
XAPP883 (v1.0) November 19, 2010 www.xilinx.com 1

© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Summary The PCI Express® specification requires ports to be ready for link training at a minimum of
100 ms after the power supply is stable. (Refer to the Virtex®-6 FPGA Integrated Block for PCI
Express User Guide [Ref 1] for more information.) This becomes a difficult task due to the
ever-increasing configuration memory size of each new generation of FPGA, such as the
Xilinx® Virtex-6 family. One innovative approach to addressing this challenge is leveraging the
advances made in the area of FPGA partial reconfiguration to split the overall configuration of
a PCIe® specification based system in a large FPGA into two sequential steps:

1. Initial PCIe system link configuration

2. Subsequent user application reconfiguration

It is feasible to configure only the FPGA PCIe system block and associated logic during the first
stage within the 100 ms window before the fundamental reset is released. Using the
Virtex-6 FPGA’s partial reconfiguration capability, the host can then reconfigure the FPGA to
apply the user application via the now-active PCIe system link.

This methodology not only provides a solution for faster PCIe system configuration, it enhances
user application security because the bitstream is only accessible by the host and can be better
encrypted. This approach also helps lower the system cost by reducing external configuration
component costs and board space.

This application note describes the methodology for building a Fast PCIe Configuration (FPC)
module using this two-step configuration approach. A reference design is available to help
designers quick-launch a PlanAhead™ software partial reconfiguration project. (Refer to the
Partial Reconfiguration User Guide [Ref 2] for more information about the partial
reconfiguration design flow.) The reference design implements an eight-lane PCIe technology
generation-1 link and targets the Virtex-6 FPGA ML605 Evaluation Board. The reference
design serves as a guide for designers to develop their own solutions.

Overview An FPC module consists of two partitions: the static partition and the reconfigurable partition.
The static partition is configured during the initial first-stage configuration. It provides the
channel and framework necessary for the host to reconfigure through the PCIe system link and
internal configuration access port (ICAP) of the Virtex-6 FPGA. (Refer to the Virtex-6 FPGA
Configuration User Guide [Ref 3] for more information about ICAP.) The static partition consists
of an Integrated Block for PCI Express, a switcher, and a partial reconfiguration (PR) loader, as
shown in Figure 1. The user application resides in the reconfigurable partition and is applied to
the FPGA during second-stage configuration. The PlanAhead tool creates one unique
bitstream for each partition.

Application Note: Virtex-6 Family

XAPP883 (v1.0) November 19, 2010

Fast Configuration of PCI Express
Technology through Partial Reconfiguration
Author: Simon Tam and Martin Kellermann

http://www.xilinx.com

Overview

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 2

Upon power-up, the FPGA’s static partition is configured from an external PROM (Figure 2).

Although the Virtex-6 FPGA must be configured with a full bitstream during this initial stage, the
total logic resources of the static partition are small and compact. The configuration bitstream
size can be greatly reduced using the multiple configuration frame write feature to enable
bitstream compression. This compression scheme takes advantage of the fact that most of the
FPGA is empty space consisting of “blank” configuration frames, and these blank frames are
identical. These identical frames can be configured simultaneously using multi-frame writes,
greatly speeding up the configuration process. The compressed static partition bitfile takes

X-Ref Target - Figure 1

Figure 1: FPC Module Architecture

X-Ref Target - Figure 2

Figure 2: First Stage Configuration from a PROM

User
Application

In
te

gr
at

ed
 B

lo
ck

 fo
r

P
C

I E
xp

re
ss

PCIe
Specification

 X8 Gen1

PR Loader

Static Partition

Reconfigurable Partition

ICAPS
w

itc
he

r
X883_01_071610

X883_02_072710

PROM

PCIe System
Card

Integrated Block for
PCI Express

Switcher PR Loader

FPGA

http://www.xilinx.com

Overview

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 3

much less time to configure than a full configuration bitfile. This allows the Virtex-6 FPGA to
complete its configuration and be ready for PCIe system link initialization within the required
time after power-up.

