
Versal ACAP AI Engine

Architecture Manual

AM009 (v1.2) October 21, 2021

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Revision History
The following table shows the revision history for this document.

Section Revision Summary
10/21/2021 Version 1.2

Chapter 2: AI Engine Tile Architecture Updated definitions in Figure 3: AI Engine Tile Block
Diagram and Figure 4: AI Engine Array.

AXI4-Stream Interconnect Added port handler and packet-switched streams
information and a packet header diagram.

AI Engine Array Interface Added information on PL-AI Engine array interface bit width.

Functional Overview Described how cfloat is not directly supported by the AI
Engine vector processor.

Arithmetic Logic Unit, Scalar Functions, and Data Type
Conversions

Updated scalar floating-point support.

Fixed-Point Vector Unit Added information on vector comparison implementation in
a fixed-point vector.

Floating-Point Vector Unit Added information on how and where comparison is
implemented in floating-point vectors and information on
floating-point exceptions.

4/22/2021 Version 1.1

General Added links to Versal ACAP AI Engine Register Reference
(AM015)

Memory Error Handling Clarified how the performance counter during memory-
mapped AXI4 access works.

Arithmetic Logic Unit, Scalar Functions, and Data Type
Conversions

Added implementation notes on managing the Float2fix
conversion for overflow exceptions.

7/16/2020 Version 1.0

Initial release. N/A

Revision History

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 2Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers-versal-aie
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..5
Introduction to Versal ACAP...5
AI Engine Array Features..7
AI Engine Array Overview...8
AI Engine Array Hierarchy.. 10
AI Engine Applications.. 11
Performance.. 11
Memory Error Handling..12

Chapter 2: AI Engine Tile Architecture... 13
Memory Mapped AXI4 Interconnect...16
AXI4-Stream Interconnect..16
AI Engine Tile Program Memory... 18
AI Engine Interfaces..19
AI Engine Memory Module.. 21
AI Engine Data Movement Architecture...22
AI Engine Debug..26
AI Engine Trace and Profiling.. 27
AI Engine Events..31

Chapter 3: AI Engine Array Interface Architecture................................... 34
AI Engine Array Interface .. 36
Features of the AI Engine Array Interface ...39
Array Interface Memory-Mapped AXI4 Interconnect... 40
Array Interface AXI4-Stream Interconnect...40
AI Engine to Programmable Logic Interface... 40
AI Engine to NoC Interface...41
Interrupt Handling.. 41

Chapter 4: AI Engine Architecture.. 44
Functional Overview... 44

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=3

Register Files..47
Instruction Fetch and Decode Unit... 49
Load and Store Unit.. 49
Scalar Unit.. 50
Vector Unit... 53
Register Move Functionality...59

Chapter 5: AI Engine Configuration and Boot.. 61
AI Engine Array Configuration ..61
AI Engine Boot Sequence... 61
AI Engine Array Reconfiguration ..62

Appendix A: Additional Resources and Legal Notices............................. 64
Xilinx Resources...64
Documentation Navigator and Design Hubs...64
References..64
Please Read: Important Legal Notices... 65

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=4

Chapter 1

Overview

Introduction to Versal ACAP
Versal™ adaptive compute acceleration platforms (ACAPs) combine Scalar Engines, Adaptable
Engines, and Intelligent Engines with leading-edge memory and interfacing technologies to
deliver powerful heterogeneous acceleration for any application. Most importantly, Versal ACAP
hardware and software are targeted for programming and optimization by data scientists and
software and hardware developers. Versal ACAPs are enabled by a host of tools, software,
libraries, IP, middleware, and frameworks to enable all industry-standard design flows.

Built on the TSMC 7 nm FinFET process technology, the Versal portfolio is the first platform to
combine software programmability and domain-specific hardware acceleration with the
adaptability necessary to meet today's rapid pace of innovation. The portfolio includes six series
of devices uniquely architected to deliver scalability and AI inference capabilities for a host of
applications across different markets—from cloud—to networking—to wireless communications—
to edge computing and endpoints.

The Versal architecture combines different engine types with a wealth of connectivity and
communication capability and a network on chip (NoC) to enable seamless memory-mapped
access to the full height and width of the device. Intelligent Engines are SIMD VLIW AI Engines
for adaptive inference and advanced signal processing compute, and DSP Engines for fixed point,
floating point, and complex MAC operations. Adaptable Engines are a combination of
programmable logic blocks and memory, architected for high-compute density. Scalar Engines,
including Arm® Cortex®-A72 and Cortex-R5F processors, allow for intensive compute tasks.

The Versal AI Edge series focuses on AI performance per watt for real-time systems in automated
drive, predictive factory and healthcare systems, multi-mission payloads in aerospace & defense,
and a breadth of other applications. More than just AI, the Versal AI Edge series accelerates the
whole application from sensor to AI to real-time control, all with the highest levels of safety and
security to meet critical standards such as ISO26262 and IEC 61508.

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=5

The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high-
compute density to accelerate the performance of any application.

The Versal Prime series is the foundation and the mid-range of the Versal platform, serving the
broadest range of uses across multiple markets. These applications include 100G to 200G
networking equipment, network and storage acceleration in the Data Center, communications
test equipment, broadcast, and aerospace & defense. The series integrates mainstream 58G
transceivers and optimized I/O and DDR connectivity, achieving low-latency acceleration and
performance across diverse workloads.

The Versal Premium series provides breakthrough heterogeneous integration, very high-
performance compute, connectivity, and security in an adaptable platform with a minimized
power and area footprint. The series is designed to exceed the demands of high-bandwidth,
compute-intensive applications in wired communications, data center, test & measurement, and
other applications. Versal Premium series ACAPs include 112G PAM4 transceivers and integrated
blocks for 600G Ethernet, 600G Interlaken, PCI Express® Gen5, and high-speed cryptography.

The Versal architecture documentation suite is available at: https://www.xilinx.com/versal.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include:

• Chapter 1: Overview provides an overview of the AI Engine architecture and includes:

○ AI Engine Array Overview

○ AI Engine Array Hierarchy

○ Performance

• Chapter 2: AI Engine Tile Architecture describes the interaction between the memory
module and the interconnect and between the AI Engine and the memory module.

• Chapter 3: AI Engine Array Interface Architecture is a high-level view of the AI Engine array
interface to the PL and NoC.

• Chapter 4: AI Engine Architecture describes the processor functional unit and register files.

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 6Send Feedback

https://www.xilinx.com/versal
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=6

• Chapter 5: AI Engine Configuration and Boot describes configuring the AI Engine array
from the processing system during boot and reconfiguration.

• AI Engine Development: Creating the AI Engine graph and kernels, library use, simulation
debugging and profiling, and algorithm development. Also includes the integration of the PL
and AI Engine kernels. Topics in this document that apply to this design process include:

• Chapter 2: AI Engine Tile Architecture

• Chapter 4: AI Engine Architecture

AI Engine Array Features
Some Versal ACAPs include the AI Engine array that consists of an array of AI Engine tiles and
the AI Engine array interface consisting of the network on chip (NoC) and programmable logic
(PL) tiles. The following lists the features of each.

AI Engine Tile Features

• A separate building block, integrated into the silicon, outside the programmable logic (PL)

• One AI Engine incorporates a high-performance very-long instruction word (VLIW) single-
instruction multiple-data (SIMD) vector processor optimized for many applications including
signal processing and machine learning applications among others

• Eight banks of single-port data memory for a total of 32 KB

• Streaming interconnect for deterministic throughput, high-speed data flow between AI
Engines and/or the programmable logic in the Versal device

• Direct memory access (DMA) in the AI Engine tile moves data from incoming stream(s) to local
memory and from local memory to outgoing stream(s)

• Configuration interconnect (through memory-mapped AXI4 interface) with a shared,
transaction-based switched interconnect for access from external masters to internal AI
Engine tile

• Hardware synchronization primitives (for example, locks) provide synchronization of the AI
Engine, between the AI Engine and the tile DMA, and between the AI Engine and an external
master (through the memory-mapped AXI4 interface)

• Debug, trace, and profile functionality

AI Engine Array Interface to NoC and PL Resources

• Direct memory access (DMA) in the AI Engine array interface NoC tile manages incoming and
outgoing memory-mapped and streams traffic into and out of the AI Engine array

• Configuration and control interconnect functionality (through the memory-mapped AXI4
interface)

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=7

• Streaming interconnect that leverages the AI Engine tile streaming interconnect functionality

• AI Engine to programmable logic (PL) interface that provides asynchronous clock-domain
crossing between the AI Engine clock and the PL clock

• AI Engine to NoC interface logic to the NoC master unit (NMU) and NoC slave unit (NSU)
components

• Hardware synchronization primitives (for example, locks) leverage features from the AI Engine
tile locks module

• Debug, trace, and profile functionality that leverage all the features from the AI Engine tile

AI Engine Array Overview
The following figure shows the high-level block diagram of a Versal adaptive compute
acceleration platforms (ACAP) with an AI Engine array in it. The device consists of the processor
system (PS), programmable logic (PL), and the AI Engine array.

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=8

Figure 1: Versal Device Top-Level Block Diagram

Versal ACAP

AI Engine Array

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

Programmable Logic

Horizontal NoC

RAM

Integrated
IP

Ve
rt

ic
al

 N
oC Gigabit

TransceiversCLB

DSP
Engine

Horizontal NoC

Processor System

APUCPU RPU

Coherent Interconnect

L2 OCM IOU

AI Engine Tile

Co
nf

ig
/D

eb
ug

 In
te

rc
on

ne
ct

AI Engine Data Memory

Streaming Interconnect

Debug
Trace
Profile

Tile
DMA

Hardware
Locks

AI Engine Array Interface

XPIO

DDRC

PMC

X20808-100718

The AI Engine array is the top-level hierarchy of the AI Engine architecture. It integrates a two-
dimensional array of AI Engine tiles. Each AI Engine tile integrates a very-long instruction word
(VLIW) processor, integrated memory, and interconnects for streaming, configuration, and debug.
The AI Engine array interface enables the AI Engine to communicate with the rest of the Versal
device through the NoC or directly to the PL. The AI Engine array also interfaces to the
processing system (PS) and platform management controller (PMC) through the NoC.

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=9

AI Engine Array Hierarchy
The AI Engine array is made up of AI Engine tiles and AI Engine array interface tiles (the last row
of the array). The types of interface tiles include the AI Engine to PL and AI Engine to NoC
interface tiles. There is also exactly one configuration interface tile in each AI Engine array that
contains a PLL for AI Engine clock generation and other global control functions. The following
figure shows a conceptual view of the complete tile hierarchy associated with the AI Engine
array. See Chapter 2: AI Engine Tile Architecture and Chapter 3: AI Engine Array Interface
Architecture for detailed descriptions of the various tiles.

