams, 1 YUYV output stream

X-Ref Target - Figure 6-4

Figure 6-4: Video Buffer Parameters

fb

Active Area

stride

x-offset

height

y-offset

width

X17239-071917
Zynq UltraScale+ MPSoC Base TRD 50
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=50

Chapter 6: System Considerations
• display:

° video layer: 1 YUYV stream

° graphics layer: 1 AR24 stream

The total memory throughput is calculated as:

5 x 8 Gb/s + 1 x 16 Gb/s = 56 Gb/s

This calculation only takes into account video traffic but no other memory traffic for
example as generated by the CPU, RPU, or GPU. Especially the memory throughput
generated by the GPU for graphics rendering can be significant depending on the
complexity of the scene and needs to be considered when architecting the system.

On the ZCU102, a 64-bit DDR4-2133 DIMM is used. Thus, the theoretical maximum memory
throughput is calculated as:

64 bits x 2,133 MHz ≈ 136 Gb/s

The maximum memory utilization based on a worst-case video traffic of 56 Gb/s is about
41% which leaves some headroom for more demanding applications:

56 Gb/s ÷ 136 Gb/s ≈ 0.41

CPU Utilization
The CPU utilization and load distribution across the individual processing cores inside the
APU is highly dependent on the computational workload demanded by the application and
on its implementation. In this example, a 2D convolution algorithm is used based on the
standard OpenCV library implementation (see Performance Monitor Client Library, page 32
for details).

The 2D filter algorithm is used as is and not specifically optimized for the APU or ARMv8
(micro-) architecture. Neither does it exploit data level parallelism using Arm's NEON SIMD
(single data, multiple word) instruction set extension, nor does it make use of thread level
parallelism for example by partitioning the video frame to process sub-frames on separate
processing cores.

As a result, depending on the resolution of the captured video stream, the frame rate drops
significantly if the 2D filter is run purely in software. For example, a 1080p input stream at
60 fps can only be processed at less than 2 fps using this non-optimized, single-threaded
implementation of the algorithm. At the same time, the utilization of a single core increases
to 100% when the 2D filter is running, occupying all its resources while the other three
cores are almost idle.

By profiling the software code, one can see that the majority of the time is spent in the 2D
filter algorithm. The algorithm performs pixel processing operations which are not a good
fit for a general-purpose CPU as operations are performed in a sequential manner.
Zynq UltraScale+ MPSoC Base TRD 51
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=51

Chapter 6: System Considerations
However, it is well suited for a parallel, pipelined processing architecture as the same
operation is performed on every pixel of the image with limited number of data
dependencies; this is a great fit for the PL.

By accelerating the 2D filter in the PL, the input frame rate of the video stream can be
maintained and the load of all APU cores goes down to low single digit values. This comes
at the cost of increased memory throughput (see previous section). Essentially the APU is
only performing basic housekeeping now i.e. configuring the hardware pipelines and
managing the video buffer flow which is done at the frame-level and not at the pixel-level
and therefore a much better fit.

Quality of Service
The Zynq UltraScale+ MPSoC DDR controller has six dedicated ports that are connected to
different interconnect structures and AXI masters inside the PS and PL (see Figure 4-2,
page 40). The arbitration scheme between those ports is priority based with multiple tiers
of arbitration stages.

1. Read/Write arbitration combines multiple reads or writes together and tries to minimize
direction switches to improve memory bus efficiency.

2. Read/Write priorities define relative priorities between traffic classes for reads and
writes individually. Only one traffic class can be assigned to each DDR controller port.

3. Port command priorities are per transaction and can change dynamically based on AXI
signals. They are set individually for data reads (ARQoS) and writes (AWQoS).

4. Round-robin arbitration to resolve ties in the final stage.

The Base TRD uses a combination of (2) and (3) to optimize performance. For read/write
priorities (2), the following traffic classes are defined:

• Video/isochronous traffic class is a real-time, fixed bandwidth, fixed maximum latency
class. Typically, a long latency and low priority is acceptable, but the latency must be
bounded in all cases and never exceed a predefined maximum value.

• Low latency (LL) traffic class is a low-latency, high-priority class. It is typically assigned
the highest memory access priority and can only be surpassed by a video class
transaction that has exceeded its threshold maximum latency.

• Best effort (BE) traffic class is used for all other traffic types. This class of traffic is
typically assigned the lowest memory access priority.

For PL AXI masters connected to HP ports, command priorities (3) can be either controlled
dynamically from dedicated AXI QoS signals (on a per transaction basis) or statically
configured via register interface.

Table 6-3 lists the traffic class, the HP port and its command priority (if applicable) for each
of the video/display pipelines used in the design, and the DDR controller port to which it is
connected.
Zynq UltraScale+ MPSoC Base TRD 52
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=52

Chapter 6: System Considerations
Different ports into the DDR controller are used for video capture (TPG, HDMI Rx, or CSI Rx),
video acceleration (2D Filter or Optical Flow), and DP display to achieve highest
throughput. PL masters are connected to HP ports to fit this scheme as the HP port to DDR
controller port connections are fixed.

The DP Tx display pipeline is configured for video traffic class as it is a video-timing
accurate device with fixed size requests at regular intervals determined by the consumption
rate. The consumption rate depends on the chosen video format, frame rate and resolution
(see Memory Throughput, page 50). DP Tx and HDMI Tx are connected to the same DDR
controller port (DDRC 3). As both interfaces require different QoS settings, the values are
programmed dynamically by the application, depending on which output is currently active.

Although the video capture and display pipelines implemented in the PL are also video
timing accurate, the corresponding IPs currently lack support for writing or fetching video
data according to the video class traffic type definition. The HP1 port used for video
capture and the HP0 port used for display are thus configured for best effort data traffic
instead of video.

The accelerator pipelines are not video timing accurate and the transaction pattern is
greedy rather than regular intervals as typically used in video sources and sinks. As soon as
a captured video frame is available in memory, the accelerator network tries to read the
entire data as quickly as possible and send it back to memory without considering blanking
intervals in between video lines or frames (see Figure 8-4, page 78 for video timing
description). The traffic class is therefore best effort.

The Base TRD uses static command QoS. The corresponding read and/or write data priority
values for display, capture, and processing have been identified through experimentation.
For more information on QoS, refer to [10], chapters 13, 15, and 33 in Zynq UltraScale+
MPSoC Technical Reference Manual (UG1085) [Ref 8].

Table 6-3: Quality of Service Summary

Pipeline HP Port ARQoS[3:0]/
AWQoS[3:0] Traffic class DDR Controller

Port
DP Tx Display - 0xB/ - Video 3
HDMI Tx Display HP0 0xF/- Best Effort 3
TPG/HDMI Rx/CSI Rx
Capture HP1 - /0x0 Best Effort 4

2D Filter/Optical Flow
Accelerator HP3 0x0/0x0 Best Effort 5
Zynq UltraScale+ MPSoC Base TRD 53
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=53

Chapter 7

APU Software Platform

Introduction
This chapter describes the APU Linux software platform which is further sub-divided into a
middleware layer and an operating system (OS) layer (see Figure 7-1). We are looking at
these two layers in conjunction as they interact closely for most Linux subsystems. These
layers are further grouped by vertical domains which reflect the organization of this
chapter:

• Video
• Display
• Graphics
• Vision
• Inter-process communication (IPC)
Zynq UltraScale+ MPSoC Base TRD 54
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=54

Chapter 7: APU Software Platform
The middleware layer is a horizontal layer implemented in user-space and provides the
following functionality:

• Interfaces with the application layer
• Provides access to kernel frameworks
• Implements domain-specific functionality that can be re-used in different applications

(e.g., OpenCV for computer vision)

The OS layer is a horizontal layer implemented in kernel-space and provides the following
functionality:

• Provides a stable, well-defined API to user-space
• Includes device drivers and kernel frameworks (subsystems)
• Accesses the hardware

X-Ref Target - Figure 7-1

Figure 7-1: APU Linux Software Platform

video_qt2

sdxfilter2d

perfapm-client

libv4lsubdev

libmediactl

xrtutils

libopencv_*libQt5*

libMali

Graphics Display Video Vision/Accelerator IPC

ARM
Mali Xilinx DRM Xilinx VIPP V4L

subdev Zocl UIO remote
proc rpmsg

GPU DP
Tx Filter2D IPI

A
pp
lic
at
io
n

(u
se
r)

M
id
dl
ew
ar
e

(u
se
r)

O
S

(K
er
ne
l)

H
W

X.Org

libdrm

perfapm-
client-test

xfopencv_*

Optical_FlowHDMI
Tx

sdxopticalflow

TPG

UVC

MIPI CSI

HDMI Rx

v4l2src

filter2d_optflow_xclbi
n

video_lib / gst_lib

kmssink

X17275-092419
Zynq UltraScale+ MPSoC Base TRD 55
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=55

Chapter 7: APU Software Platform
Video
In order to model and control video capture pipelines such as the ones used in this TRD on
Linux systems, multiple kernel frameworks and APIs are required to work in concert. For
simplicity, we refer to the overall solution as Video4Linux (V4L2) although the framework
only provides part of the required functionality. The individual components are discussed in
the following sections.