At this point, the static partition is fully operational, but the user application has not yet been
configured in the Virtex-6 FPGA. The unused FPGA resources, including the reconfigurable
partition, is filled with blanks during first-stage configuration.

After the link between the FPGA and the host system is established, the host system can
proceed with partial reconfiguration. The host transmits the partial bitstream to the
Virtex-6 FPGA in the form of configuration instruction sequences. Initially, the switcher
connects the PCIe system transaction interface of the FPGA with the PR loader. The PR loader
receives the reformatted bitstream and feeds it to the ICAP to complete the partial
reconfiguration process (Figure 3). The user application reset is asserted before, during, and
slightly after the partial reconfiguration process to prevent a false start in the application.

After successful partial reconfiguration, the PR loader startup module releases the user
application reset and waits for the user application ready signature. The ready signature is a
unique 32-bit word that indicates the user application is functioning and has completed its
initialization. After the startup module verifies the ready signature, it instructs the switcher to
redirect the PCIe system transaction layer interface signals to the user application, allowing
access to the PCIe system bus. At this point, the user application is operational and can begin
communicating with the host through the PCIe system interface (Figure 4).

Note: In the provided reference design, the PR loader is no longer accessible after the user application
takes control of the PCIe system link. However, this functionality can be added by the user if desired.

X-Ref Target - Figure 3

Figure 3: Second Stage Partial Reconfiguration

X883_03_072710

FPGA

PROM

PCIe System
Card

Integrated Block for
PCI Express

Switcher PR Loader

http://www.xilinx.com

Static Partition Bitstream Compression and Timing

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 4

The static partition remains in the FPGA after the reconfigurable partition becomes operational.
Because the static partition size is very small (about 200 LUTs), its impact on FPGA resource
usage is minimal.

Static Partition
Bitstream
Compression
and Timing

The total first-stage configuration time is made up of the power-on reset time (TPOR) plus the
static partition configuration time. Refer to the Virtex-6 FPGA Data Sheet: DC and Switching
Characteristics [Ref 4] for the duration of power-on reset.

The bitstream of the static partition is compressed to reduce the bitfile size and its configuration
time. Bitstream compression uses the Virtex-6 FPGA multiple configuration frame write feature
to write identical configuration frames all at once instead of writing each frame individually.
Therefore, the bitstream size compression ratio is not deterministic because the outcome
depends on the final FPGA resource usage, placement, and other factors. In general, the
compressed static partition bitfile size is between 2 MB and 5 MB.

For reference, the total size of an uncompressed XC6VLX240T bitfile is 9.23 MB. The
compressed static partition bitfile size of this reference design is approximately 2 MB. The
static partition configuration time on an ML605 demonstration platform is about 20 ms using a
Xilinx Platform Flash XL running at a clock rate of 47 MHz.

Equation 1 is the formula for calculating the static partition configuration time.

Equation 1

where

TCONFIG = Configuration time
BFSIZE = Static partition bitfile size in bytes
BWPROM = PROM bandwidth in MB/s

In general, minimizing static partition resources utilization and confining the partition in a
smaller FPGA array area is desirable because it optimizes bitstream compression.

X-Ref Target - Figure 4

Figure 4: User Application in Operation

FPGA

PROM

PCIe System
Card

User Application

Switcher PR Loader

X883_04_072710

Integrated Block for
PCI Express

TCONFIG
BFSIZE

BWPROM
-------------------------=

http://www.xilinx.com

Static Partition Detailed Descriptions

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 5

Static Partition
Detailed
Descriptions

Figure 5 shows the detailed block diagram of the FPC module.

Clocking

The FPC module is divided into two clock regions: the PCIe system interface and the ICAP
clock regions. The PCIe system interface clock region operates at 250 MHz, while the ICAP
clock region operates at 50 MHz. A built-in FIFO within the PR loader acts as a cross clock
domain buffer. All clocks, including those for the integrated block, are generated from the same
mixed-mode clock manager (MMCM) within the Integrated Block wrapper. It is recommended
that one MMCM be used for all clocks. If multiple MMCMs are implemented, users must ensure
clock phase alignment between different clock regions. A requirement of partial reconfiguration
is that all global clocks (BUFG, etc.) and clock modifying logic (MMCM, etc.) be located in the
static partition only.