Figure 2: Hierarchy of Tiles in a AI Engine Array

AI Engine Tile

PL Interface Tile

Streaming Interconnect

AI Engine AI Engine
Memory

AI Engine
PL Module

NOC Interface Tile

AI Engine
PL Module

AI Engine
NoC

Module

AI Engine Array, 6 x 4 AI Engine Tiles and corresponding
AI Engine-PL/NoC Interface Tiles

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

AI Engine
Tile

Configuration
Interface

Tile

PL
Interface

Tile

NoC
Interface

Tile

NoC
Interface

Tile

PL
Interface

Tile

PL
Interface

TileAI Engine Configuation
Interface Tile

X20818-040519

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=10

AI Engine Applications
The non-linear increase in demand in next generation wireless, machine learning, and other
compute intensive applications lead to the development of the Versal™ ACAP AI Engine. The AI
Engine, the dual-core Arm® Cortex®-A72 and Cortex-R5F processor (PS), and the next
generation programmable logic (PL) are all tied together with a high-bandwidth NoC to form a
new architecture in ACAP. The AI Engine and PL are intended to complement each other to
handle functions that match their strengths. With the custom memory hierarchy, multi-cast
stream capability on AI interconnect and AI-optimized vector instructions support, the Versal
ACAP AI Engines are optimized for various compute-intensive applications, for example,
advanced radio systems supporting all classical radio functionality plus wideband/multiband
capability, 5G wireless communications (remove the need of vector-DSP-based ASICs), and
machine learning inference acceleration in data center applications by enabling deterministic
latency and low neural network latency with acceptable performance.

Performance
The AI Engine array has a single clock domain for all the tiles and array interface blocks. The
performance target of the AI Engine array for the -1L speed grade devices is 1 GHz with VCCINT
at 0.70V. In addition, the AI Engine array has clocks for interfacing to other blocks. The following
table summarizes the various clocks in the AI Engine array and their performance targets.

Table 1: AI Engine Interfacing Clock Domains

Clock Target for -1L Source Relation to AI Engine Clock
AI Engine array clock 1 GHz AI Engine PLL N/A

NoC clock 800 MHz NoC clocking Asynchronous, CDC within NoC

PL clocks 500 MHz PL clocking Asynchronous, CDC within AI Engine array interface

NPI clock 300 MHz NPI clocking Asynchronous

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=11

Memory Error Handling
Memory Error Detection and Correction

Each AI Engine has 32 KB of data memory and 16 KB of program memory. For devices with many
AI Engine tiles, protection against soft errors are both required and provided. The 128-bit word in
the program memory is protected with two 8-bit ECC (one for each 64-bit). The 8-bit ECC can
detect 2-bit errors and detect/correct a 1-bit error within the 64-bit word. The two 64-bit data
and two 8-bit ECC fields are each interleaved within its own pair (distance of two) to create larger
bit separation.

There are eight memory banks in each data memory module. The first two memory banks have
7-bit ECC protection for each of the four 32-bit fields. The 7-bit ECC can detect 2-bit errors and
detect/correct a 1-bit error. The last six memory banks have even parity bit protection for each
32 bits in a 128-bit word. The four 32-bit fields are interleaved with a distance of four.

Error injection is supported for both program and data memory. Errors can be introduced into
program memory over memory-mapped AXI4. Similarly, errors can be injected into data memory
banks over AI Engine DMA or memory-mapped AXI4.

When the memory-mapped AXI4 access reads or writes to AI Engine data memory, two requests
are sent to the memory module. On an ECC/parity event, the event might be counted twice in
the AI Engine performance counter. There is duplicate memory access but no impact on
functionality. Refer to Chapter 2: AI Engine Tile Architecture for more information on events and
performance counters.

Internal memory errors (correctable and uncorrectable) create internal events that use the normal
debug, trace, and profiling mechanism to report error conditions. They can also be used to raise
an interrupt to the PMC/PS.

Chapter 1: Overview

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=12

Chapter 2

AI Engine Tile Architecture
The top-level block diagram of the AI Engine tile architecture, key building blocks, and
connectivity for the AI Engine tile are shown in the following figure.

Figure 3: AI Engine Tile Block Diagram

Memory
Module

Interconnect

DMA

AI Engine
(including ISA-based

Vector Processor)

AXI4 Interconnect
Back-pressure handling
Up to 200+ GB/s bandwidth per tile

Local Memory
Multi-bank implementation

Shared among
 neighboring AI Engines

ISA-based
Vector Processor
Software
Programmable
(e.g., C/C++)

Cascade Interface
Partial results to next AI Engine

DMA
Non-neighbor data communication
Integrated synchronization primitives

Cascade Stream
Tile Memory Access
AXI4 Interconnects

Application Specific
Vector Extensions

For Example: ML and
5G Wireless

X21602-091321

The AI Engine tile consists of the following high-level modules:

• Tile interconnect
• AI Engine
• AI Engine memory module

The tile interconnect module handles AXI4-Stream and memory mapped AXI4 input/output
traffic. The memory-mapped AXI4 and AXI4-Stream interconnect is further described in the
following sections. The AI Engine memory module has 32 KB of data memory divided into eight
memory banks, a memory interface, DMA, and locks. There is a DMA in both incoming and
outgoing directions and there is a Locks block within each memory module. The AI Engine can
access memory modules in all four directions as one contiguous block of memory. The memory
interface maps memory accesses in the right direction based on the address generated from the

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=13

AI Engine. The AI Engine has a scalar processor, a vector processor, three address generators, and
16 KB of program memory. It also has a cascade stream access for forwarding accumulator
output to the next AI Engine tile. The AI Engine is described in more detail in Chapter 4: AI
Engine Architecture. Both the AI Engine and the AI Engine memory module have control, debug,
and trace units. Some of these units are described later in this chapter:

• Control and status registers
• Events, event broadcast, and event actions
• Performance counters for profiling and timers

The following figure shows the AI Engine array with the AI Engine tiles and the dedicated
interconnect units arrayed together. Sharing data with local memory between neighboring AI
Engines is the main mechanism for data movement within the AI Engine array. Each AI Engine
can access up to four memory modules:

• Its own
• The module on the north
• The module on the south
• The module on the east or west depending on the row and the relative placement of AI

Engine and memory module

The AI Engines on the edges of the array have access to one or two fewer memory modules,
following a checkerboard pattern.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=14

Figure 4: AI Engine Array

Dedicated
Interconnect
· Back-pressure

handling
· Deterministic

Local, Distributed Memory
· No cache misses
· Higher bandwidth

Cascade Stream
AIE Memory Access
AXI4 Interconnects

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

AI
Engine

M
em

or
y

X21763-091321

Together with the flexible and dedicated interconnects, the AI Engine array provides
deterministic performance, low latency, and high bandwidth. The modular and scalar architecture
allows more compute power as more tiles are added to the array.

The cascade streams travel from tile to tile in horizontal manner from the bottom row to the top.
As a cascade stream reaches the edge at one end, it is connected to the input of the tile above it.
Therefore, the flow changes direction on alternate rows (west to east on one row, and east to
west on another). The cascading continues until it reaches one end of the top row at which point
the stream ends with no further connection. Because of the change in direction, the relative
placement of the AI Engine and memory module in a tile is reversed from one row to the other.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=15

Memory Mapped AXI4 Interconnect
Each AI Engine tile contains a memory-mapped AXI4 interconnect for use by external blocks to
write to or read from any of the registers or memories in the AI Engine tile. The memory-mapped
AXI4 interconnect inside the AI Engine array can be driven from outside of the AI Engine array by
any AXI4 master that can connect to the network on chip (NoC). All internal resources in an AI
Engine tile including memory, and all registers in an AI Engine and AI Engine memory module, are
mapped onto a memory-mapped AXI4 interface.

Each AI Engine tile has a memory-mapped AXI4 switch that will accept all memory-mapped AXI4
accesses from the south direction. If the address is for the tile, access occurs. Otherwise, the
access is passed to the next tile in the north direction.

The following figure shows the addressing scheme of memory-mapped AXI4 in the AI Engine tile.
The lower 18 bits represent the tile address range of 0x00000 to 0x3FFFF, followed by five bits
that represent the row location and seven bits that represent the column location.

Figure 5: AI Engine Memory-Mapped AXI4 Interface Addresses

Array ID [30] Column [29:23] Row [22:18] Tile [17:0]1

X22324-022119

The AI Engine internal memory-mapped AXI4 interconnect is a subset of the full memory-
mapped AXI4 protocol, with the following limitations.

• No write data before write address
• Only one WSTRB signal for the write data
• Only burst of one to four, 32-bit words
• 32-bit fixed size

AXI4-Stream Interconnect
Each AI Engine tile has an AXI4-Stream interconnect (alternatively called a stream switch) that is
a fully programmable, 32-bit, AXI4-Stream crossbar, and is statically configured through the
memory-mapped AXI4 interconnect. It handles backpressure and is capable of the full bandwidth
on the AXI4-Stream. The following figure is a high-level block diagram of the AXI4-Stream
switch. The switch has master ports (data flowing from the switch) and slave ports (data flowing
to the switch). The following figure shows an AXI4-Stream interconnect. The building blocks of
the AXI4-Stream interconnect are listed as follows.

• Port handlers

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=16

• FIFOs
• Arbiters
• Stream switch configuration registers

Figure 6: AXI4-Stream Switch High-level Block Diagram

AXI4-Stream
Connections

East

West

South

From AI Engine

From DMA

From FIFO

AI Engine Trace
Memory Trace

For Control

East

West

South

North

To AI Engine

To DMA

To FIFO
To Register
Configuration

North

X22300-032119

Each port has a port handler that selects the route for the input/output stream. Each master port
and slave port contains buffering of a 4-deep FIFO with a two cycle latency. Each stream switch
has two FIFO buffers (16-deep, 32-bit data + 1-bit TLAST wide) that can be chained together
and used for adding buffering to a stream. Each switch has six programmable arbiters for packet
switching.

Each stream port can be configured for either circuit-switched or packet-switched streams (never
at the same time) using a packet-switching bit in the configuration register. A circuit-switched
stream is a one-to-many streams. This means that it has exactly one source port and an arbitrary
number of destination ports. All data entering the stream at the source is streamed to all
destinations. A packet-switched stream can share ports (and therefore, physical wires) with other
logical streams. Because there is a potential for resource contention with other packet-switched
streams, they do not provide deterministic latency. The latency for the word transmitted in a
circuit-switched stream is deterministic; if the bandwidth is limited, the built-in backpressure will
cause performance degradation.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=17

A packet-switched stream is identified by a 5-bit ID which has to be unique amongst all streams
it shares ports with. The stream ID also identifies the destination of the packet. A destination can
be an arbitrary number of master ports and packet-switched streams make it possible to realize
all combinations of single/multiple master/slave ports in any given stream.

A packet-switched packet has:

• Packet header: Routing and control information for the packet

• Data: Actual data in the packet

• TLAST: Last word in the packet must have TLAST asserted to mark the end of packet

The packet header is shown here:

Table 2: Packet Header

Odd
Parity 3'b000 Source Column Source Row 1'b0 Packet

Type 7'b0000000 Stream ID

[31] [30:28] [27:21] [20:16] [15] [14:12] [11:5] [4:0]

The following table summarizes the AXI4-Stream tile interconnect bandwidth for the -1L speed
grade devices.