Driver Architecture
Figure 7-2 shows how the generic V4L2 driver model of a video pipeline is mapped to the
TPG, HDMI Rx, and CSI Rx capture pipelines. The video pipeline driver loads the necessary
sub-device drivers and registers the device nodes it needs, based on the video pipeline
configuration specified in the device tree. The framework exposes the following device
node types to user space to control certain aspects of the pipeline:

• Media device node: /dev/media*
• Video device node: /dev/video*
• V4L sub-device node: /dev/v4l-subdev*
Zynq UltraScale+ MPSoC Base TRD 56
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=56

Chapter 7: APU Software Platform
X-Ref Target - Figure 7-2

Figure 7-2: V4L2 Driver Stack

DMA EngineXVIPP Driver

CSI-2 Rx Capture Pipeline

HDMI Rx Capture Pipeline

TPG Capture Pipeline

libv4lsubdev

DMA

Frmbuf Wr

V4L2 subdev

TPG

/dev/media* /dev/video*/dev/v4l-subdev*

libmediactl xlnxvideosrc

video_qt2

Channel

video_lib

VTC

Frmbuf WrVPSS
(Scaler Only)HDMI Rx

Demosaic
MIPI
CSI-2

Rx
IMX274 Frmbuf WrVPSS

Scaler
VPSS
CSCGamma

gst_lib

X17247-110518
Zynq UltraScale+ MPSoC Base TRD 57
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=57

Chapter 7: APU Software Platform
Media Framework
The main goal of the media framework is to discover the device topology of a video pipeline
and to configure it at runtime. To achieve this, pipelines are modeled as an oriented graph
of building blocks called entities connected through pads.

An entity is a basic media hardware building block. It can correspond to a large variety of
blocks such as physical hardware devices (e.g. image sensors), logical hardware devices
(e.g., soft IP cores inside the PL), DMA channels or physical connectors. Physical or logical
devices are modeled as sub-device nodes and DMA channels as video nodes.

A pad is a connection endpoint through which an entity can interact with other entities.
Data produced by an entity flows from the entity's output to one or more entity inputs. A
link is a point-to-point oriented connection between two pads, either on the same entity or
on different entities. Data flows from a source pad to a sink pad.

A media device node is created that allows the user space application to configure the
video pipeline and its sub-devices through the libmediactl and libv4l2subdev
libraries. The media controller API provides the following functionality:

• Enumerate entities, pads and links
• Configure pads

° Set media bus format

° Set dimensions (width/height)
• Configure links

° Enable/disable

° Validate formats

Figure 7-3 shows the media graph for the TPG, HDMI Rx, and CSI Rx video capture pipelines
as generated by the media-ctl utility. The TPG sub-device is shown in green with its
corresponding control interface address and sub-device node in the center. The numbers
on the edges are pads and the solid arrows represent active links. The yellow boxes are
video nodes that correspond to DMA channels, in this case write channels (outputs).
Zynq UltraScale+ MPSoC Base TRD 58
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=58

Chapter 7: APU Software Platform
V4L2 Framework
The V4L2 framework is responsible for capturing video frames at the video device node,
typically representing a DMA channel, and making those video frames available to user

X-Ref Target - Figure 7-3

Figure 7-3: Video Capture Media Pipelines: TPG Left, HDMI Rx Center, CSI Rx Right

X17327-012318X17327-012318
Zynq UltraScale+ MPSoC Base TRD 59
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=59

Chapter 7: APU Software Platform
space. The framework consists of multiple sub-components that provide certain
functionality.

Before video frames can be captured, the buffer type and pixel format need to be set using
the VIDOC_S_FMT ioctl. On success the driver may program the hardware, allocate
resources and generally prepare for data exchange.

Optionally, the user can set additional control parameters on V4L devices and sub-devices.
The V4L2 control framework provides ioctls for many commonly used, standard controls like
brightness, contrast etc. as well as device-specific, custom controls. For example, the TPG
sub-device driver implements the standard control for selecting a test pattern and several
custom controls e.g. foreground overlay (moving box or cross hairs), motion speed etc.

The videobuf2 API implements three basic buffer types of which only physically contiguous
in memory is supported in this driver due to the hardware capabilities of the Frame Buffer
Write IP. Videobuf2 provides a kernel internal API for buffer allocation and management as
well as a user-space facing API.

Videobuf2 supports three different memory models for allocating buffers. The
VIDIOC_QUERYCAP and VIDIOC_REQBUFS ioctls are used to determine the I/O mode and
memory type. In this design, the streaming I/O mode in combination with the DMABUF
memory type is used.

DMABUF is dedicated to sharing DMA buffers between different devices, such as V4L
devices or other video-related devices like a DRM display device (see GStreamer Pipeline
Control, page 30). In DMABUF, buffers are allocated by a driver on behalf of an application.
These buffers are exported to the application as file descriptors.

For capturing applications it is customary to queue a number of empty buffers using the
VIDIOC_QBUF ioctl. The application waits until a filled buffer can be de-queued with the
VIDIOC_DQBUF ioctl and re-queues the buffer when the data is no longer needed. To start
and stop capturing applications, the VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls
are used.

Video IP Drivers
Xilinx adopted the V4L2 framework for part of its video IP portfolio. The currently
supported video IPs and corresponding drivers are listed at
http://www.wiki.xilinx.com/Linux+Drivers under V4L2. Each V4L driver has a sub-page that
lists driver specific details and provides pointers to additional documentation. Table 7-1
gives a quick overview of the drivers used in this design.
Zynq UltraScale+ MPSoC Base TRD 60
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.wiki.xilinx.com/Linux+Drivers
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=60

Chapter 7: APU Software Platform
Display
Linux kernel and user-space frameworks for display and graphics are intertwined and the
software stack can be quite complex with many layers and different standards / APIs. On the
kernel side, the display and graphics portions are split with each having their own APIs.
However, both are commonly referred to as a single framework, namely DRM/KMS.

This split is advantageous, especially for SoCs that often have dedicated hardware blocks
for display and graphics. The display pipeline driver responsible for interfacing with the
display uses the kernel mode setting (KMS) API and the GPU responsible for drawing
objects into memory uses the direct rendering manager (DRM) API. Both APIs are accessed
from user-space through a single device node.

Table 7-1: V4L2 Drivers Used in Capture Pipelines
Linux Driver Function

Xilinx Video Pipeline (XVIPP) • Configures video pipeline and register media, video and sub-device
nodes.

• Configures all entities in the pipeline and validate links.
• Configures and controls DMA engines (Xilinx Video Framebuffer

Write).
• Starts/stops video stream.

Xilinx Video Test Pattern Generator • Sets media bus format and resolution on TPG output pad.
• Configures VTC to provide correct timing to TPG.
• Sets TPG control parameters such as test pattern, foreground overlay,

motion speed, etc.
Xilinx HDMI Rx Subsystem • Query digital video (DV) timings on output pad.

• Sets media bus format and resolution on output pad.
Xilinx Video Processing Subsystem
(Scaler Only configuration) 2X

• Sets media bus format and resolution on input pad.
• Sets media bus format and resolution on output pad (both can be

different from the input configuration which enables color space
conversion and scaling).

MIPI CSI-2 Rx • Sets media bus format and resolution on input pad.
• Sets media bus format and resolution on output pad.

Xilinx Video Demosaic • Sets media bus format and resolution on input pad.
• Sets media bus format and resolution on output pad.

Xilinx Video Gamma LUT • Sets media bus format and resolution on input pad.
• Sets media bus format and resolution on output pad.
• Sets Gamma control parameters: red/green/blue gamma control.

VPSS (Color Space Converter (CSC)
configuration)

• Sets media bus format and resolution on input pad.
• Sets media bus format and resolution on output pad.
• Sets CSC control parameters: brightness, contrast, red/green/blue gain.

IMX274 Image Sensor • Sets media bus format and resolution on output pad.
• Sets sensor control parameters: exposure, gain, test pattern, vertical

flip.
Zynq UltraScale+ MPSoC Base TRD 61
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=61

Chapter 7: APU Software Platform
Direct Rendering Manager
The direct rendering manager (DRM) is a subsystem of the Linux kernel responsible for
interfacing with a GPU. DRM exposes an API that user space programs can use to send
commands and data to the GPU. The Arm Mali driver uses a proprietary driver stack which
is discussed in the next section. Therefore this section focuses on the common
infrastructure portion around memory allocation and management that is shared with the
KMS API.

Driver Features

The Xilinx DRM driver uses the GEM memory manager, and implements DRM PRIME buffer
sharing. PRIME is the cross device buffer sharing framework in DRM. To user-space PRIME
buffers are DMABUF-based file descriptors.

The DRM GEM/CMA helpers use the CMA allocator as a means to provide buffer objects
that are physically contiguous in memory. This is useful for display drivers that are unable
to map scattered buffers via an IOMMU.

Frame buffers are abstract memory objects that provide a source of pixels to scan out to a
CRTC. Applications explicitly request the creation of frame buffers through the
DRM_IOCTL_MODE_ADDFB(2) ioctls and receive an opaque handle that can be passed to
the KMS CRTC control, plane configuration and page flip functions.

Dumb Buffer Objects

The KMS API doesn't standardize backing storage object creation and leaves it to
driver-specific ioctls. Furthermore actually creating a buffer object even for GEM-based
drivers is done through a driver-specific ioctl - GEM only has a common userspace interface
for sharing and destroying objects. Dumb objects partly alleviate the problem by providing
a standard API to create dumb buffers suitable for scanout, which can then be used to
create KMS frame buffers.

Kernel Mode Setting
Mode setting is an operation that sets the display mode including video resolution and
refresh rate. It was traditionally done in user-space by the X-server which caused a number
of issues due to accessing low-level hardware from user-space which, if done wrong, can
lead to system instabilities. The mode setting API was added to the kernel DRM framework,
hence the name kernel mode setting.