Table 3: AI Engine AXI4-Stream Tile Interconnect Bandwidth

Connection Type Number of
Connections

Data
Width
(bits)

Clock Domain
Bandwidth per

Connection
(GB/s)

Aggregate
Bandwidth

(GB/s)
To North/From South 6 32 AI Engine (1 GHz) 4 24

To South/From North 4 32 AI Engine (1 GHz) 4 16

To West/From East 4 32 AI Engine (1 GHz) 4 16

To East/From West 4 32 AI Engine (1 GHz) 4 16

AI Engine Tile Program Memory
The AI Engine has a local 16 KB of program memory that can be used to store VLIW instructions.
There are two interfaces to the program memory:

• Memory-mapped AXI4 interface

• AI Engine interface

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=18

An external master can read or write to the program memory using the memory-mapped AXI4
interface. The AI Engine has 128-bit wide interfaces to the program memory to fetch
instructions. The AI Engine can read from, but not write to, the program memory. To access the
program memory simultaneously from the memory-mapped AXI4 and AI Engine, divide the
memory into multiple banks and access mutually exclusive parts of the program memory.
Arbitration logic is needed to avoid conflicts between accesses and to assign priority when
accesses are to the same bank.

AI Engine Interfaces
The AI Engine has multiple interfaces. The following block diagram shows the interfaces.

• Data Memory Interface: The AI Engine can access data memory modules on all four
directions. They are accessed as one contiguous memory. The AI Engine has two 256-bit wide
load units and one 256-bit wide store unit. From the AI Engines perspective, the throughput
of each of the loads (two) and store (one) is 256 bits per clock cycle.

• Program Memory Interface: This 128-bit wide interface is used by the AI Engine to access the
program memory. A new instruction can be fetched every clock cycle.

• Direct AXI4-Stream Interface: The AI Engine has two 32-bit input AXI4-Stream interfaces and
two 32-bit output AXI4-Stream interfaces. Each stream is connected to a FIFO both on the
input and output side, allowing the AI Engine to have a 4 word (128-bit) access per 4 cycles, or
a 1 word (32-bit) access per cycle on a stream.

• Cascade Stream Interface: The 384-bit accumulator data from one AI Engine can be
forwarded to another by using these cascade streams to form a chain. There is a small, two-
deep, 384-bit wide FIFO on both the input and output streams that allow storing up to four
values between AI Engines.

• Debug Interface: This interface is able to read or write all AI Engine registers over the
memory-mapped AXI4 interface.

• Hardware Synchronization (Locks) Interface: This interface allows synchronization between
two AI Engines or between an AI Engine and DMA. The AI Engine can access the lock
modules in all four directions.

• Stall Handling: An AI Engine can be stalled due to multiple reasons and from different sources.
Examples include: external memory-mapped AXI4 master (for example, PS), lock modules,
empty or full AXI4-Stream interfaces, data memory collisions, and event actions from the
event unit.

• AI Engine Event Interface: This 16-bit wide EVENT interface can be used to set different
events.

• Tile Timer: The input interface to read the 64-bit timer value inside the tile.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=19

• Execution Trace Interface: A 32-bit wide interface where the AI Engine generated packet-
based execution trace can be sent over the AXI4-Stream.

Figure 7: AI Engine Interfaces

AI Engine

Program
Memory

Stall Logic

South Interface

W
es

t I
nt

er
fa

ce

St
re

am
 F

IF
O

Ea
st

 In
te

rf
ac

e

North Interface

Tile CNTR In

Cascade In

128

Cascade Out

Locks

256

256

256

Clock/Reset

Locks 256
256

256

Error Status
Signals (EVENTS)

256 256

From Event Logic From PS

Memory Collision

Data Memory
Interface

Stall Signal

Stream FIFO
(empty/full)Ctrl

Register
From
Lock Locks

256

256

256

Execution Trace

32 Stream in

32

32 Stream out
3232

32
32
32

128
128
128
128

Program CNTR

Lock
Interface

AI Engine
Debug Interface

Locks

256

256 256256

Da
ta

 M
em

or
y

In
te

rf
ac

e

Da
ta

 M
em

or
y

In
te

rf
ac

e

Data Memory Interface

Data Memory
Interface

X20812-050120

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=20

AI Engine Memory Module
The AI Engine memory module (shown in the following figure) contains eight memory banks, two
input streams to memory map (S2MM) DMA, two memory-map to output DMA streams (MM2S),
and a hardware synchronization module (locks). For each of the four directions (south, west,
north, and east), there are separate ports for even and odd ports, and three address generators,
two loads, and one store.

Figure 8: AI Engine Memory Module

S2MM DMA (2) MM2S DMA (2)North Memory Port

South Memory Port
W

est M
em

ory Port

East M
em

ory Port

M
em

ory Bank

Arbiter

M
em

ory Bank

Arbiter

M
em

ory Bank

Arbiter

M
em

ory Bank

Arbiter

M
em

ory Bank

Arbiter

M
em

ory Bank

Arbiter

M
em

ory Bank

Arbiter

M
em

ory Bank

Arbiter

Locks (16)

X20813-070118

• Memory Banks: The AI Engine memory modules consist of eight memory banks, where each
memory bank is a 256 word x 128-bit single-port memory. Each memory bank has a write
enable for each 32-bit word. Banks [0-1] have ECC protection and banks [2-7] have parity
check. Bank [0] starts at address 0 of the memory module. ECC protection is a 1-bit error
detector/corrector and 2-bit error detector per 32-bit word.

• Memory Arbitration: Each memory bank has its own arbitrator to arbitrate between all
requesters. The memory bank arbitration is round-robin to avoid starving any requester. It
handles a new request every clock cycle. When there are multiple requests in the same cycle
to the same memory bank, only one request per cycle will be allowed to access the memory.
The other requesters are stalled for one cycle and the hardware will retry the memory request
in the next cycle.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=21

• Tile DMA Controller: The tile DMA has two incoming and two outgoing streams to the stream
switches in the AI Engine tile. The tile DMA controller is divided into two separate modules,
S2MM to store stream data to memory (32-bit data) and MM2S to write the contents of the
memory to a stream (32-bit data). Each DMA transfer is defined by a DMA buffer descriptor
and the DMA controller has access to the 16 buffer descriptors. These buffer descriptors can
also be accessed using a memory-mapped AXI4 interconnect for configuration. Each buffer
descriptor contains all information needed for a DMA transfer and can point to the next DMA
transfer for the DMA controller to continue with after the current DMA transfer is complete.
The DMA controller also has access to the 16 locks that are the synchronization mechanism
used between the AI Engine and DMA or any external memory-mapped AXI4 master (outside
of the AI Engine array) and the DMA. Each buffer descriptor can be associated with locks. This
is part of the configuration of any buffer descriptor using memory-mapped AXI4 interconnect.

• Lock Module: The AI Engine memory module contains a lock module to achieve
synchronization amongst the AI Engines, tile DMA, and an external memory-mapped AXI4
interface master (for example, the processor system (PS)). There are 16 hardware locks with a
binary data value for each AI Engine memory module lock unit. Each lock has an arbitrator for
simultaneous request management. The lock module handles lock requests from the AI
Engines in all four directions, the local DMA controller, and memory-mapped AXI4.

AI Engine Data Movement Architecture
This section describes examples of the data communications within the AI Engine array and
between the AI Engine tile and programmable logic (PL).

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=22

AI Engine to AI Engine Data Communication via
Shared Memory
AI Engine to AI Engine Data Communication via Shared Memory

In the case where multiple kernels fit in a single AI Engine, communications between two
consecutive kernels can be established using a common buffer in the shared memory. For cases
where the kernels are in separate but neighboring AI Engine, the communication is through the
shared memory module. The processing of data movement can be through a simple pipeline or
multiple parallel pipe stages (see the following figure). Communication between the two AI
Engines can use ping and pong buffers (not shown in the figure) on separate memory banks to
avoid access conflicts. The synchronization is done through locks. DMA and AXI4-Stream
interconnect are not needed for this type of communication.

The following figures show the data communication between the AI Engine tiles. They are a
logical representation of the AI Engine tiles and shared memory modules.

Figure 9: AI Engine to AI Engine Data Communication via Shared Memory

AI Engine 0 Mem AI Engine 1 Mem AI Engine 2

1-dimensional Pipelined Communication Between Neighboring AI Engine Tiles

AI Engine 0 Mem AI Engine 3 Mem AI Engine 6

2-dimensional Dataflow Communication Among Neighboring AI Engine Tiles

Mem AI Engine 1 Mem AI Engine 4

Mem AI Engine 2 Mem AI Engine 5

X21173-040519

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=23

AI Engine Tile to AI Engine Tile Data Communication
via Memory and DMA
The communication described in the previous section is inside an AI Engine tile or between two
neighboring AI Engine tiles. For non-neighboring AI Engine tiles, a similar communication can be
established using the DMA in the memory module associated with each AI Engine tile, as shown
in the following figure. The synchronization of the ping-pong buffers in each memory module is
carried out by the locks in a similar manner to the AI Engine to AI Engine Data Communication
via Shared Memory section. The main differences are increased communication latency and
memory resources.

Figure 10: Data Communication Between Two Non-neighboring AI Engine Tiles

Memory Banks

DMADMA

Memory Banks

DMADMA

AI Engine
1

Pong

Ping

Ping

Pong

AI Engine
2

X23073-051220

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=24

AI Engine Tile to AI Engine Tile Data Communication
via AXI4-Stream Interconnect
AI Engines can directly communicate through the AXI4-Stream interconnect without any DMA
and memory interaction. As shown in the following figure, data can be sent from one AI Engine
to another through the streaming interface in a serial fashion, or the same information can be
sent to an arbitrary number of AI Engine tiles using a multicast communication approach. The
streams can go in north/south and east/west directions. In all the streaming cases there are built-
in hand-shake and backpressure mechanisms.

Note: In a multicast communication approach, if one of the receivers is not ready the whole broadcast will
stop until all receivers are ready again.

Figure 11: AI Engine to AI Engine Data Communication via AXI4-Stream Interconnect

AI
Engine 0

AI
Engine 1

Cascade Streaming

Streaming Multicast

AI
Engine 2

AI
Engine 0

AI
Engine 1

AI
Engine 2

AI
Engine 3

X21174-102618

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=25

AI Engine to PL Data Communication via Shared
Memory
In the generic case, the PL block consumes data via the stream interface. It then generates a data
stream and forwards it to the array interface, where inside there is a FIFO that receives the PL
stream and converts it into an AI Engine stream. The AI Engine stream is then routed to the AI
Engine destination function. Depending on whether the communication is block-based or
stream-based, DMA and ping-pong buffers could be involved.

The following figure shows an example (use case) between the common public radio interface
(CPRI™) and the JESD® in the PL. The AI Engine and PL can communicate using DMA in the AI
Engine tile. The DMA moves the stream into a memory block neighboring the consuming AI
Engine. The first diagram represents the logical view and the second diagram represents the
physical view.

Figure 12: AI Engine to PL Data Communication via Shared Memory

AI Engine 0 Memory AI Engine 1 Memory JESD

Streaming Communication

MemoryCPRI

CPRI JESD

AI M
Interconnect

AI M
Interconnect

AI M
Interconnect

AI M
Interconnect

AI M
Interconnect

AI M
Interconnect

AI = AI Engine
M = Memory AI Engine Array

AI Engine Array

Programmable Logic, GTs, I/Os

X21175-102618

AI Engine Debug
Debugging the AI Engine uses the memory-mapped AXI4 interface. All the major components in
the AI Engine array are memory mapped.