The KMS API is responsible for handling the frame buffer and planes, setting the mode, and
performing page-flips (switching between buffers). The KMS device is modeled as a set of
planes, CRTCs, encoders, and connectors as shown in the top half of Figure 7-4. The bottom
half of the figure shows how the driver model maps to the physical hardware components
inside the PS DP Tx display pipeline as well as the HDMI Tx display pipeline.
Zynq UltraScale+ MPSoC Base TRD 62
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=62

Chapter 7: APU Software Platform
X-Ref Target - Figure 7-4

Figure 7-4: DRM/KMS Driver Stack

HDMI Display Pipeline

Xilinx DRM Driver

Connector

DP Display Pipeline

/dev/dri/card*

video_qt2

EncoderCRTCGraphics Plane

Video Plane

DMA Engine

DisplayPort TxBlenderA/V Buffer Manager

Channel

Channel

DPDMA

Video Channel

Graphics Channel

xlnxvideosink

X11

armsoc

X-Server (X.Org)

DRM

libkms

libdrm

Qt Toolkit

HDMI TxVideo Mixer

gst_libvideo_lib

X17248-051018X17248-110518
Zynq UltraScale+ MPSoC Base TRD 63
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=63

Chapter 7: APU Software Platform
CRTC

CRTC is an antiquated term that stands for cathode ray tube controller, which today would
be simply named display controller as CRT monitors have disappeared and many other
display types are available. The CRTC is an abstraction that is responsible for composing the
frame to be scanned out to the display and setting the mode of the display.

In the Xilinx DRM driver, the CRTC is represented by the buffer manager and blender
hardware blocks. The frame buffer (primary plane) to be scanned out can be overlayed
and/or alpha-blended with a second plane inside the blender. The DP Tx hardware supports
up to two planes, one for video and one for graphics. The z-order (foreground or
background position) of the planes and the alpha mode (global or pixel-alpha) can be
configured through the driver via custom properties.

The pixel formats of the video and graphics planes can be configured individually at
run-time and a variety of formats are supported. The default pixel formats for each plane
are set statically in the device tree. Pixel unpacking and format conversions are handled by
the buffer manager and blender. The DRM driver configures the hardware accordingly so
this is transparent to the user.

A page-flip is the operation that configures a plane with the new buffer index to be selected
for the next scan-out. The new buffer is prepared while the current buffer is being scanned
out and the flip typically happens during vertical blanking to avoid image tearing.

Plane

A plane represents an image source that can be blended with or overlayed on top of a CRTC
frame buffer during the scan-out process. Planes are associated with a frame buffer to
optionally crop a portion of the image memory (source) and scale it to a destination size.
The DP Tx display pipeline, unlike the HDMI Tx display pipeline, does not support cropping
or scaling, therefore both video and graphics plane dimensions have to match the CRTC
mode (i.e., the resolution set on the display).

The Xilinx DRM driver supports the universal plane feature, therefore the primary plane and
overlay planes can be configured through the same API. The primary plane on the video
mixer is configurable and set to the top-most plane to match the DP Tx pipeline.

As planes are modeled inside KMS, the physical hardware device that reads the data from
memory is typically a DMA whose driver is implemented using the dmaengine Linux
framework. The DPDMA is a 6-channel DMA engine that supports a (up to) 3-channel video
stream, a 1-channel graphics stream and two channels for audio (not used in this design).
The video mixer uses built-in AXI mater interfaces to fetch video frames from memory.

Encoder

An encoder takes pixel data from a CRTC and converts it to a format suitable for any
attached connectors. There are many different display protocols defined, such as HDMI or
Zynq UltraScale+ MPSoC Base TRD 64
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=64

Chapter 7: APU Software Platform
DisplayPort. The PS display pipeline has a DisplayPort transmitter built in. The encoded
video data is then sent to the serial I/O unit (SIOU) which serializes the data using the
gigabit transceivers (PS GTRs) before it goes out via the physical DP connector to the
display. The PL display pipeline uses a HDMI transmitter which sends the encoded video
data to the Video PHY. The Video PHY serializes the data using the GTH transceivers in the
PL before it goes out via the HDMI Tx connector.

Connector

The connector models the physical interface to the display. Both DisplayPort and HDMI
protocols use a query mechanism to receive data about the monitor resolution, and refresh
rate by reading the extended display identification data (EDID) (see VESA Standard [Ref 9])
stored inside the monitor. This data can then be used to correctly set the CRTC mode. The
DisplayPort and HDMI also support hot-plug events to detect if a cable has been connected
or disconnected as well as handling display power management signaling (DPMS) power
modes.

Libdrm

The framework exposes two device nodes per display pipeline to user space: the
/dev/dri/card* device node and an emulated /dev/fb* device node for backward
compatibility with the legacy fbdev Linux framework. The latter is not used in this design.

libdrm was created to facilitate the interface of user space programs with the DRM
subsystem. This library is merely a wrapper that provides a function written in C for every
ioctl of the DRM API, as well as constants, structures and other helper elements. The use of
libdrm not only avoids exposing the kernel interface directly to user space, but presents
the usual advantages of reusing and sharing code between programs.

X11
The X window system or short X11 (for protocol version 11) provides the basic framework
for a GUI environment. X uses a network-transparent communication protocol following a
client-server model where the X server typically runs on the local machine while the X client
can run on the same or on a remote machine. This reverses the typical client-server notion
known from networking where the client runs locally and the server on a remote machine.

Display Server

The X server is the center piece of the X window system (see Figure 7-4). It takes input from
connected input devices such as a mouse or keyboard and sends events to the client.
Similarly, a client can request graphical output to be displayed on the screen. X does not
mandate the user interface which is typically done by the GUI tookit. In this design, the
open-source display server X.Org is used. It implements the X11 protocol and interfaces
with the following components:
Zynq UltraScale+ MPSoC Base TRD 65
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=65

Chapter 7: APU Software Platform
• video_qt2 application through Qt toolkit with eglfs_x11 platform abstraction (top)
- see EGLFS QPA, page 68

• Mali user-space library with X11 backend (right) - see Mali Driver, page 69
• DP or HDMI display controller through the armsoc driver and DRI device nodes

(bottom)

The DRM driver enables multi-master mode so the DRI device nodes can be shared between
the video_lib library for accessing the video layer through libdrm and the armsoc
driver for accessing the graphics layer through X11. The armsoc driver can target either
display pipeline by selecting the respective DRI node in the Xorg.conf file.

Graphics
Qt Toolkit
Qt is a full development framework with tools designed to streamline the creation of
applications and user interfaces for desktop, embedded, and mobile platforms. Qt uses
standard C++ with extensions including signals and slots that simplify handling of events.
This helps in the development of both the GUI and server applications which receive their
own set of event information and should process them accordingly. Figure 7-5 shows the
end-to-end Linux graphics stack relevant for this application.
Zynq UltraScale+ MPSoC Base TRD 66
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=66

Chapter 7: APU Software Platform
X-Ref Target - Figure 7-5

Figure 7-5: Graphics Stack

libMali

Qt Support

EGLFS QPA

Qt Modules

video_qt2

Core GUI Widgets Quick2 QML

Common User-space Library

EGL OpenGLES2
X11

X11
OpenGL

Mali Kernel Driver

Mali 400MP2

GP0

MMU

PP0

MMU

PP1

MMU

L2 Cache

PMU

Charts

Xilinx DRM Driver

Display Pipelines

/dev/dri/card* /dev/mali

DP Tx

HDMI Tx

X11

armsoc

X-Server (X.Org)

X17249-060217
Zynq UltraScale+ MPSoC Base TRD 67
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=67

Chapter 7: APU Software Platform
Qt Modules

Qt consists of many different components and supports different plug-ins and interfaces
with lower level APIs in the stack. The video_qt2 application is based on Qt Quick which
includes a declarative scripting language called QML that allows using JavaScript to provide
the logic. Table 7-2 shows an overview and provides a brief description of the Qt modules
used in this application. The Qwt module is a third-party component provided outside the
stock Qt release.

EGLFS QPA

EGLFS is a Qt platform abstraction (QPA) plug-in for running Qt5 applications on top of EGL
and OpenGL ES 2.0. EGL is an interface between OpenGL and the native windowing system
used for context and surface management. In this design, the EGLFS plug-in is based on the
X11 backend matching the Mali user-space driver configuration. EGLFS supports Qt Quick2
as well as native OpenGL applications and is the recommended plug-in for modern
embedded Linux devices that include a GPU.

EGLFS forces the first top-level window to become full screen. This window is also chosen to
be the root widget window into which all other top-level widgets (e.g., dialogs, popup
menus or combo-box dropdowns) are composited. This is necessary because with EGLFS
there is always exactly one native window and EGL window surface, and these belong to the
widget or window that is created first.

Libinput

Qt also handles input devices such as a mouse or keyboard which are not shown in
Figure 7-5, page 67. The mouse and keyboard inputs are handled through the libinput
library which is enabled through the corresponding EGLFS plug-in. Device discovery is
handled by libudev which allows for hot-plugging (connecting or disconnecting the input
device while the Qt application is running). For more information on EGLFS and libinput,
see the Qt for Embedded Linux website [Ref 10].

Table 7-2: Qt Modules
Module Description

Core Core non-graphical classes used by other modules.
GUI Base classes for graphical user interface (GUI) components. Includes OpenGL.
Widgets Classes to extend Qt GUI with C++ widgets.
Quick2 A declarative framework for building highly dynamic applications with custom user

interfaces.
Qml Classes for QML and JavaScript languages.
Charts A set of easy to use chart components using the Qt Graphics View Framework.
Zynq UltraScale+ MPSoC Base TRD 68
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=68

Chapter 7: APU Software Platform
Mali Driver
The Arm Mali 400 MP2 GPU consists of one geometry processor (GP0) and two pixel
processors (PP0/PP1) with a dedicated MMU for each processor core. It has its own L2 cache
and interface to the power management unit (PMU), see Figure 7-5, page 67.

The Mali driver stack consists of an open-source GPU kernel driver and a closed-source
user-space driver. The user-space driver is compiled into a single library (libMali) that
interfaces with the kernel driver through the /dev/mali device node. The user-space
driver is configured to support the X11 backend interfacing with the X-Server.