• Program memories

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=26

• Data memories
• AI Engine registers
• DMA registers
• Lock module registers
• Stream switch registers
• AI Engine break points registers
• Events and performance counters registers

These memory-mapped registers can be read and/or written from any master that can produce
memory-mapped AXI4 interface requests (PS, PL, and PMC). These requests come through the
NoC to the AI Engine array interface, and then to the target tile in the array. The following figure
shows a typical debugging setup involving a software development environment running on a
host development system combined with its integrated debugger.

Figure 13: Overview of the AI Engine Debug Interface

Host Development PC

Software
Development
Environment
(Debugger)

Memory-Mapped
AXI Interface Register

AI Engine

X20814-050520

The debugger connects to the platform management controller (PMC) on an AI Engine enabled
Versal device either using a JTAG connection or the Xilinx high-speed debug port (HSDP)
connection.

AI Engine Trace and Profiling
The AI Engine tile has provisions for trace and profiling. It also has configuration registers that
control the trace and profiling hardware.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=27

Trace
There are two trace streams coming out of each AI Engine tile. One stream from the AI Engine
and the other from the memory module. Both these streams are connected to the tile stream
switch. There is a trace unit in each AI Engine module and memory module in an AI Engine tile,
and an AI Engine programmable logic (PL) module in an AI Engine PL interface tile (see types of
array interface tiles). The units can operate in the following modes:

• AI Engine modes
○ Event-time
○ Event-PC
○ Execution-trace

• AI Engine memory module mode
○ Event-time

• AI Engine PL module mode
○ Event-time

The trace is output from the unit through the AXI4-Stream as an AI Engine packet-switched
stream packet. The packet size is 8x32 bits, including one word of header and seven words of
data. The information contained in the packet header is used by the array AXI4-Stream switches
to route the packet to any AI Engine destination it can be routed to, including AI Engine local
data memory through the AI Engine tile DMA, external DDR memory through the AI Engine
array interface DMA, and block RAM or URAM through the AI Engine to PL AXI4-Stream.

The event-time mode tracks up to eight independent numbered events on a per-cycle basis. A
trace frame is created to record state changes in the tracked events. The frames are collected in
an output buffer into an AI Engine packet-switched stream packet. Multiple frames can be
packed into one 32-bit stream word but they cannot cross a 32-bit boundary (filler frames are
used for 32-bit alignment).

In the event-PC mode, a trace frame is created each cycle where any one or more of the eight
watched events are asserted. The trace frame records the current program counter (PC) value of
the AI Engine together with the current value of the eight watched events. The frames are
collected in an output buffer into an AI Engine packet-switched stream packet.

The trace unit in the AI Engine can operate in execution-trace mode. In real time, the unit will
send, via the AXI4-Stream, a minimum set of information to allow an offline debugger to
reconstruct the program execution flow. This assumes the offline debugger has access to the ELF.
The information includes:

• Conditional and unconditional direct branches

• All indirect branches

• Zero-overhead-loop LC

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=28

The AI Engine generates the packet-based execution trace, which can be sent over the 32-bit
wide execution trace interface. The following figure shows the logical view of trace hardware in
the AI Engine tile. The two trace streams out of the tile are connected internally to the event
logic, configuration registers, broadcast events, and trace buffers.

Note: The different operating modes between the two modules are not shown.

Figure 14: Logical View of AI Engine Trace Hardware

AI Engine Tile

Memory ModuleAI Engine

Broadcast
Logic

Broadcast
West Events

Broadcast North
Events

Event Logic

Broadcast
East Events

Broadcast South
Events

Broadcast
Logic

Broadcast North
Events

Event Logic

Broadcast South
Events

Trace
Hardware

Trace
Hardware

Configuration
Registers

Configuration
Registers

Timer
PC

Trace Stream
From AI Engine

Trace Stream
From Memory

Module

Trace Buffer Trace Buffer

X22303-040519

To control the trace stream for an event trace, there is a 32-bit trace_control0/1 register to
start and stop the trace. There are also the trace_event0/1 registers to program the internal
event number to be added to the trace. See the Versal ACAP AI Engine Register Reference (AM015)
for specific register information.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers-versal-aie
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=29

Profiling (Performance Counters)
The AI Engine array has performance counters that can be used for profiling. The AI Engine has
four performance counters that can be configured to count any of the internal events. It will
either count the occurrence of the events or the number of clock cycles between two defined
events. The memory module and the PL modules in the PL and NoC array interface tiles each
have two performance counters that can be configured to perform similar functions. The
following figure shows a high-level logical view of the profiling hardware in the AI Engine tile. The
performance control registers and performance counter registers are described in the Versal
ACAP AI Engine Register Reference (AM015).

Figure 15: Logical View of AI Engine Profiling

AI Engine Tile

Memory ModuleAI Engine

Broadcast
Logic

Broadcast
West

Events

Broadcast North
Events

Event Logic

Broadcast
East
Events

Broadcast South
Events

Broadcast
Logic

Broadcast North
Events

Event Logic

Broadcast South
Events

Performance
Counter

 Hardware

Performance Counter0

Performance
Counter

 Hardware

Configuration
Registers

Performance Counter1
Performance Counter2
Performance Counter3

Performance Counter0

Configuration
Registers

Performance Counter1

X22304-022119

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 30Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers-versal-aie
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=30

AI Engine Events
The AI Engine and memory modules each have an event logic unit. Each unit has a defined set of
local events. The following diagram shows the high-level logical view of events in the AI Engine
tile. The event logic needs to be configured with a set of action registers that can be programmed
over the memory-mapped AXI4 interface. There is event logic hardware that only interacts with
the AI Engine and memory modules. Event actions can be configured to perform a task whenever
a specific event occurs. There are two separate sets of configuration registers for event
hardware. Also, there is separate broadcast logic to send event signals to neighboring modules.

Figure 16: Events in an AI Engine Tile

AI Engine Tile

Broadcast
Logic

West
Events

East
Events

North
Events

North
Events

Broadcast
Logic

South
Events

South
Events

Event Logic

AI Engine

Configuration
Register

Stall Logic

From
AXI4-stream

FIFO

From
Lock

From
MM AXI4

Event Logic

Configuration
Register

Memory
Module

Memory
Event

Broadcast
Event

Memory conflict
Stall
Signal

From
Event

Broadcast
Event

AI
Engine
Event

X22301-041719

Event Actions

An event itself does not have an action, but events can be used to create an action. Event
broadcast and event trace can be configured to monitor the event. Examples of event actions
include:

• Enable, disable, or reset of an AI Engine

• Debug-halt, resume, or single-step of an AI Engine

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=31

• Error halt of an AI Engine

• Resynchronize timer

• Start and stop performance counters

• Start and stop trace streams

• Generate broadcast events

• Drive combo events

• ECC scrubbing event

For each of these event actions there are associated registers where a 7-bit event number is set
and is used to configure the action to trigger on a given event. The full list of the event action
configuration registers for the AI Engine and memory modules are found in the Versal ACAP AI
Engine Register Reference (AM015).

Event Broadcast

Broadcast events are both the events and the event actions because they are triggered when a
configured event is asserted. The following figure shows the logical view of the broadcast logic
inside the AI Engine tile. The units in the broadcast logic in the AI Engine and memory modules
receive input from and send out signals in all four directions. The broadcast logic is connected to
the event logic, which generates all the events. There are configuration registers to select the
event sent over, and mask registers to block any event from going out of the AI Engine tile.

Figure 17: AI Engine Broadcast Events

AI Engine Tile

Memory ModuleAI Engine
Broadcast

Logic

Broadcast
West

Events

Broadcast North
Events

Event Logic

Configuration
Registers

Broadcast
East
Events

Broadcast South
Events

Broadcast
Logic

Broadcast North
Events

Event Logic

Broadcast South
Events

Configuration
Registers

X22302-021919

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 32Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers-versal-aie
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=32

Each module has an internal register that determines the broadcast event signal to broadcast in
the other directions. To avoid broadcast loops, the incoming event signals are ORed with the
internal events to drive the outgoing event signals according the following list:

• Internal, east, north, south → west

• Internal, west, north, south → east

• Internal, south → north

• Internal, north → south

TIP: The AI Engine module east broadcast event interface is internally connected to the memory module
west broadcast event interface and does not go out of the AI Engine tile. In the AI Engine module, there are
16 broadcast events each in the north, south, and west directions. In the memory module, there are 16
broadcast events each in the north, south, and east directions. With respect to broadcast events and from
the programmer's perspective, there are no differences in the interface between odd and even rows.

Chapter 2: AI Engine Tile Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=33

Chapter 3

AI Engine Array Interface
Architecture

The AI Engine is arranged in a 2D array as shown in the following figure. The AI Engine array
interface provides the necessary functionality to interface with the rest of the device. The AI
Engine array interface has three types of AI Engine interface tiles. There is a one-to-one
correspondence of interface tiles for every column of the AI Engine array. The interface tiles form
a row and move memory-mapped AXI4 and AXI4-Stream data horizontally (left and right) and
also vertically up a AI Engine tile column. The AI Engine interface tiles are based on a modular
architecture, but the final composition is device specific. Refer to the following figure for the
internal hierarchy of the AI Engine array interface in the AI Engine array.

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=34

Figure 18: AI Engine Array Interface Hierarchy

NoC Interface Tile

Streaming Interconnect

Debug
Trace
Profile

HW
Locks

AI Engine
to/from

NoC
Interface

Config/Debug Interconnect

PL Interface Tile

Streaming Interconnect

AI Engine
to/from

PL
Interface

Debug
Trace
Profile

Config/Debug Interconnect

DMA

Versal ACAP
AI Engine Array

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

Programmable Logic

Horizontal NoC

RAM

Integrated
IP

Ve
rt

ic
al

 N
oC Gigabit

TransceiversCLB

DSP58

Horizontal NoC

Processor System

APUCPU RPU

Coherent Interconnect

L2 OCM IOU

AI
Engine

Interface
Tile

XPIO

DDRC

AI
Engine

Interface
Tile

AI
Engine

Interface
Tile

AI
Engine

Interface
Tile

AI
Engine

Interface
Tile

AI Engine Array Interface

PMC

Configuration Interface Tile

Streaming Interconnect

Debug
Trace
Profile

Config/Debug Interconnect

AI Engine
PLL

NPI Interconnect

PoR

AI Engine
to/from

PL
Interface

X20816-103018

The types of array interface tiles and the modules within them are described in this section.

• AI Engine PL interface tile
○ PL module includes:

- AXI4-Stream switch
- Memory-mapped AXI4 switch
- AI Engine to PL stream interface
- Control, debug, and trace unit

• AI Engine configuration interface tile (exactly one instance per AI Engine array)
○ PLL for AI Engine clock generation
○ Power-on-reset (POR) unit
○ Interrupt generation unit
○ Dynamic function exchange (DFx) logic

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=35

○ NoC peripheral interconnect (NPI) unit
○ AI Engine array global registers that control global features such as PLL/clock control,

secure/non-secure behavior, interrupt controllers, global reset control, and DFx logic
• AI Engine NoC interface tile

○ PL module (see previous description)
○ NoC module with interfaces to NMU and NSU includes:

- Bi-directional NoC streaming interface
- Array interface DMA

AI Engine Array Interface
The AI Engine array interface consists of PL and NoC interface tiles. There is also one
configuration interface tile per device. The following figure shows the array interface
connectivity that the AI Engine array uses to communicate with other blocks in the Versal
architecture. Also specified are the number of streams in the AXI4-Stream interconnect
interfacing with the PL, NoC, or AI Engine tiles, and between the AXI4-Stream switches.

TIP: The exact number of PL and NoC interface tiles is device specific. The Versal Architecture and Product
Data Sheet: Overview (DS950) lists the size of the AI Engine array.

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 36Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=36

Figure 19: AI Engine Array Interface Topology

AI Engine Tile AI Engine Tile

Memory-mapped
AXI4 Switch

AXI4-Stream
Switch

PL Interface

Memory-mapped
AXI4 Switch

AXI4-Stream
Switch

NoC
Interface

PL

AI Engine Array Interface

HNoC

DMA PL
Interface

NSU NMUNSU

PL Interface Tile NoC Interface Tile

6
x

32
b

4
x

32
b

8
x

32
b

6
x

64
b

6
x

32
b

8
x

64
b

4
x

32
b

4
x

32
b

1
x

12
8b

1
x

12
8b

4 x 32b
4 x 32b

AI Engine Clock

PL Clock

X21569-040519

Note: The AI Engine FMAX is 1 GHz for the -1L speed grade devices. The PL clock should be set at half that
speed to 500 MHz. There is also a clock domain crossing at the NoC interface tile between the clocks for
the AI Engine and the NoC.

The types of interfaces to the PL and NoC are:

• Memory-mapped AXI4 interface: the communication channel is from the NSU to the AI
Engine as a slave

• AXI4-Stream interconnect has three types of interfaces:
○ Bi-directional connection to the PL streaming interface
○ Connection to the array interface DMA that generates traffic into the NoC using a

memory-mapped AXI4 interface
○ Direct connection to the NoC streaming interfaces (NSU and NMU)

The AI Engine array interface tiles manage the two high performance interfaces:

• AI Engine to PL
• AI Engine to NoC

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=37

The following tables summarize the bandwidth performance of the AI Engine array interface with
the PL, the NoC, and the AI Engine tile. The bandwidth performances are specified per each AI
Engine column for the -1L speed grade devices. There is a reduction in the number of
connections per column between the PL to AI Engine interface and the AXI4-Stream switch to
the AI Engine tile. This is to support the horizontally connected stream switches that provide
additional horizontal routing capability. The total bandwidth for the various devices across speed
grades can be found in the Versal AI Core Series Data Sheet: DC and AC Switching Characteristics
(DS957).

Table 4: AI Engine Array Interface to PL Interface Bandwidth Performance

Connection Type Number of
Connections

Data
Width
(bits)

Clock
Domain

Bandwidth per
Connection

(GB/s)

Aggregate
Bandwidth

(GB/s)
PL to AI Engine array interface 8 641 PL

(500 MHz)
4 32

AI Engine array interface to PL 6 64 PL
(500 MHz)

4 24

AI Engine array interface to AXI4-
Stream switch

8 32 AI Engine
(1 GHz)

4 32

AXI4-Stream switch to AI Engine
array interface

6 32 AI Engine
(1 GHz)

4 24

Horizontal interface between AXI4-
Stream switches2

4 32 AI Engine
(1 GHz)

4 16

Notes:
1. All streams to and from the PL are 64 bits on the PL side. The streams can be converted to 32-bit wide, but only one

32-bit word is valid out of the 64-bit wide stream. Two 64-bit wide streams can be combined to form a 128-bit wide
stream, but the number of connections are halved.

2. The aggregate bandwidth shown is in the east/west direction. There are two sets of connections going in and out of
each AXI4-Stream switch.

Table 5: AI Engine Array Interface to NoC Interface Bandwidth Performance

Connection Type Number of
Connections

Data
Width
(bits)

Clock
Domain

Bandwidth per
Connection

(GB/s)

Aggregate
Bandwidth

(GB/s)
AI Engine to NoC (NoC side) 1 128 NoC

Interface
(1 GHz)

16 16

AI Engine to NoC (AI Engine side) 4 32 AI Engine
(1 GHz)

4 16

NoC to AI Engine (NoC side) 1 128 NoC
Interface
(1 GHz)

16 16

NoC to AI Engine (AI Engine side) 4 32 AI Engine
(1 GHz)

4 16

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 38Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=38

Table 6: AI Engine Array Interface to AI Engine Tile Bandwidth Performance

Connection Type Number of
Connections

Data
Width
(bits)

Clock
Domain

Bandwidth per
Connection

(GB/s)

Aggregate
Bandwidth

(GB/s)
AXI4-Stream switch to AI Engine tile 6 32 AI Engine

(1 GHz)
4 24

AI Engine tile to AXI4-Stream switch 4 32 AI Engine
(1 GHz)

4 16

The following sections contain additional AI Engine array interface descriptions. The AI Engine
tiles are described in the Chapter 2: AI Engine Tile Architecture chapter.

Features of the AI Engine Array Interface
• Memory Mapped AXI4 Interconnect: Provides functionality to transfer the incoming memory-

mapped AXI4 requests from the NoC to inside the AI Engine array.

• AXI4-Stream Interconnect: Leverages the AI Engine tile streaming interconnect functionality.

• AI Engine to PL Interface: The AI Engine PL modules directly communicate with the PL.
Asynchronous FIFOs are provided to handle clock domain crossing.

• AI Engine to NoC Interface: The AI Engine to NoC module handles the conversion of 128-bit
NoC streams into 32-bit AI Engine streams (and vice versa). It provides the interface logic to
the NoC components (NMU and NSU). Level shifting is performed because the NMU and NSU
are in a different power domain from the AI Engine.

• Hardware Locks: Leverages the corresponding unit in the AI Engine tile and is accessible from
the AI Engine array interface or an external memory-mapped AXI4 master, the module is used
to synchronize the array interface to DMA transfer to/from external memory.

• Debug, Trace, and Profile: Leverages all the features from the AI Engine tile for local event
debugging, tracing, and profiling.

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=39

Array Interface Memory-Mapped AXI4
Interconnect

The main task of the AI Engine memory-mapped AXI4 interconnect is to allow external access to
internal AI Engine tile resources such as memories and registers for configuration and debug. It is
not designed to carry the bulk of the data movement to and from the AI Engine array. The
memory-mapped AXI4 interfaces are all interconnected across the AI Engine array interface row.
This enables the memory-mapped AXI4 interconnects in the array interface tiles to move
incoming memory-mapped signals to the correct column horizontally and then forward them
vertically to the memory-mapped AXI4 interconnect in the bottom AI Engine tile of that column
through a switch.

Each memory-mapped AXI4 interface is a 32-bit address with 32-bit data. The maximum
memory-mapped AXI4 bandwidth is designed to be 1.5 GB/s.

To feed the memory-mapped AXI4 interface, the NoC module contains a memory-mapped AXI4
bridge that accepts memory-mapped AXI4 transfers from the NoC NSU interface, and acts as a
memory-mapped AXI4 master to the internal memory-mapped AXI4 interface switch.

Array Interface AXI4-Stream Interconnect
The main task of the AI Engine AXI4-Stream switch is to carry deterministic throughput and high-
speed circuit or packet data-flow between AI Engines and the programmable logic or NoC.
Therefore, it is designed to carry the bulk of the data movement to/from the AI Engine array. The
AXI4-Stream switches in the bottom row of AI Engine tiles interface directly to another row of
AXI4-Stream interconnected switches in the AI Engine array interface.

AI Engine to Programmable Logic Interface
AXI4-Stream switches in the AI Engine to PL tiles can directly communicate with the
programmable logic using the AXI4-Stream interface. There are six streams from AI Engine to PL
and eight streams from PL to each AI Engine column. From a bandwidth perspective, each AXI4-
Stream interface can support the following.

• 24 GB/s from each AI Engine column to PL

• 32 GB/s from PL to each AI Engine column

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=40

In the VC1902 device, there are 50 columns of AI Engine tiles and AI Engine array interface tiles,
however, only 39 array interface tiles are available to the PL interface. Therefore, the aggregate
bandwidth for PL interface is approximately:

• 1.0 TB/s from AI Engine to PL

• 1.3 TB/s from PL to AI Engine

All bandwidth calculations assume a nominal 1 GHz AI Engine clock for the -1L speed grade
devices at VCCINT = 0.70V. The number of array interface tiles available to the PL interface and
total bandwidth of the AI Engine to PL interface for other devices and across different speed
grades is specified in Versal AI Core Series Data Sheet: DC and AC Switching Characteristics (DS957).

AI Engine to NoC Interface
The AI Engine to NoC interface tile, in addition to the AXI4-Stream interface capability, also
contains paths to connect to the horizontal NoC (HNoC). Looking from the AI Engine, there are
four streams from the AI Engine to the NoC, and four streams from the NoC to the AI Engine.
From a bandwidth perspective each AI Engine to NoC interface tile can direct traffic between the
HNoC and the AXI4-Stream switch.

TIP: The actual total bandwidth can be limited by the number of horizontal and vertical channels available
in the device and also the bandwidth limitation of the NoC.

Interrupt Handling
It is possible to setup interrupts to the processor system (PS) and the platform management
controller (PMC) triggered by events inside the AI Engine array. This section gives an introduction
to the types of interrupts from the AI Engine array.

The AI Engine array generates four interrupts that can be routed from the AI Engine array to the
PMC, application processing unit (APU), and real-time processing unit (RPU). The overall
hierarchy for interrupt generation from AI Engine array is as follows:

• Events get triggered from any of the AI Engine tiles or AI Engine interface tiles.

• Each column has first-level interrupt handlers that can capture the trigger/event generated
and forward it to the second-level interrupt handler. Second-level interrupt handlers are only
available in NoC interface tiles.

• A second-level interrupt handler can drive any one of the four interrupt lines in a AI Engine
array interface.

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds957-versal-ai-core.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=41

• These four interrupt lines are eventually connected to the AI Engine configuration interface
tile.

The following figure is a high-level block diagram showing the connections of the NPI interrupts
from the AI Engine array to other blocks in the Versal device. The diagram does not show the
actual layout/placement of the array interface tiles and the AI Engine tiles.

Figure 20: Connecting Interrupts from the AI Engine Array to Other Functional Blocks

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

AI
Engine

Tile

Configuration
Interface Tile

NoC
Interface

Tile

PL
Interface

Tile

PL
Interface

Tile

PL
Interface

Tile

PL
Interface

Tile

NoC
Interface

Tile

AI Engine Tile Interface

AI Engine Array

Versal ACAP

4 4 4 4 4 4

NPI
Interface

APU
Error

Aggregation
Logic

RPU PPU CoreSight

X22299-021919

In the previous figure, the four interrupts are generated from a NoC interface tile. They pass
through the PL interface tile and reach a configuration interface tile. Internal errors (such as PLL
lock loss) are then ORed with the four incoming interrupts and the resulting four interrupts are
connected directly to the NPI interrupt signals on the NPI interface, which is a 32-bit wide
memory-mapped AXI4 bus.