The libMali user-space library implements the OpenGLES 2.0 API which is used by the Qt
toolkit for hardware-accelerated graphics rendering. The Mali driver also supports DMABUF
which provides a mechanism for sharing buffers between devices and frameworks through
file descriptors without expensive memory copies (0-copy sharing).

Vision
OpenCV (open source computer vision) is the most popular and advanced code library for
computer vision related applications, spanning from many very basic tasks (capture and
pre-processing of image data) to high-level algorithms (feature extraction, motion tracking,
machine learning). It is free software and provides a rich API in C, C++, Java and Python. The
library itself is platform-independent and often used for real-time image processing and
computer vision.

The Xilinx Fast OpenCV (xfOpenCV) libraries are FPGA hardware-optimized computer
vision libraries that support a subset of OpenCV-like functions. In this design, a 2D
convolution filter is first prototyped using the stock OpenCV function in pure software and
then ported to the equivalent hardware-optimized xfOpenCV function for hardware
acceleration (see Performance Monitor Client Library, page 32). Similarly, the optical flow
algorithm (see Optical Flow GStreamer Plugin, page 36) is implemented using the
corresponding hardware optimized xfOpenCV function.

Inter-process Communication
Xilinx open asymmetric multi-processing (OpenAMP) is a framework providing the software
components needed to enable the development of software applications for asymmetric
multi-processing (AMP) systems. The Base TRD uses the following configuration:

• APU running SMP Linux is the master
• RPU-1 running bare-metal is the remote
Zynq UltraScale+ MPSoC Base TRD 69
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=69

Chapter 7: APU Software Platform
The following is a list of services that Linux needs to provide to be able to communicate
with the remote processor:

• Load firmware into the RPU-1 core
• Control RPU-1 execution (start, stop, etc.)
• Manage resources (memory, interrupt mappings, etc.)
• Provide a method to send/receive messages

All of these services are provided through a combination of the zynqmp_r5_remoteproc
and rpmsg_user_dev_driver Linux drivers. The Linux frameworks used are
remoteproc, RPMsg, and virtio. Figure 7-6 shows an overview of the Linux software
stack.
X-Ref Target - Figure 7-6

Figure 7-6: IPC Software Stack

video_qt2

zynqmp_r5_remoteproc

/dev/rpmsg0

rpmsg_user_dev_driver

virtio

vring0

vring1

/lib/firmware/r5_1_firmware perfapm_client

RPU-1

IPI

X17250-071917
Zynq UltraScale+ MPSoC Base TRD 70
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=70

Chapter 7: APU Software Platform
Linux Components
The OpenAMP framework uses these key components:

• virtIO is a virtualization standard for network and disk device drivers where only the
driver on the guest device is aware it is running in a virtual environment, and
cooperates with the hypervisor. This concept is used by RPMsg and remoteproc for a
processor to communicate to the remote.

• The remote processor (remoteproc) framework controls the life cycle management
(LCM) of the remote processor from the master processor. The remoteproc API that
OpenAMP uses is compliant with the infrastructure present in the Linux kernel 3.18 and
later. It uses information published through the firmware resource table to allocate
system resources and to create virtIO devices.

• The remote processor message (RPMsg) framework allows inter-process
communications (IPC) between software running on independent cores in an AMP
system. This is also compliant with the RPMsg bus infrastructure present in the Linux
kernel version 3.18 and later.

The Linux kernel infrastructure supports LCM and IPC via remoteproc and RPMsg, but
does not include source code required to support other non-Linux platforms running on the
remote processor, such as bare-metal or FreeRTOS applications. The OpenAMP framework
provides this missing functionality by implementing the infrastructure required for
FreeRTOS and bare-metal environments to communicate with a Linux master in an AMP
system.

Communication Channel
It is common for the master processor in an AMP system to bring up software on the remote
cores on a demand-driven basis. These cores then communicate using inter-process
communication (IPC). It allows the master processor to off-load work to the remote
processors. Such activities are coordinated and managed by the OpenAMP framework.

To create a communication channel between master and remote:

1. The Linux udev device manager loads the zynqmp-r5-remoteproc kernel module
pointing to the firmware to be loaded on RPU-1. The firmware is stored in the
/lib/firmware directory.

2. The zynqmp-r5-remoteproc module configures all of the resources requested by the
firmware based on the resource table section inside the firmware binary. This includes
creating the vring data structures using shared DDR memory (reserved in the device
tree).

3. The master boots the remote processor by loading the firmware for RPU-1 into TCM-1
as specified in the resource table. It then starts the remote processor.
Zynq UltraScale+ MPSoC Base TRD 71
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=71

Chapter 7: APU Software Platform
4. The remote processor creates and initializes the virtIO resources and the RPMsg
channels for the master.

5. The user loads the rpmsg_user_dev_driver kernel module which receives the
RPMsg channels created by the remote and invokes the callback channel. The master
responds to the remote context, acknowledging the remote processor and application.

6. The remote invokes the RPMsg channel that was registered. The RPMsg channel is now
established, and both sides can use RPMsg calls to communicate.

To destroy a communication channel between master and remote:

1. The master application sends an application-specific shutdown message to the remote
application.

2. The remote application cleans up its resources and sends an acknowledgment to the
master.

3. The remote frees the remoteproc resources on its side.
4. The master shuts down the remote and frees the remoteproc resources on its side.

Message Passing
At a high-level the APU master sends a message to the RPU-1 remote e.g., a request to read
the APM counters (see Performance Monitor Client Library, page 32). The RPU-1 remote in
turn sends back a message to the APU master e.g., the data payload for the requested APM
counters (see Performance Monitor Applications, page 41).

The message passing mechanism itself is unidirectional, therefore two separate, shared
vring buffers are used: vring0 is used by the APU master to send messages to the RPU-1
remote and vring1 is used by the RPU-1 remote to send messages back to the APU master.
Figure 7-7 shows the latter case but same concept applies to the first case.

To signal messaging events such as availability of new data or consumption of data from the
master to the remote and vice versa, an inter processor interrupt (IPI) is used. The IPI block
inside the PS provides the ability for any processing unit (source) to interrupt another
processing unit (destination). The source sets the interrupt bit in its trigger register
corresponding to the destination. The destination clears the interrupt which is reflected in
the source's observation register. The RPMsg driver on the APU master side and the
OpenAMP framework on the RPU-1 remote side build on top of IPI.
Zynq UltraScale+ MPSoC Base TRD 72
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=72

Chapter 7: APU Software Platform
X-Ref Target - Figure 7-7

Figure 7-7: APU/RPU-1 Communication via RPMsg

Vring1

Avail

Buff

Buff

Used

Buff

Buff

APU

Data *Buff

IRQ
29 IPI

RPU-1

Data*Buff

IRQ
66IPI

IPI

PMU0 RPU1 RPU0 APUPL0 PMU3 PMU2 PMU1PL3 PL2 PL1

1

2
3

4

5

6

7
8

9

10
Zynq UltraScale+ MPSoC Base TRD 73
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=73

Chapter 8

Hardware Platform

Introduction
This chapter describes the reference design hardware architecture. Figure 8-1 shows a block
diagram of the design components inside the PS and PL on the ZCU102 base board and the
LI-IMX274MIPI-FMC daughter card.

At a high-level, the design consists of seven different video pipelines:

• USB universal video class (UVC) capture pipeline (PS)
• Test pattern generator (TPG) capture pipeline (PL)
• HDMI Rx capture pipeline (PL)
• MIPI CSI-2 Rx capture pipeline (FMC + PL)

X-Ref Target - Figure 8-1

Figure 8-1: Hardware Platform and Generated Accelerator/Data Motion Network
Zynq UltraScale+ MPSoC Base TRD 74
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=74

Chapter 8: Hardware Platform
• 2D Filter processing pipeline (PL)
• Optical Flow processing pipeline (PL)
• HDMI Tx display pipeline (PL)
• DP Tx display pipeline (PS)

The block diagram also highlights the two partitions of the design:

• Hardware base platform, which mainly consist of the I/O interfaces such as DP Tx,
HDMI Tx, HDMI Rx, MIPI CSI-2 Rx, USB-UVC (this part of the design is fixed).

• Hardware accelerators (Filter 2D and Optical Flow) and corresponding data motion
network (this part is generated by the Vitis software platform and is automatically
added into the PL design).

The individual components inside the video pipelines are described in more detail in the
following sections.

Video Pipelines
Three types of video pipelines are differentiated in this design:

• A capture pipeline receives frames from an external source or produces video frames
internally. The captured video frames are written into memory.

• A memory-to-memory (M2M) pipeline reads video frames from memory, does certain
processing, and then writes the processed frames back into memory.

• An output pipeline reads video frames from memory and sends the frames to a sink. In
this case the sink is a display and therefore this pipeline is also referred to as a display
pipeline.
Zynq UltraScale+ MPSoC Base TRD 75
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=75

Chapter 8: Hardware Platform
TPG Capture Pipeline
The TPG capture pipeline is shown in Figure 8-2.

This pipeline consists of three main components, each of them controlled by the APU via an
AXI-Lite based register interface:

• The Clocking Wizard is an IP core wrapper on top of the mixed-mode clock manager
(MMCM) primitive. It provides an AXI-Lite interface for dynamically reconfiguring the
output clock frequency. The output clock is connected to the VTC and provides the
pixel clock matching the requested video resolution. For more information refer to the
Clocking Wizard v6.0 LogiCORE IP Product Guide (PG065) [Ref 18].