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=42

At the device level, the four NPI interrupts are assigned 4 to 7. There are three groups of NPI
registers (IMR0…IMR3, IER0…IER3, and IDR0…IDR3). Each of the pairs (IMR, IER, and IDR) can
be used to configure the four NPI interrupts. IMR registers are read only, and IER and IDR
registers are write only. Only the registers corresponding to NPI interrupt 4 can be programmed.
For NPI interrupts 5, 6, and 7, the three sets of registers have no effect and the three interrupts
cannot be masked by programming the NPI register. The structure and address of the NPI
registers are described in the Versal ACAP AI Engine Register Reference (AM015).

Chapter 3: AI Engine Array Interface Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 43Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers-versal-aie
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=43

Chapter 4

AI Engine Architecture

Functional Overview
The AI Engine is a highly-optimized processor featuring single-instruction multiple-data (SIMD)
and very-long instruction word (VLIW) processor that supports both fixed-point and floating-
point precision. As shown in the following figure, the AI Engine has a memory interface, a scalar
unit, a vector unit, two load units, one store unit, and an instruction fetch and decode unit.

Figure 21: AI Engine

Memory Interface

Scalar Unit Vector Unit

Load Unit A Load Unit B Store Unit

Instruction Fetch
& Decode Unit

AGU AGU AGU

Scalar
Register Files

Scalar ALU

Non-linear
Functions

Vector
Register

Files

Fixed-Point Vector Unit

Floating-Point Vector Unit

X20821-051618

The features of the AI Engine include:

• 32-bit scalar RISC processor

○ General purpose pointer and configuration register files

○ Supports non-linear functions (for example: sqrt, Sin/Cos, and InvSqrt)

○ A scalar ALU, including 32 x 32-bit scalar multiplier

○ Supports conversion of the data type between scalar fixed point and scalar floating point

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=44

• Three address generator units (AGU)

○ Support for multiple addressing modes: Fixed, indirect, post-incremental, or cyclic

○ Supports Fast Fourier Transform (FFT) address generation

○ Two AGUs dedicated for two load units

○ One AGU dedicated for the store unit

• Vector fixed-point/integer unit

○ Concurrent operations on multiple vector lanes

○ Accommodate multiple precision for complex and real operand (see Table 7).

Note: While cfloat is a vector data type, it is not directly supported by the AI Engine vector
processor. Two instructions must be issued.

Table 7: Supported Precision Width of the Vector Data Path

X Operand Z Operand Output Number of MACs
8 real 8 real 48 real 128

16 real 8 real 48 real 64

16 real 16 real 48 real 32

16 real 16 complex 48 complex 16

16 complex 16 real 48 complex 16

16 complex 16 complex 48 complex 8

16 real 32 real 48/80 real 16

16 real 32 complex 48/80 complex 8

16 complex 32 real 48/80 complex 8

16 complex 32 complex 48/80 complex 4

32 real 16 real 48/80 real 16

32 real 16 complex 48/80 complex 8

32 complex 16 real 48/80 complex 8

32 complex 16 complex 48/80 complex 4

32 real 32 real 80 real 8

32 real 32 complex 80 complex 4

32 complex 32 real 80 complex 4

32 complex 32 complex 80 complex 2

32 SPFP 32 SPFP 32 SPFP 8

○ Can be configured to perform eight complex 16-bit multiplications

○ Full permute unit with 32-bit granularity

○ Shift, round, and saturate with multiple rounding and saturation modes

○ Two-step post adding along with 768-bit intermediate results

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=45

○ The X operand is 1024 bits wide and the Z operand is 256 bits wide. In terms of
component use, consider the first row in Table 7. The multiplier operands come from the
same 1024-bit and 256-bit input registers, but some values are broadcast to multiple
multipliers. There are 128 8-bit single multipliers and the results are post-added and
accumulated into 16 or 8 accumulator lanes of 48 bits each.

• Single-precision floating-point (SPFP) vector unit

○ Use same permute as a fixed-point vector unit

○ Concurrent operation of multiple vector lanes

○ Eight single-precision multiplier–accumulators (MACs) per cycle

• Balanced pipeline

○ Different pipeline on each functional unit (eight stages maximum)

○ Load and store units manage the 5-cycle latency of data memory

• Three data memory ports

○ Two load ports and one store port

○ Each port operates in 256-bit/128-bit vector register mode or 32-bit/16-bit/8-bit scalar
register mode. The 8-bit and 16-bit stores are implemented as read-modify-write
instructions

○ Concurrent operation of all three ports

○ A bank conflict on any port stalls the entire data path

• Very-long instruction word (VLIW) function

○ Concurrent issuing of operation to all functional units

○ Support for multiple instruction formats and variable length instructions

○ Up to seven operations can be issued in parallel using one VLIW word

• Direct stream interface

○ Two input streams and two output streams

○ Each stream can be configured to be either 32-bit or 128-bit wide

○ One cascade stream in, one cascade stream out (384-bit)

• Interface to the following modules

○ Lock module

○ Stall module

○ Debug and trace module

• Event interface is a 16-bit wide output interface from the AI Engine

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=46

Register Files
The AI Engine has several types of registers. Some of the registers are used in different functional
units. This section describes the various types of registers.

Scalar Registers

Scalar registers include configuration registers. See the following table for register descriptions.

Table 8: Scalar Registers

Syntax Number of bits Description
r0..r15 32 bits General-purpose registers

m0..m7 20 bits Modifier registers

p0..p7 20 bits Pointer registers

cl0..cl7 32 bits Configuration registers

ch0..ch7

c0..c7 64 bits

Special Registers

Table 9: Special Registers

Syntax Number of bits Description
cb0..cb7 20 bits Circular buffer start address

cs0..cs7 20 bits Circular buffer size

wcs0..wcs3 40 bits Wide circular buffer size

s0..s7 8 bits Shift control

sp 20 bits Stack pointer

lr 20 bits Link register

pc 20 bits Program counter

fc 20 bits Fetch counter

mc0..mc1 32 bits Status register

md0..md1 32 bits Mode control register

ls 20 bits Loop start

le 20 bits Loop end

lc 32 bits Loop count

lci 32 bits Loop count (PCU)

S 8 bits Shift control

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=47

Vector Registers

Vector registers are high-width registers to allow SIMD instructions. The underlying basic
hardware registers are 128-bit wide, prefixed with the letter V. Two V registers can be grouped to
form a 256-bit register prefixed with W. WR, WC, and WD registers are grouped in pairs to form
512-bit registers (XA, XB, XC, and XD). XA and XB form the 1024-bit wide YA registers. For all
the registers except YD, the order is LSB from the top of the table to MSB at the bottom of the
table. For YD, the LSBs are from the XD, and the MSBs are from the XB, that is:

YD = VDL0::VDH0::VDL1::VDH1::VRL2::VRH2::VRL3::VRH3

Table 10: Vector Registers

128-bit 256-bit 512-bit 1024-bit
vrl0 wr0 xa ya N/A

vrh0

vrl1 wr1

vrh1

vrl2 wr2 xb yd (MSBs)

vrh2

vrl3 wr3

vrh3

vcl0 wc0 xc N/A N/A

vch0

vcl1 wc1

vch1

vdl0 wd0 xd N/A yd (LSBs)

vdh0

vdl1 wd1

vdh1

Accumulator Registers

Accumulator registers are used to store the results of the vector data path. They are 384-bit wide
which can be viewed as 8 vector lanes of 48-bit each. The idea is to have 32-bit multiplication
results and accumulate over those results without bit overflows. The 16 guard bits allow up to 216

accumulations. The accumulator registers are prefixed with the letters AM. Two of them are
aliased to form a 768-bit register that is prefixed with BM.

Note: There are two modes of operation. In the first mode, the multiplication results are post-added into 8
accumulators using 16 post additions before the accumulation. In the second mode, the multiplication
results are post-added into 16 accumulators using 8 post additions before the accumulation.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=48

Table 11: Accumulator Registers

384-bit 768-bit
aml0 bm0

amh0

aml1 bm1

amh1

aml2 bm2

amh2

aml3 bm3

amh3

Instruction Fetch and Decode Unit
The instruction fetch and decode unit sends out the current program counter (PC) register value
as an address to the program memory. The program memory returns the fetched 128-bit wide
instruction value. The instruction value is then decoded, and all control signals are forwarded to
the functional units of the AI Engine. The program memory size on the AI Engine is 16 KB, which
allows storing 1024 instructions of 128-bit each.

The AI Engine instructions are 128-bits wide and support multiple instruction formats and
variable length instructions to reduce the program memory size. In most cases, the full 128 bits
are needed when using all VLIW slots. However, for many instructions in the outer loops, main
program, control code, or occasionally the pre- and post-ambles of the inner loop, the shorter
format instructions are sufficient, and can be used to store the more compressed instructions
with a small instruction buffer.

Load and Store Unit
The AI Engine has two load units and one store unit for accessing data memory. Data is loaded or
stored in data memory.

Each of the load or store units has an address generation unit (AGU). AGUA and AGUB are the
load units and the store unit is AGUS. Each AGU has a 20-bit input from the P-register file and a
20-bit input from the M-register file (refer to the pointer registers and the modifier registers in
Register Files). The AGU has a one cycle latency.

An individual data memory block is 32 KB. The AI Engine accesses four 32 KB data memory
blocks to create a 128 KB unit. These four memory blocks are located on each side of the AI
Engine and are divided and interleaved as odd and even banks (see the following figure).

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=49

Figure 22: Interleaving in Data Memory (32 KB per Block)

0x0000 0x0010

0x7FE0 0x7FF0

Even Odd

128 Bit

256 Bit

X20823-102518

In a logical representation the 128 KB memory can be viewed as one contiguous 128 KB block or
four 32 KB blocks, and each block can be divided into odd and even banks. The memory can also
be viewed as eight 16 KB banks (four odd and four even). The AGU generates addresses for data
memory access that span from 0x0000 to 0x1FFFF (128 KB).

Scalar Unit
The following figure shows a block diagram of the scalar unit, including the scalar register files
and scalar functional units.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=50

Figure 23: AI Engine Scalar Unit

Scalar Unit

Non-linear Block

Scalar ALU

Scalar
Register

Files

Special
Registers

Add
Subtract Compare Multiply Move

Fixed-point Scalar Non-linear Functions

Floating-point Scalar Non-linear Functions

Data-type Conversions

X20825-051518

The scalar unit contains the following functional blocks.

• Register files and special registers

• Arithmetic and logical unit (ALU)

• Non-linear functions – fixed-point and floating-point precision

• Data type conversions

Integer add, subtract, compare, and shift functions are one-cycle operations. The integer
multiplication operation has a three-cycle latency. Non-linear functions take one or four cycles to
produce scalar results. The throughput of the aforementioned operations is one cycle.

Arithmetic Logic Unit, Scalar Functions, and Data
Type Conversions
The arithmetic logic unit (ALU) in the AI Engine manages the following operations. In all cases the
issue rate is one instruction per cycle.

• Integer addition and subtraction: 32 bits. The operation has a one cycle latency.

• Bit-wise logical operation on 32-bit integer numbers (BAND, BOR, BXOR). The operation has
a one cycle latency.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=51

• Integer multiplication: 32 x 32 bit with output result of 32 bits stored in the R register file. The
operation has a three cycle latency.

• Shift operation: Both left and right shift are supported. A positive shift amount is used for left
shift and a negative shift amount is used for right shift. The shift amount is passed through a
general purpose register. A one bit operand to the shift operation indicates whether a positive
or negative shift is required. The operation has a one cycle latency.

There are two types of scalar elementary functions in the AI Engine: fixed-point and floating-
point. The following describes each function.

• Fixed-point non-linear functions

○ Sine and cosine:

- Input is from the upper 20 bits of a 32-bit input

- Output is a concatenated word with the upper 16-bit sine and the lower 16-bit cosine

- The operations have a four cycle latency

○ Absolute value (ABS): Invert the input number and add one. The operation has a one cycle
latency

○ Count leading zeroes (CLZ): Count leading zeroes in a 32-bit input. The operation has a one
cycle latency

○ Minimum/maximum (lesser than (LG)/greater than (GT)): Two inputs are compared to find
the minimum or maximum. The operation has a one cycle latency

○ Square Root, Inverse Square Root, and Inverse: These operations are implemented with
floating-point precision. For fixed-point implementation the input needs to be first
converted to floating-point precision and then passed as input to these non-linear
operations. Also, the output is in a floating-point format that needs to be converted back
to fixed-point integer format. The operations have a four cycle latency

• Floating-point non-linear functions

○ Square root: Both input and output are single precision floating-point numbers operating
on R register file. The operation has a four cycle latency

○ Inverse square root: Both input and output are single precision floating-point numbers
operating on R register file. The operation has a four cycle latency

○ Inverse: Both input and output are single precision floating-point numbers operating on R
register file. The operation has a four cycle latency

○ Absolute value (ABS), the operation has a one cycle latency

○ Minimum/maximum, the operation has a one cycle latency

There is no floating-point unit in the scalar unit. The floating-point operations are supported
through emulation. In general, it is preferred to perform add and multiply in the vector unit.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=52

The AI Engine scalar unit supports data-type conversion operations to convert input data from a
fixed-point to a floating-point and from a floating-point to a fixed-point. The fix2float
operation and float2fix operation provide support for variable decimal point where input is a
32-bit value. Along with the input, the decimal point position is also taken as another input. The
operations scale the value up or down, if required. Both operations have a one cycle latency.

The AI Engine floating-point is not completely compliant with the IEEE standards and there are
restrictions on a set of functionality. The exceptions are outlined in this section.

• When the float2fix function is called with a very large positive or negative number and
the additional exponent increment is greater than zero, the instruction returns 0 instead of the
correct saturation value of either 231–1 or –231.

The float2fix function takes two input parameters:

○ n: The floating-point input value to be converted.

○ sft: A 6-bit signed number representing the number of fractional bits in fixed-point
representation (from –32 to 31).

Consider the two scenarios:

○ If n*2sft > 2129, the output should return 0x7FFFFFFF. Instead, it returns 0x00000000.

○ If n*2sft < –2129, the output should return 0X80000000. Instead, it returns 0x00000000.

In general, you should ensure that the n floating-point input value stays in the bug-free range
of –2(129–sft) < n < 2(129–sft) for sft > 0.

Two implementations are introduced to provide a workaround:

○ float2fix_safe: This is the default mode if you specify float2fix without any
option. The implementation returns the correct value for any range, but is slower.

○ float2fix_fast: This implementation returns the correct value only in the bug-free
range and you need to ensure the range is valid. To choose the floatfix_fast
implementation, you need to add the preprocessor FLOAT2FIX_FAST to the project file.

• A fixed-point value has a legal range of –231 to 232–1. When the float2fix function returns
a value of –231, the value is within range but an overflow exception is incorrectly set. There is
no workaround for this overflow exception.

Vector Unit
Fixed-Point Vector Unit
The fixed-point vector unit contains three separate and largely independent data paths.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=53

• Multiply Accumulator (MAC) Path: The main multiplication path reads values from vector
registers, permutes them in a user controllable manner, performs optional pre-adding,
multiplies them, and after some post-adding, accumulates them to the previous value of the
accumulator register.

• Upshift Path: The path runs in parallel to the MAC path. It reads data from the permute units
in the MAC path or from the vector register, left-shifts, and feeds it to the accumulator
registers.

• Shift-round Saturate (SRS) Path: This path reads from the accumulator registers and stores to
the vector registers or the data memory. It is needed because the accumulators are 48 or 80
bits wide per lane and the vector registers and the data memory have 8, 16, 32, or 64-bit
power-of-two widths. Therefore, the data needs to be right shifted on a lane-by-lane
basis.The SRS unit uses the saturation and rounding control register MD with its fields Q and
R to influence its behavior, and the status register MC to provide information back to the
environment. The shift control register S determines the shift amount. The unit supports
various rounding modes based on the value of the field R in register MD. If R is set to 0, the
value is truncated on the LSB side. If R is set to 1, a ceiling behavior is achieved, which means
that there is no actual rounding. For R = 2 to 7, the modes are PosInf, NegInf, SymInf,
SymZero, ConvEven, and ConvOdd (respectively).

The following figure is the pipeline diagram of the main multiplication and upshift path. After the
instruction decode stage (ID), the six execute stages are numbered E1 to E6. The dark gray boxes,
which always cross two stages, are registers. The light gray boxes, that can span multiple stages,
are the functional units. The white box represents hardware registers that are internal to the
processor description. Between all boxes there are arrow connectors. They are nML transitories,
which are pure non-storing wires. In addition to the elements shown in the diagram, there are
multiplexers that realize different connectivity depending on the instruction that is executed. The
to UPS unit implies a multiplexer that selects among the three permute units and the VD register.
There is an internal unit that reads the inputs and pre-adds two values before outputting the data
to the UPS unit.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=54

Figure 24: Pipeline Diagram of AI Engine Fixed-point Vector Unit Multiplication and
Upshift Paths

ID

XA
 ··

 X
B

VC PM
C

PM
XR

PM
XL

PR
A

YM
X

M
PY

PS
A

PS
B

AC
C

AM

AC
M

AM

VD

to
 U

PS UPS

pa
m

R

Epmx

E1
Empy

E3
Epra

E2
Epsa

E4
Epsb

E5
Eacc

E6

pm
xA

::p
m

xB
pm

xA

pm
cR

pr
aX

L

praXL
praXR
pmcR

ym
xl

pr
aX

R

m
py

X
m

py
Y

0

X20827-051518

The following table shows the functional units in the main multiplication path. The pre-adding
unit PRA can also be used for doing some vector elementary functions, such as determining the
minimum or maximum of two vectors or comparing two vectors. In these cases, the pre-adder
(PRA) is configured for subtraction, and the sign bit is checked to choose the input selected (for
MIN and MAX), and also written to register R for a pure vector comparison.

Table 12: Functional Units in the Multiplication Path

Functional Unit Description
Permute Units

PMXL Permutes the data from the vector registers for the left input of the pre-adder PRA.

PMXR Permutes the data from the vector registers for the right input of the pre-adder PRA or
alternatively for the input of the YMX unit.

PMC Permutes the data from the vector registers for the input of the YMX unit.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=55

Table 12: Functional Units in the Multiplication Path (cont'd)

Functional Unit Description
Pre-adder Units

PRA Pre-add or pre-subtract the PMXL and PMXR outputs to form the first multiplier argument.
Additionally, some restricted permute takes place to compensate for the 32-bit granularity
of the PMXL/PMXR units.

YMX Special operations, such as inserting the constant 1 to multiply the pre-adder result with a
1, or sign extending the individual lanes. Additionally, some restricted permute takes place
to compensate for the 32-bit granularity of the PMXR unit.

Multiplier Unit

MPY Multiplies the PRA and YMX outputs.

Post-adder Units

PSA First post-adding stage that reduces the 32-MPY output lanes to 16 lanes.

PSB Second post-adding stage that further reduces the lanes to 8. Alternatively, it forwards the
inputs to the output.

Accumulator

ACM Multiplexes the data that is to be added to the post-adder output. Can be the old
accumulator value, the output of the upshift path, or the cascade stream input.

ACC Adds or subtracts the ACM and PSB outputs.

The following table shows the functional units in the upshift path.

Table 13: Upshift Path

Upshift Units Description
to UPS Reads vector register and selects only certain lanes.

UPS Perform the actual upshifting and output to the ACM unit in the main data path.

The following figure is a pipeline diagram of the shift-round-saturate path. An accumulator
register is read, the shift-round-saturate operation occurs, and the output is either written into
any vector register or to the data memory. The value is stored in memory in the E3 stage and
arrives in memory in the E6 stage.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=56

Figure 25: Pipeline Diagram of AI Engine Shift-Round-Saturate Data Path

ID E1
Esrs

E3E2 E4 E5 E6

sr
sl

SRSBAM SR
SA

pe
1_

sr
s

SR
S_

in
te

rle
av

er

Vx

Memory Store

sr
sT

sr
s0

X20828-051120

The following table shows the functional units in the shift-round-saturate path.

Table 14: Shift-Round-Saturate Path

Shift-Round-Saturate
Units Description

SRSA Performs the combination of the two parts of an 80-bit accumulator. It bypasses the data
when 48-bit accumulators are to be shifted. Works on eight 48-bit lanes or four 80-bit lanes
in parallel. The functionality is split into a low and high part to perform the same operation
in parallel.

SRSB Perform the actual shifting of the lanes. The functionality is split into a low and high part to
perform the same operation in parallel.

SRS Interleaver Interleaves the outputs of the SRSB high and low units when accumulator interleaving is
required (controlled by the MSB of the shift amount register S).

Floating-Point Vector Unit
The AI Engine provides eight lanes of single-precision floating-point multiplication and
accumulation. The unit reuses the vector register files and permute network of the fixed-point
data path. In general, only one vector instruction per cycle can be done in fixed-point or floating-
point.

The following figure shows the pipeline diagram of the single precision floating-point data flow.
Compared to the fixed-point vector unit, only the PMXL and PMC units are used (the PMXR unit
is removed). FPYMX is in the style of YMX and the results from FPYMX and PMXL are forwarded
to a single-precision multiplier unit (FPMPY) that can compute eight products in parallel. The
operation in FPMPY has a three-cycle latency and a one-cycle throughput. Next, there is an
FPSGN unit that allows sign negation of the results on a per-lane basis.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=57

After the FPSGN unit there is a two-stage accumulator unit called FPACC. It accumulates the
multiplication results with values from various sources, such as zeroes or values directly from
another vector register. However, it is not possible to add lanes within the same vector directly.
The accumulator does not support subtraction as it is handled by the FPSGN unit.