• The Video Timing Controller (VTC) generates video timing signals including horizontal
and vertical sync and blanking signals. The timing signals are converted to AXI-Stream
using the video-to-AXI-Stream bridge with the data bus tied off. The video timing over
AXI-Stream bus is connected to the input interface of the TPG, thus making the TPG
behave like a timing-accurate video source with a set frame rate as opposed to using
the free-running mode. For more information refer to the Video Timing Controller v6.1
LogiCORE IP Product Guide (PG016) [Ref 19]

• The Video Test Pattern Generator (TPG) can be configured to generate various test
patterns including color bars, zone plates, moving ramps, moving box etc. The color
space format is configurable and set to YUV 4:2:2 in this design. A GPIO is used to reset
the core between resolution changes. For more information refer to the Video Test
Pattern Generator v7.0 LogiCORE IP Product Guide (PG103) [Ref 20].

• The Video Frame Buffer Write IP provides high-bandwidth direct memory access
between memory and AXI4-Stream video type target peripherals, which support the
AXI4-Stream Video protocol. In this pipeline, the IP takes AXI4-Stream input data from
the TPG and converts it to AXI4-MM format. The output is connected to the HP1 high
performance PS/PL interface via an AXI interconnect. For each video frame transfer, an
interrupt is generated. A GPIO is used to reset the core between resolution changes.
For more information refer to the Video Frame Buffer Read v1.0 and Video Frame Buffer
Write v1.0 LogiCORE IP Product Guide (PG278) [Ref 21].

X-Ref Target - Figure 8-2

Figure 8-2: TPG Video Capture Pipeline

32

48
Clocking
Wizard

32

12812848VTC
Video

2
AXIS

Frmbuf
Write

Video Timing AXI-S AXI-MM

HP1

HPM0/1

AXI-Lite

HP1

PL PS
TPG Capture Pipeline

TPG

Clock
X17241-062416X17241-102418
Zynq UltraScale+ MPSoC Base TRD 76
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=76

Chapter 8: Hardware Platform
The pipeline can be configured for different video resolutions and frame rates at run-time.
In this design, you can choose between 720p60, 1080p60, 2160p30, and 2160p60. The color
format is configurable but in this design we only use YUV 4:2:2, 8 bits per component. The
bus is configured for 2 ppc (pixel per clock) which means the AXI interfaces are double wide
and transport two pixels worth of data per clock cycle. This results in a bus width of 48 bits
where the upper 8 bits of each 24-bit word are padded (Figure 8-3).

A video frame period consists of active and non-active time intervals, also called blanking
intervals. During active intervals, video pixel data is transferred. Historically, CRT monitors
used horizontal and vertical blanking intervals to reposition the electron beam from the end
of a line to the beginning of the next line (horizontal blanking) or from the end of a frame
(bottom right) to the start of a frame (top left) (vertical blanking). The horizontal and
vertical blanking intervals are further sub-divided into front-porch, sync, and back-porch as
shown in Figure 8-4. See AXI4-Stream Video IP and System Design Guide (UG934) [Ref 11]
for more details on video timing parameters.

X-Ref Target - Figure 8-3

Figure 8-3: AXI-Stream Data Bus Encoding for YCrCb

Y0Cb0 pad

16 8 0

Y1Cr0 pad

4048 32 24

X17253-060217
Zynq UltraScale+ MPSoC Base TRD 77
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=77

Chapter 8: Hardware Platform
For example, a standard 2160p30 video stream has a resolution of 3840 horizontal pixels
and 2160 lines, and is transferred at a frame rate of 30 frames per second (fps). The p stands
for progressive which means that a full frame is transferred each frame period. The vertical
blanking accounts for 90 pixels per line (8+10+72) and the horizontal blanking for 560 lines
per video frame (176+88+296). The required pixel clock frequency is calculated as:

(3840 + 560) x (2160 + 90) x 30 Hz = 297 MHz

X-Ref Target - Figure 8-4

Figure 8-4: Active and Blanking Intervals of a Video Frame

X14555

H
orizontal Blanking

Active Video

Vertical Blanking

0
(SAV)

Hblank Start
(H EAV)

Hsync
Start

Hsync
End

HSIZE

VBlank

VSync

0

Vblank Start
(V EAV)

Vsync Start

VSIZE

H Blank

H Sync

Vsync End
Zynq UltraScale+ MPSoC Base TRD 78
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=78

Chapter 8: Hardware Platform
The pixel clock is generated by the Clocking Wizard and the VTC drives the horizontal and
vertical sync and blanking signals, as well as active video (data enable) based on this
scheme.

HDMI Rx Capture Pipeline
The HDMI receiver capture pipeline is shown in Figure 8-5.

This pipeline consists of four main components, each of them controlled by the APU via an
AXI-Lite base register interface:

• The Video PHY Controller (VPHY) enables plug-and-play connectivity with Video
Transmit or Receive subsystems. The interface between the media access control (MAC)
and physical (PHY) layers are standardized to enable ease of use in accessing shared
gigabit-transceiver (GT) resources. The data recovery unit (DRU) is used to support
lower line rates for the HDMI protocol. An AXI4-Lite register interface is provided to
enable dynamic accesses of transceiver controls/status. For more information refer to
the Video PHY Controller v2.0 Product Guide (PG230) [Ref 22].

• The HDMI Receiver Subsystem (HDMI Rx) interfaces with PHY layers and provides HDMI
decoding functionality. The subsystem is a hierarchical IP that bundles a collection of
HDMI RX-related IP sub-cores and outputs them as a single IP. The subsystem receives
the captured TMDS data from the video PHY layer. It then extracts the video stream
from the HDMI stream and in this design converts it to an AXI4-Stream output
interface. For more information refer to the HDMI 1.4/2.0 Receiver Subsystem v2.0
Product Guide (PG236) [Ref 23].

• The Video Processing Subsystem (VPSS) is a collection of video processing IP subcores.
In this design, the VPSS uses the Scaler only configuration which provides scaling, color
space conversion, and chroma resampling functionality. The VPSS takes AXI4-Stream
input data from the HDMI Rx Subsystem and depending on the input format and
resolution, converts and scales it to the desired output format and resolution again
using AXI4-Stream. A GPIO is used to reset the subsystem between resolution changes.

X-Ref Target - Figure 8-5

Figure 8-5: HDMI Video Capture Pipeline

32

1283248
Frmbuf
Write

Rx Data AXI-S AXI-MM

HP1

HPM0/1

AXI-Lite

PL PS

HP1HDMI Rx
SS

VPSS
Scaler

40
Video
PHY

HDMI Rx Capture Pipeline

48

40

40

32

X17242-060217
Zynq UltraScale+ MPSoC Base TRD 79
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=79

Chapter 8: Hardware Platform
For more information refer to the Video Processing Subsystem v2.0 Product Guide
(PG231) [Ref 24].

• The Video Frame Buffer Write IP uses the same configuration as the one in the TPG
capture pipeline. It takes AXI4-Stream input data from the VPSS and converts it to
AXI4-MM format. The output is connected to the HP1 high performance PS/PL
interface via an AXI interconnect. For each video frame transfer, an interrupt is
generated. A GPIO is used to reset the IP between resolution changes.

Similar to the TPG pipeline, the HDMI Rx, VPSS Scaler, and Frame Buffer Write IPs are
configured to transport 2ppc, enabling up to 2160p60 performance. Although the color
format and depth at the HDMI Rx are determined by the HDMI source, the VPSS always
converts the format to YUV 4:2:2, 8 bpc which is then written to memory by the Frame
Buffer Write IP as packed 16-bit YUYV.

MIPI CSI-2 Rx Capture Pipeline
The MIPI CSI-2 receiver capture pipeline is shown in Figure 8-6.

This pipeline consists of eight components, of which six are controlled by the APU via an
AXI-Lite based register interface; one is controlled by the APU via an I2C register interface,
and one is configured statically:

• The Sony IMX274 is a 1/2.5 inch CMOS digital image sensor with an active imaging
pixel array of 3864H x2196V. The image sensor is controlled via an I2C interface using
an AXI I2C controller in the PL. It is mounted on a FMC daughter card and has a MIPI
output interface that is connected to the MIPI CSI-2 RX subsystem inside the PL. For
more information refer to the LI-IMX274MIPI-FMC_datasheet [Ref 2].

X-Ref Target - Figure 8-6

Figure 8-6: CSI Video Capture Pipeline

32

1283248
Frmbuf
Write

CSI data AXI-S AXI-MM

HP1

HPM0/1

AXI-Lite

PL PS

HP1VPSS
CSC

VPSS
Scaler

MIPI CSI-2
Rx SS

MIPI CSI-2 Rx Capture Pipeline

48

32

AXI-S
Subset

Converter
Demosaic2024

Gamma 48

IMX274
Sensor

48

AXI
I2C

I2C
Xxxxxx-091217
Zynq UltraScale+ MPSoC Base TRD 80
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.leopardimaging.com/uploads/LI-IMX274MIPI-FMC_datasheet.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=80

Chapter 8: Hardware Platform
• The MIPI CSI-2 Receiver Subsystem (CSI Rx) includes a MIPI D-PHY core that connects
four data lanes and one clock lane to the sensor on the FMC card. It implements a CSI-2
receive interface according to the MIPI CSI-2 standard v1.1. The subsystem captures
images from the IMX274 sensor in RAW10 format and outputs AXI4-Stream video data.
For more information refer to the MIPI CSI-2 Receiver Subsystem v2.2 Product Guide
(PG232) [Ref 27].

• The AXI subset converter is a statically configured IP core that converts the raw 10-bit
(RAW10) AXI4-Stream input data to raw 8-bit (RAW8) AXI4-Stream output data by
truncating the two least significant bits (LSB) of each data word.

• The Demosaic IP core reconstructs sub-sampled color data for images captured by a
Bayer color filter array image sensor. The color filter array overlaid on the silicon
substrate enables CMOS image sensors to measure local light intensities that
correspond to different wavelengths. However, the sensor measures the intensity of
only one principal color at any location (pixel). The Demosaic IP receives the RAW8
AXI4-Stream input data and interpolates the missing color components for every pixel
to generate a 24-bit, 8bpc RGB output image transported via AXI4-Stream. A GPIO is
used to reset the IP between resolution changes.

• The Gamma LUT IP core is implemented using a look-up table (LUT) structure that is
programmed to implement a gamma correction curve transform on the input image
data. Programmable number of gamma tables enable having separate gamma tables
for all color channels, in this case red, green, and blue. The Gamma IP takes
AXI4-Stream input data and produces AXI4-Stream output data, both in 24-bit RGB
format. A GPIO is used to reset the IP between resolution changes.

• The Video Processing Subsystem (VPSS) is a collection of video processing IP subcores.
This instance is uses the Color Space Converter (CSC) configuration to perform color
correction tasks including contrast, brightness, and red/green/blue gain control. The
CSC takes AXI4-Stream input data and produces AXI4-Stream output data, both in
24-bit RGB format. A GPIO is used to reset the subsystem between resolution changes.
For more information refer to the Video Processing Subsystem v2.0 Product Guide
(PG231) [Ref 24].

• The Video Processing Subsystem (VPSS) is a collection of video processing IP subcores.
This instance uses the Scaler only configuration which provides scaling, color space
conversion, and chroma resampling functionality. The VPSS takes AXI4-Stream input
data in 24-bit RGB format and converts it to a 16-bit, 8bpc YUV 4:2:2 output format
using AXI4-Stream. A GPIO is used to reset the subsystem between resolution changes.

• The Video Frame Buffer Write IP uses the same configuration as the one in the TPG and
HDMI Rx capture pipelines. It takes YUV 4:2:2 sub-sampled AXI4-Stream input data and
converts it to AXI4-MM format which is written to memory as 16-bit packed YUYV. The
AXI-MM interface is connected to the HP1 high performance PS/PL port via an AXI
interconnect. For each video frame transfer, an interrupt is generated. A GPIO is used to
reset the IP between resolution changes.
Zynq UltraScale+ MPSoC Base TRD 81
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=81

Chapter 8: Hardware Platform
Similar to the TPG and HDMI Rx capture pipelines, all the IPs in this pipeline are configured
to transport 2ppc, enabling up to 2160p60 performance.

2D Filter M2M Pipeline
The memory-to-memory (m2m) pipeline with the 2D convolution filter (see Figure 8-7) is
entirely generated by the Vitis tool based on a C-code description. The 2D filter function is
translated to RTL using the Vivado HLS compiler. The data motion network used to transfer
video buffers to/from memory and to program parameters like video dimensions and filter
coefficients is inferred automatically by the Vitis compiler.

The HLS generated 2D filter accelerator has three AXI-MM interfaces: two for transferring
video data from the HP3 port to the accelerator; and one interface for the opposite
direction. The filter coefficients are passed via an HP3 interface.

Note that the m2m pipeline is not video-timing accurate. The data movers read and write
video frames without inserting any horizontal blanking in between video lines. The QoS
traffic class is therefore set to best effort instead of video (see Quality of Service, page 52).
A separate HP port is used compared to the two capture pipelines to split the traffic across
two dedicated DDRC ports. For the AXI-Lite control interfaces, a separate PS/PL interface,
HPM1 is used.

X-Ref Target - Figure 8-7

Figure 8-7: M2M Processing Pipeline Showing Hardware Accelerator and Data Motion Network

32

128

AXI-MM

HPM1

AXI-Lite

PL

HP3

Filter 2D Accelerator Pipeline

2D Filter
(HLS)

32

32

32

32

coeff

din

dout

height
width

PS

X17255-012318X17255-092419
Zynq UltraScale+ MPSoC Base TRD 82
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=82

Chapter 8: Hardware Platform
Optical Flow M2M Pipeline
The Optical Flow accelerator pipeline is conceptually identical with the 2D filter accelerator
pipeline with a few notable differences:

• The optical flow accelerator consumes two video input frames and produces one
output frame whereas the 2D filter has one input and one output.

• All parameters are compile time constants.

The Optical Flow pipeline is shown in Figure 8-8.

DP Tx Display Pipeline
The DP Tx display pipeline (see Figure 8-9) is configured to read video frames from memory
via two separate channels: one for video, the other for graphics. The video and graphics
layers are alpha-blended to create a single output video stream that is sent to the monitor
via the DisplayPort transmitter. This design does not use the audio feature of the
DisplayPort controller, therefore it is not discussed in this user guide. The major
components used in this design, as shown in the figure, are:

• DisplayPort DMA (DPDMA)
• Audio/Video (A/V) buffer manager
• Video blender
• DisplayPort (DP) transmitter
• PS-GTR gigabit transceivers

X-Ref Target - Figure 8-8

Figure 8-8: Optical Flow Pipeline

32

128

AXI-MM

HPM1

AXI-Lite

PL PS

HP3

Optical Flow Accelerator Pipeline

Optical
Flow
(HLS) 32

32din_prev

dout

height
width

32din_curr

32

Xxxxxx-092419
Zynq UltraScale+ MPSoC Base TRD 83
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=83

Chapter 8: Hardware Platform
The DPDMA is a 6-channel DMA engine that fetches data from memory and forwards it to
the A/V buffer manager. The video layer can consist of up to three channels, depending on
the chosen pixel format whereas the graphics layer is always a single channel. The used
pixel formats are described in Video Buffer Formats, page 48. The remaining two channels
are used for audio.

The A/V buffer manager can receive data either from the DPDMA (non-live mode) or from
the PL (live mode) or a combination of the two. In this design only non-live mode is used for
both video and graphics. The three video channels feed into a video pixel unpacker and the
graphics channel into a graphics pixel unpacker. Because the data is not timed in non-live
mode, video timing is locally generated using the internal video timing controller. A stream
selector forwards the selected video and graphics streams to the dual-stream video
blender.

The video blender unit consists of input color space converters (CSC) and chroma
re-samplers (CRS), one pair per stream, a dual-stream alpha blender, and one output color
space converter and chroma re-sampler. The two streams have to have the same
dimensions and color format before entering the blender. The alpha blender can be
configured for global alpha (single alpha value for the entire stream) or per pixel alpha. A
single output stream is sent to the DisplayPort transmitter.

The DisplayPort transmitter supports the DisplayPort v1.2a protocol. It does not support
multi-stream transport or other optional features. The DP transmitter is responsible for
managing the link and physical layer functionality. The controller packs video data into
transfer units and sends them over the main link. In addition to the main link, the controller
has an auxiliary channel, which is used for source/sink communication.

Four high-speed gigabit transceivers (PS-GTRs) are implemented in the serial input output
unit (SIOU) and shared between the following controllers: PCIe, USB 3.0, DP, SATA, and
SGMII Ethernet. The DP controller supports up to two lanes at a maximum line rate of 5.4
Gb/s. The link rate and lane count are configurable based on bandwidth requirements.

X-Ref Target - Figure 8-9

Figure 8-9: Display Pipeline Showing DPDMA, A/V Buffer Manager, Video Blender, and DP Transmitter

DP Tx

BlenderA/V Buffer
Manager

DPDMA

Vid Ch 0

Vid
Unpacker

Gfx
Unpacker

Vid
Mux

Gfx
Mux

CRS/
CSC

CRS/
CSC

Alpha
Blender

CRS/
CSC

Live from PL

Live from PL

PS-GTR

Vid Ch 1

Vid Ch 2

Gfx Ch 0

Aud Ch 0

Aud Ch 1

X17256-071917
Zynq UltraScale+ MPSoC Base TRD 84
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=84

Chapter 8: Hardware Platform
For more information on the DisplayPort controller and the PS-GTR interface, see chapters
31 and 27 in Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 8].

HDMI Tx Display Pipeline
The HDMI transmitter display pipeline is shown in Figure 8-10.

This pipeline consists of three main components, each of them controlled by the APU via an
AXI-Lite base register interface:

• The video mixer IP core is configured to support blending of up to two video layers and
one graphics layer into one single output video stream. The three layers are configured
to be memory-mapped AXI4 interfaces connected to the HP0 high performance PS/PL
interface via an AXI interconnect; the main AXI4-Stream layer is unused. The two video
layers are configured for 16-bit YUYV, the graphics layer is configured for 32-bit ARGB,
(see Video Buffer Formats, page 48 for details). A built-in color space converter and
chroma resampler convert the input formats to a 24-bit RGB output format. Pixel-alpha
blending is used to blend the graphics layer with the underlying video layers. The
AXI4-Stream output interface is a 48-bit bus that transports 2 ppc for up to 2160p60
performance. It is connected to the HDMI Tx subsystem input interface. A GPIO is used
to reset the subsystem between resolution changes. For more information refer to the
Video Mixer v1.0 LogiCORE IP Product Guide (PG243) [Ref 25].

• The HDMI Transmitter Subsystem (HDMI Tx) interfaces with PHY layers and provides
HDMI encoding functionality. The subsystem is a hierarchical IP that bundles a
collection of HDMI TX-related IP sub-cores and outputs them as a single IP. The
subsystem generates an HDMI stream from the incoming AXI4-Stream video data and
sends the generated TMDS data to the video PHY layer. For more information refer to
the HDMI 1.4/2.0 Transmitter Subsystem v2.0 Product Guide (PG235) [Ref 26].

• The Video PHY Controller is shared between the HDMI Rx and HDMI Tx pipelines. Refer
to HDMI Rx Capture Pipeline, page 79 for more information on the VPHY and its
configuration.

X-Ref Target - Figure 8-10

Figure 8-10: HDMI Tx Display Pipeline

32

12832
Video
Mixer

Tx Data AXI-S AXI-MM

HP1

HPM0/1

AXI-Lite

PL PS

HP0HDMI Tx
SS

40
Video
PHY

HDMI Tx Display Pipeline

48

40

40

32

32

32

Xxxxx1-060217
Zynq UltraScale+ MPSoC Base TRD 85
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=85

Chapter 8: Hardware Platform
Clocks, Resets and Interrupts
Table 8-1 lists the clock frequencies of key PS components.