Figure 26: Pipeline Diagram of the AI Engine Floating-point Vector Unit Single-
precision Floating-point Data Path

ID

pm
xa

::p
m

xB

XA
::X

B

PM
XL

pl
pe

pr
ax

l

Epmx

E1
Empy

E3
Epra

E2
Epsa

E4
Epsb

E5
Eacc0

E6
Eacc1

E7

W
C

PM
XL

FP
YM

Xpm
cA

pm
cR

FPMPY
8 x Single Precision

Multipliers FP
SG

N

pa
m

R

FP
AC

8
x

Ac
cu

m
ul

at
or

Ve
ct

or

Ve
ct

or
 R

eg
is

te
rs

0

X20829-052220

The AI Engine supports several vector elementary function for the floating-point format. These
functions include a vector comparison, minimum, and maximum. They operate in an element-
wise fashion comparing two vectors. The hardware needed is very similar to the fixed-point
vector comparison. The fixed-point unit PRA is extended to handle floating-point comparison,
and the operation is done at the same time as the FPYMX block. The floating-point data path
supports a vector fixed-point to single precision floating-point conversion as well as a reverse
operation of a floating-point to fixed-point conversion, but only at a lower performance through
the scalar unit. In that situation, extract elements extracted from the vector, perform the scalar
conversion, and push the results back into a vector. When implemented in an efficiently pipelined
loop, close to a one sample per cycle conversion performance can be achieved.

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=58

The floating-point unit can issue events that correspond to standard floating-point exceptions
and the status registers MC keep track of the events. There are eight exception bits per floating-
point functional unit. The exceptions are (from bit 0 to 7): Zero, Infinity, Tiny (Underflow), Huge
(Overflow), Inexact, Huge Int, and Divide by Zero. Of the eight exceptions, Tiny, Huge, Invalid,
and Divide by Zero can be converted into an event that can be broadcast to the AI Engine array
interface, and then sent to the PS/PMC as an interrupt.

Some features are not supported by the AI Engine floating-point data path.

• Double-precision operations

• Half-precision operations

• Custom floating-point formats, for example 2-bit exponent, and 14-bit mantissa (E2:M14)

• Pre-adding before multiplication

• Post-adding between multiplication and accumulator

• Increased precision between multiplier and accumulator

• Denormalized and subnormal floating-point numbers

Register Move Functionality
The register move capabilities of the AI Engine are covered in this section (refer to the Register
Files section for a description of the naming of register types.

• Scalar to scalar:

○ Move scalar values between R, M, P, C, and special registers

○ Move immediate values to R, M, P, C, and special registers

○ Move a scalar value to/from an AXI4-Stream

• Vector to vector: Move one 128-bit V-register to an arbitrary V-register in one cycle. It also
applies to the 256-bit W-register and the 512-bit X-register. However, vector sizes must be
the same in all cases.

• Accumulator to accumulator: Move one 384-bit accumulator (AM) register to another AM-
register in one cycle

• Vector to accumulator; there are two possibilities:

○ Upshift path takes 16 or 32-bit vector values and writes into an accumulator

○ Use the normal multiplication datapath and multiply each value by a constant value of 1

• Accumulator to vector: Shift-round saturate datapath moves the accumulator to a vector
register

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=59

• Accumulator to cascade stream and cascade to accumulator: Cascade stream connects the AI
Engines in the array in a chain and allows the AI Engines to transfer an accumulator register
(384-bit) from one to the next. A small two-deep 384-bit wide FIFO on both the input and
output streams allows storing up to four values in the FIFOs between the AI Engines.

• Scalar to vector: Moves a scalar value from an R-register to a vector register

• Vector to scalar: Extracts an arbitrary 8-bit, 16-bit, or 32-bit value from a 128-bit or 256-bit
vector register and writes results into a scalar R-register

Chapter 4: AI Engine Architecture

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=60

Chapter 5

AI Engine Configuration and Boot

AI Engine Array Configuration
There are two top-level scenarios in the AI Engine array configuration: AI Engine array
configuration from power-up and AI Engine array partial reconfiguration. The following figure
shows a high-level view of the AI Engine array and configuration interface along with the
registers to the PS and the platform management controller (PMC) through the NoC.

Figure 27: AI Engine Array Configuration using NoC and NPI

PS

PMC

MicroBlaze DMAFlash

Memory-mapped
AXI4 (128 Bits)

Memory-
mapped AXI4

AI Engine Array

AI Engine Tiles

NPI (32 Bits)NPI

Memory-mapped
AXI4 (128 Bits)

PLL Global
Reset

AI Engine Array
Configuration
Interface TileN

O
C

X22307-111319

Any memory-mapped AXI4 master can configure any memory-mapped AXI4 register in the AI
Engine array using the NoC (for example, the PS and PMC). The global registers (including PLL
configuration, global reset, and security bits) in the array configuration interface tile can be
programmed using the NPI interface because the global registers are mapped onto the NPI
address space.

AI Engine Boot Sequence
This section describes the steps involved in the boot process for the AI Engine array.

Chapter 5: AI Engine Configuration and Boot

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=61

1. Power-on and power-on-reset (POR) deassertion: Power is turned on for all modules related
to the AI Engine array, including the PLL. After power-on, the PLL runs at a default speed.
The platform management controller (PMC) and NoC need to be up and running before the
AI Engine boot sequence is initiated. After the array power is turned on, the PMC can
deassert a POR signal in the AI Engine array.

2. AI Engine array configuration using NPI: After power-on, the PMC uses the NPI interface to
program the different global registers in the AI Engine array (for example, the PLL
configuration registers). The AI Engine configuration image that is required over the NPI for
AI Engine array initialization comes from a flash device.

3. Enable PLL: Once the PLL registers are configured (after POR), the PLL-enable bit can be
enabled to turn on the PLL. The PLL then settles on the programmed frequency and asserts
the LOCK signal. The source of the PLL input (ref_clk) is from hsm_ref_clk and is generated in
the control interfaces and processing system (CIPS).

• The generation and distribution of the clock is described in the PMC and PS Clocks chapter
of the Versal ACAP Technical Reference Manual (AM011).

4. Release reset: Once the PLL is locked, software can program a register to deassert the global
reset signal for the AI Engine array.

5. AI Engine array programming: The AI Engine array interface needs to be configured over the
memory-mapped AXI4 from the NoC interface. This includes all AXI4 stream switches,
memory-mapped AXI4 switches, array interface DMAs, event, and trace configuration
registers.

AI Engine Array Reconfiguration
The AI Engine configuration process writes a programmable device image (PDI) produced by the
bootgen tool into AI Engine configuration registers. The AI Engine configuration is done over
memory-mapped AXI4 via the NoC. Any master on the NoC can configure the AI Engine array.
For more information on generating a PDI with the bootgen tool, refer to Versal ACAP AI Engine
Programming Environment User Guide (UG1076).

The AI Engine array can be reconfigured at any time. The application drives the reconfiguration.
Safe reconfiguration requires:

• Ensuring that reconfiguration is not occurring during ongoing traffic.

• Disabling the AI Engine to PL interface prior to reconfiguration.

• Draining all data in the sub-region before it is reconfigured to prevent side-effects from
remnant data from a previous configuration.

Two scenarios are described for AI Engine array reconfiguration:

• Complete reconfiguration: The global reset is asserted for the AI Engine array and the entire
array is reconfigured by downloading a new configuration image.

Chapter 5: AI Engine Configuration and Boot

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 62Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/yii1603912637443.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=62

• Partial reconfiguration: Some of the AI Engine tiles in the array are reconfigured while the rest
of the tiles continue to run kernels. Reconfiguration occurs without affecting already running
kernels in the AI Engine array.

The PMC and PS are responsible for initializing the AI Engine array. The following table
summarizes the reset controls available for the global AI Engine array.

Table 15: Categories of AI Engine Resets

Type Trigger Scope
Internal power-on-reset Part of boot sequence AI Engine array

System reset NPI input AI Engine array

INITSTATE reset PCSR bit AI Engine array

Array soft reset Software register write over NPI AI Engine array

AI Engine tile column reset Memory-mapped AI Engine register bit
in the array interface tile

AI Engine tile column

AI Engine array interface reset From NPI register AI Engine array interface tile

The combination of column reset and array interface tile reset (refer to AI Engine Array
Hierarchy) enables a partial reconfiguration use case where a sub-array that comprises AI Engine
tiles and array interface tiles can be reset and reprogrammed without disturbing adjacent sub-
arrays. The specifics of handling the array splitting and adding isolation depend on the type of
use case (multi-user/tenancy or single-user/tenancy multiple-tasks).

Chapter 5: AI Engine Configuration and Boot

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=63

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix A: Additional Resources and Legal Notices

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 64Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=64

1. Versal ACAP data sheets:

• Versal Architecture and Product Data Sheet: Overview (DS950)

2. Versal ACAP AI Engine Register Reference (AM015)

3. Versal ACAP AI Engine Programming Environment User Guide (UG1076)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix A: Additional Resources and Legal Notices

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers-versal-aie
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1076-ai-engine-environment.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=65

This document contains preliminary information and is subject to change without notice.
Information provided herein relates to products and/or services not yet available for sale, and
provided solely for information purposes and are not intended, or to be construed, as an offer for
sale or an attempted commercialization of the products and/or services referred to herein.

Copyright

© Copyright 2020–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other
trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

AM009 (v1.2) October 21, 2021 www.xilinx.com
Versal ACAP AI Engine Architecture Manual 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Architecture_Manual&docId=AM009&Title=Versal%20ACAP%20AI%20Engine&releaseVersion=1.2&docPage=66

	Versal ACAP AI Engine
	Revision History
	Table of Contents
	Ch. 1: Overview
	Introduction to Versal ACAP
	Navigating Content by Design Process

	AI Engine Array Features
	AI Engine Array Overview
	AI Engine Array Hierarchy
	AI Engine Applications
	Performance
	Memory Error Handling

	Ch. 2: AI Engine Tile Architecture
	Memory Mapped AXI4 Interconnect
	AXI4-Stream Interconnect
	AI Engine Tile Program Memory
	AI Engine Interfaces
	AI Engine Memory Module
	AI Engine Data Movement Architecture
	AI Engine to AI Engine Data Communication via Shared Memory
	AI Engine Tile to AI Engine Tile Data Communication via Memory and DMA
	AI Engine Tile to AI Engine Tile Data Communication via AXI4-Stream Interconnect
	AI Engine to PL Data Communication via Shared Memory

	AI Engine Debug
	AI Engine Trace and Profiling
	Trace
	Profiling (Performance Counters)

	AI Engine Events

	Ch. 3: AI Engine Array Interface Architecture
	AI Engine Array Interface
	Features of the AI Engine Array Interface
	Array Interface Memory-Mapped AXI4 Interconnect
	Array Interface AXI4-Stream Interconnect
	AI Engine to Programmable Logic Interface
	AI Engine to NoC Interface
	Interrupt Handling

	Ch. 4: AI Engine Architecture
	Functional Overview
	Register Files
	Instruction Fetch and Decode Unit
	Load and Store Unit
	Scalar Unit
	Arithmetic Logic Unit, Scalar Functions, and Data Type Conversions

	Vector Unit
	Fixed-Point Vector Unit
	Floating-Point Vector Unit

	Register Move Functionality

	Ch. 5: AI Engine Configuration and Boot
	AI Engine Array Configuration
	AI Engine Boot Sequence
	AI Engine Array Reconfiguration

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