Table 8-2 identifies the main clocks of the PL design, their source, their clock frequency, and
function.

Table 8-1: Key PS Component Clock Frequencies
PS Component Clock Frequency

APU 1,200 MHz
RPU 500 MHz
GPU 500 MHz
DDR 533 (1,066) MHz

Table 8-2: System Clocks
 Clock Clock Source Clock Frequency Function

PL0 clock PS 50 MHz Clock source for clocking wizard
clk50 Clocking Wizard 50 MHz AXI Lite clock
clk75 Clocking Wizard 75 MHz Accelerator clock 1
clk150 Clocking Wizard 150 MHz Accelerator clock 2
clk300 Clocking Wizard 300 MHz AXI MM clock, AXI Stream clock, Accelerator

clock 3
HDMI Tx GT reference clock Si5324 (external) Variable Clock source for various HDMI Tx clocks
HDMI Tx Link clock Video PHY Variable Clock used for data interface between HDMI Tx

and Video PHY
HDMI Tx Video clock Video PHY Variable Clock used for native HDMI Tx video interface
HDMI Tx TMDS clock Video PHY Variable Synchronous clock to HDMI Tx interface
HDMI Rx GT reference clock
/TMDS clock

HDMI source
(external)

Variable Synchronous clock to HDMI Rx interface

HDMI Rx Link clock Video PHY Variable Clock used for data interface between HDMI Rx
and Video PHY

HDMI Rx Video clock Video PHY Variable Clock used for native HDMI Rx video interface
HDMI Rx DRU clock Si570 (external) 156.25 MHz Clock for data recovery unit for low line rates
DP Video reference clock PS Variable DP Tx pixel clock
MIPI D-PHY core clock Clocking Wizard 200 MHz Clock used for control logic and input to

MMCM
MIPI D-PHY Rx clock FMC (external) 10-187.5 MHz(1) Clock received on RX clock lane and used for

high-speed data reception
MIPI CSI-2 Rx core clock Clocking Wizard 300 MHz(2) Clock source for all IP cores in subsystem
Zynq UltraScale+ MPSoC Base TRD 86
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=86

Chapter 8: Hardware Platform
The PL0 clock is provided by the IOPLL inside the PS and is used as reference input clock for
the Clocking Wizard instance inside the PL. This clock does not drive any loads directly. A
Clocking Wizard instance is used to de-skew the clock and to provide four phase-aligned
output clocks, clk50, clk75, clk150, and clk300.

The clk50 clock is generated by the Clocking Wizard instance. It is used to drive most of the
AXI-Lite control interfaces in the PL. AXI-Lite interfaces are typically used in the control path
to configure IP registers and therefore can operate at a lower frequency than data path
interfaces.

The clk300 clock is generated by the Clocking Wizard instance. It is used to drive the
AXI-MM and AXI-Stream interfaces of the capture pipelines in the PL. These interfaces are
in the data path and therefore need to support the maximum performance of 2160p60
which roughly corresponds to a 300 MHz clock at 2 ppc. The AXI-Lite interfaces of HLS
based IP cores as well as Vitis generated modules are also based on clk300 as opposed to
clk50 as HLS IPs typically share a common input clock between control and data interfaces.

The m2m data mover and accelerator pipeline clocks can be selected by the user from the
Vitis GUI. The available options are clk75, clk150, and clk300 which roughly correspond to
720p60, 1080p60, and 2160p30 at 1 ppc, or 2160p60 at 2 ppc. The same Clocking Wizard
instance is used to generate these clocks.

For details on the HDMI Rx, HDMI Tx and VPHY clocking structure and requirements refer to
the respective sections in PG230 [Ref 22], (PG235) [Ref 26], and (PG236) [Ref 23]. For
HDMI Tx, an external Si5324 clock chip is used to generate the GT reference clock
depending on the display resolution; for HDMI Rx, the GT reference clock is provided by the
HDMI source. Various other HDMI related clocks are derived from the respective GT
reference clocks and generated internally by the VPHY; only for the DRU a fixed reference
clock is provided externally by an Si570 clock chip.

For details on the MIPI CSI-2 Rx clocking structure and requirements refer to the MIPI CSI-2
Receiver Subsystem v2.2 Product Guide (PG232) [Ref 27].

A second Clocking Wizard using the PL0 source clock generates the TPG pixel clock that is
consumed by the VTC. The VTC in turn provides video timing signals to the TPG. The TPG
pixel clock can be configured dynamically based on the requested input resolution.

The master reset pl_resetn0 is generated by the PS during boot and is used as input to the
four Processing System Reset modules in the PL. Each module generates synchronous,

TPG video clock Clocking Wizard Variable Pixel clock that drives VTC in TPG capture
pipeline

Notes:
1. Derived from the line rate divided by 8.
2. Minimum frequency depends on data rate, lane, and width configuration.

Table 8-2: System Clocks (Cont’d)

 Clock Clock Source Clock Frequency Function
Zynq UltraScale+ MPSoC Base TRD 87
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=87

Chapter 8: Hardware Platform
active-Low and active-High interconnect and peripheral resets that drive all PL IP cores
synchronous to the respective clk50, clk75, clk150, and clk300 clock domains.

Apart from these system resets, there are asynchronous resets driven by PS GPIO pins. The
respective device drivers control these resets which can be toggled at run-time to reset
HLS-based cores. Table 8-3 summarizes the PL resets used in this design.

Table 8-4 lists the PL-to-PS interrupts used in this design.

Table 8-3: System and User Resets
Reset Source Purpose

pl_resetn0 PL reset for proc_sys_reset modules
proc_sys_reset_clk50 Synchronous resets for clk50 clock domain
proc_sys_reset_clk75 Synchronous resets for clk75 clock domain
proc_sys_reset_clk150 Synchronous resets for clk150 clock domain
proc_sys_reset_clk300 Synchronous resets for clk300 clock domain
PS GPIO 79 Asynchronous reset for TPG
PS GPIO 80 Asynchronous reset for Frame Buffer Write (CSI Rx)
PS GPIO 81 Asynchronous reset for Frame Buffer Write (TPG)
PS GPIO 82 Asynchronous reset for VPSS Scaler (CSI Rx)
PS GPIO 83 Asynchronous reset for Video Mixer
PS GPIO 84 Asynchronous reset for VPSS CSC (CSI Rx)
PS GPIO 85 Asynchronous reset for Demosaic (CSI Rx)
PS GPIO 86 Asynchronous reset for Gamma LUT (CSI Rx)
PS GPIO 87 Asynchronous reset for VPSS Scaler (HDMI Rx)
PS GPIO 88 Asynchronous reset for Frame Buffer Write (HDMI Rx)

Table 8-4: PL-to-PS Interrupts
ID Instance
0 TPG FB WR
1 HDMI Rx FB WR
2 HDMI Rx SS
3 VPHY
4 HDMI Tx SS
5 HDMI CTL I2C
6 CSI Rx SS
7 CSI Rx FB WR
8 Sensor CTL I2C
9 Video Mixer
Zynq UltraScale+ MPSoC Base TRD 88
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=88

Chapter 8: Hardware Platform
The design uses two cascaded interrupt controllers: an AXI interrupt controller in the PL that
connects to the general interrupt controller (GIC) in the PS. The AXI interrupt controller
bundles all nine PL IP interrupts into a single GIC interrupt ID (89), thus making 15 PL
interrupts available for Vitis.

I2C Bus Topology
I2C is a two-wire bus for attaching low-speed peripherals. It uses two bidirectional
open-drain lines, SDA (serial data) and SCL (serial clock), pulled up with resistors. In
standard mode, a 7-bit address space and a 400 kHz bus speed are used. In this reference
design, PS I2C and AXI I2C (PL) controllers are used to configure several I2C slaves. The I2C
topology limited to the devices used in this design is shown in Figure 8-11.

The PS I2C1 controller is connected via MIO to two 8-channel I2C multiplexers (TCA9548) on
the ZCU102 board, one at address 0x74, the other at address 0x75.

The I2C multiplexer at address 0x74 has a Si570 programmable clock synthesizer at address
0x5D connected to channel 3. The Si570 clock synthesizer is connected to the PL via a
differential clock pair. It generates a fixed reference clock for the HDMI Rx data recovery
unit (DRU), see Clocks, Resets and Interrupts, page 86 for more information.

The I2C multiplexer at address 0x75 has a 64 kb EEPROM at address 0x57 on the FMC
daughter card connected to channel 0. The EEPROM is used to store FRU (Field Replaceable
Unit) information data, as defined in the Intel Platform Management FRU Information
Storage Definition [Ref 28].

The PL HDMI I2C controller is connected to two clock devices that are on a shared I2C bus.
The SI5324 at address 0x68 is a programmable, low-bandwidth, jitter-attenuating,
precision clock multiplier. Its output clock is used to drive the HDMI Tx GT reference clock.

X-Ref Target - Figure 8-11

Figure 8-11: I2C Bus Topology

PS I2C1

TCA9548
(0x74)

0 1 2 3 4 5 6 7

SI570_2
(0x5D)

ZCU102

PL HDMI
CTL IIC

SI5324
(0x68)

DP159
(0x5E)

LI-IMX274MIPI-FMC

PL Sensor
CTL IIC

IMX274
(0x1A)

AT24C64
(0x57)

TCA9548
(0x75)

0 1 2 3 4 5 6 7

X17244-090817
Zynq UltraScale+ MPSoC Base TRD 89
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=89

Chapter 8: Hardware Platform
The DP159 at address 0x5E is a DisplayPort to TMDS retimer supporting HDMI output
signals. For more information on clocking see Clocks, Resets and Interrupts, page 86.

The PL sensor I2C controller is connected to a Sony IMX274 image sensor at address 0x1A
on the FMC daughter card. Refer to MIPI CSI-2 Rx Capture Pipeline, page 80 for more
information.

Auxiliary Peripherals
Other auxiliary interfaces used in this design are as follows:

• UART (2x PS): the first PS UART is owned by the APU. It prints Linux boot and debug
messages to the serial console and provides a serial login prompt. The second PS UART
is owned by either RPU-0 or RPU-1 and prints application messages to the serial
console. Both UARTs are connected to a quad USB-UART bridge on the ZCU102 board.

• USB (1x PS) is used to connect a mouse to the ZCU102 board to operate the GUI, a
webcam that serves as an additional video source (optional), and a USB file storage
device (optional). Multiple devices can be connected via a USB hub.

• I2C (1x PS, 1x PL) is used to configure slave peripherals on the ZCU102 board (see I2C
Bus Topology, page 89).

• GPIO (1x PS) is used to drive the reset signals of various HLS-based IPs in the PL. (see
Clocks, Resets and Interrupts, page 86).

• SD (1x PS) is the boot device and holds the entire reference design image including
FSBL, PMU firmware, PL bitstream, u-boot, Linux kernel, root file system, RPU-1
firmware, and APU/RPU-0 applications (see Boot Process, page 44.)

• SATA (1x PS) is used to connect a file storage device (optional).
• Ethernet (1x PS) is used to connect to a network (optional).
Zynq UltraScale+ MPSoC Base TRD 90
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=90

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

For continual updates, add the Answer Record to your myAlerts.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator
page on the Xilinx website.
Zynq UltraScale+ MPSoC Base TRD 91
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/myalerts
http://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=91

Appendix A: Additional Resources and Legal Notices
References
The most up-to-date information for this design is available at these websites:

http://www.wiki.xilinx.com/Zynq+UltraScale+MPSoC+Base+TRD

https://www.xilinx.com/products/boards-and-kits/zcu102.

These documents and sites provide supplemental material:

1. ZCU102 Evaluation Board User Guide (UG1182)
2. Leopard Imaging Inc. website
3. Performing Convolution Operations website
4. OpenCV - 2D Filter API website
5. Vivado Design Suite User Guide - High-Level Synthesis (UG902)
6. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
7. Xilinx OpenCV Library User Guide (UG1233)
8. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
9. VESA E-EDID Standard website
10. Qt5 Embedded Linux website
11. AXI4-Stream Video IP and System Design Guide (UG934)
12. Recommendation ITU-R BT.656-4 website
13. FRU Information Storage for IPMI website
14. OpenAMP Framework for Zynq Devices Getting Started Guide (UG1186)
15. L. Pinchart, Anatomy of an Atomic KMS Driver, Kernel Recipes, Paris, 2015
16. L. Pinchart, V4L2 on Steroids - The Request API, Embedded Linux Conference, San Diego,

2016
17. Xilinx V4L2 Pipeline Driver website
18. Clocking Wizard v6.0 LogiCORE IP Product Guide (PG065)
19. Video Timing Controller v6.2 LogiCORE IP Product Guide (PG016)
20. Video Test Pattern Generator v8.0 LogiCORE IP Product Guide (PG103)
21. Video Frame Buffer Read and Video Frame Buffer Write LogiCORE IP v2.1 Product Guide

(PG278)
22. Video PHY Controller v2.2 Product Guide (PG230)
23. HDMI Receiver Subsystem v3.1 Product Guide (PG236)
Zynq UltraScale+ MPSoC Base TRD 92
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=424832&license=RefDesLicense&filename=zcu102-base-trd-2016-2.zip&languageID=1
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1233-xilinx-opencv-user-guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/user_guides/ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support/documentation/ip_documentation/v_frmbuf/v2_1/pg278-v-frmbuf.pdf
https://www.xilinx.com/support/documentation/ip_documentation/vid_phy_controller/v2_2/pg230-vid-phy-controller.pdf
http://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
http://www.wiki.xilinx.com/Xilinx+V4L2+driver
http://products.avnet.com/shop/en/ema/development-kits/3074457345623664802
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#filter2d
http://read.pudn.com/downloads110/ebook/456020/E-EDID%20Standard.pdf
http://doc.qt.io/qt-5/embedded-linux.html
http://www.analog.com/en/products/audio-video/analoghdmidvi-interfaces/analog-hdmidvi-display-interfaces/adv7611.html
https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.656-4-199802-S!!PDF-E.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/platform-management-fru-document-rev-1-2-feb-2013.pdf
https://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v6_0/pg065-clk-wiz.pdf
https://www.xilinx.com/support/documentation/ip_documentation/v_hdmi_rx_ss/v3_1/pg236-v-hdmi-rx-ss.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_videoip/v1_0/ug934_axi_videoIP.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=424832&license=RefDesLicense&filename=zcu102-base-trd-2016-2.zip&languageID=1
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-es2-g.html
http://www.wiki.xilinx.com/Zynq+UltraScale+MPSoC+Base+TRD
https://leopardimaging.com/product/csi-2-mipi-modules-i-pex/li-imx274mipi-fmc/
https://www.xilinx.com/support/documentation/ip_documentation/v_tpg/v8_0/pg103-v-tpg.pdf
https://www.xilinx.com/support/documentation/ip_documentation/v_tc/v6_2/pg016_v_tc.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=92

Appendix A: Additional Resources and Legal Notices
24. Video Processing Subsystem v2.1 Product Guide (PG231)
25. Video Mixer LogiCORE IP v4,0 Product Guide (PG243)
26. HDMI 1.4/2.0 Transmitter Subsystem v3.1 Product Guide (PG235)
27. MIPI CSI-2 Receiver Subsystem v4.1 Product Guide (PG232)
28. Platform Management FRU Information Storage Definition

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2016-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. Arm is a registered trademark of Arm
Limited in the EU and other countries. HDMI, HDMI logo, and High-Definition Multimedia Interface are trademarks of HDMI
Licensing LLC. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property
of their respective owners.
Zynq UltraScale+ MPSoC Base TRD 93
UG1221 (v2020.1) June 3, 2020 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/documentation/ip_documentation/v_mix/v4_0/pg243-v-mix.pdf
https://www.xilinx.com/support/documentation/ip_documentation/v_hdmi_tx_ss/v2_0/pg235-v-hdmi-tx-ss.pdf
http://nwlogic.com/products/docs/DMA_Back-End_Core.pdf
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://fedoraproject.org/
https://www.xilinx.com/support/documentation/ip_documentation/mipi_csi2_rx_subsystem/v4_1/pg232-mipi-csi2-rx.pdf
https://www.xilinx.com/support/documentation/ip_documentation/v_hdmi_tx_ss/v3_1/pg235-v-hdmi-tx-ss.pdf
http://fedoraproject.org/
https://www.xilinx.com/support/documentation/ip_documentation/v_proc_ss/v2_1/pg231-v-proc-ss.pdf
www.intel.com/content/www/us/en/servers/ipmi/information-storage-definition.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1221&Title=Zynq%20UltraScale+%20MPSoC%20Base%20Targeted%20Reference%20Design&releaseVersion=2020.1&docPage=93

	Zynq UltraScale+ MPSoC Base Targeted Reference Design
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Zynq UltraScale+ MPSOC Overview
	Reference Design Overview
	Key Features

	Ch. 2: Reference Design
	Design Modules
	Design Components

	Ch. 3: APU Application (Linux)
	Introduction
	GUI Application
	Control Bar
	Video Info Panel
	System Performance Panels
	TPG Settings Panel
	CSI Settings Panel
	File Source Settings Panel
	2D Filter Settings Panel
	Demo Mode Settings Panel

	Video Library
	Display Configuration
	Media Pipeline Configuration

	GStreamer Video Library
	GStreamer Plugins
	GStreamer Capabilities
	GStreamer Graphs
	GStreamer Pipeline Control

	Performance Monitor Client Library
	Xilinx Video Source and Sink GStreamer Plugins
	GStreamer Plugins
	2D Filter GStreamer Plugin
	Optical Flow GStreamer Plugin

	Ch. 4: RPU-1 Software Stack (Bare-metal)
	Introduction
	Performance Monitor Library
	Performance Monitor Applications
	Bare-metal BSP

	Ch. 5: RPU-0 Software Stack (FreeRTOS)
	Introduction
	Heartbeat Application
	FreeRTOS BSP

	Ch. 6: System Considerations
	Boot Process
	Global Address Map
	Peripherals
	Memories

	Video Buffer Formats
	Performance Metrics
	Memory Throughput
	CPU Utilization
	Quality of Service

	Ch. 7: APU Software Platform
	Introduction
	Video
	Driver Architecture
	Media Framework
	V4L2 Framework
	Video IP Drivers

	Display
	Direct Rendering Manager
	Driver Features
	Dumb Buffer Objects

	Kernel Mode Setting
	CRTC
	Plane
	Encoder
	Connector
	Libdrm

	X11
	Display Server

	Graphics
	Qt Toolkit
	Qt Modules
	EGLFS QPA
	Libinput

	Mali Driver

	Vision
	Inter-process Communication
	Linux Components
	Communication Channel
	Message Passing

	Ch. 8: Hardware Platform
	Introduction
	Video Pipelines
	TPG Capture Pipeline
	HDMI Rx Capture Pipeline
	MIPI CSI-2 Rx Capture Pipeline
	2D Filter M2M Pipeline
	Optical Flow M2M Pipeline
	DP Tx Display Pipeline
	HDMI Tx Display Pipeline

	Clocks, Resets and Interrupts
	I2C Bus Topology
	Auxiliary Peripherals

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