Integrated Block for PCI Express

The design uses the Integrated Block v1.5 for PCI Express generated by the
CORE Generator™ software. It uses the built-in integrated block for PCI Express of the
Virtex-6 FPGA and eight GTX transceivers. The physical layer operates in eight lanes at Gen1
speed (2.5 Gb/s). The external reference clock frequency is 100 MHz.

The transaction layer interface datapath is 64 bits wide, running at 250 MHz. The reference
design is not tested for other link width/speed combinations. The PCIe system configuration
space must be configured for the eventual user application that resides in the reconfigurable
module space. In the reference design, base address register 2 (BAR2) is used for the PR
loader logic; therefore, BAR2 must exist in the user application regardless of whether or not it
is used in the user application.

Note: BAR2 can be shared between the PR loader and the user application because the PR loader is
disabled after reconfiguration has taken place.

X-Ref Target - Figure 5

Figure 5: Detailed Block Diagram

User
Application

Switcher PR Loader

In
te

gr
at

ed
 B

lo
ck

 fo
r

P
C

I E
xp

re
ssPCIe Specification

X8 Gen1

50 MHz 250 MHz

Transmit

Receive

UA ResetUA Ready

MMCM

RX
Engine

Internal
Configuration

Engine
FIFO ICAP

StartupTX
Engine

X883_05_071610

http://www.xilinx.com

Static Partition Detailed Descriptions

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 6

Switcher

The switcher is essentially a multiplexer connecting to the Integrated Block for PCI Express, the
PR loader, and the user application, as shown in Figure 6.

On the PCIe device side, the switcher connects to the 64-bit transaction layer interface of the
Integrated Block for PCI Express. The switcher connects to the PR loader and user application
on the other side. During the first-stage configuration, the switcher enables the paths between
the PCIe system interface and the PR loader while all the reconfigurable partition input ports
are driven by static values. After partial reconfiguration, the switcher switches to the paths
between the PCIe system interface and the user application, with all static partition input ports
being driven by static values.

The reference design as provided does not support subsequent partial reconfigurations after
the initial partial reconfiguration has been completed. The Virtex-6 FPGA is designed to
support multiple partial reconfigurations, and users can alter the design to implement this
capability if desired.

As shown in Figure 6, the switcher is pipelined to meet the 250 MHz timing requirement. This
introduces differences in timing for user applications that do not expect this added latency.
Special shim logic is introduced in the switcher to compensate for this effect. Existing user
applications that connect directly to the CORE Generator software transaction interface do not
need to be modified.

Figure 7 illustrates the effect of the shim on two back-to-back DMA transactions. When the
shim receives an end of file (EOF), it deasserts the receive destination ready signal
(trn_rdst_rdy) for two cycles. In other words, the shim inserts wait states to prevent another
transaction from beginning immediately after the previous one. This action is necessary
because the receive destination ready signal from the user application (pr_rdst_rdy_n)
does not reach the integrated block two cycles later due to the added latency in the switcher.

X-Ref Target - Figure 6

Figure 6: Switcher Architecture

Integrated Block for PCI Express

Switcher

PCIe
System
Clock

MUX
Control

PR
Loader

User
Application

64 64

Pipeline
Registers

X883_06_071610

http://www.xilinx.com

Static Partition Detailed Descriptions

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 7

PR Loader

The PR loader consists of transmit, receive, and internal configuration engines. It is based on
the programmed input/output (PIO) example design delivered with the integrated block and
optimized for partial reconfiguration. The PR loader only supports 32-bit address memory write
request (3DW MWr) transaction layer packets (TLPs) and PIO mode transactions. The
Integrated Block BAR2 is designated for the PR loader. The supported PIO transaction payload
size is one 32-bit double word only. In addition, the PR loader records only BAR hits and does
not decode the exact target address because configuration data can only go to the ICAP.

The receive engine validates the incoming TLPs and extracts the configuration data from the
payload. Configuration data is then sent to the write port of a 512 double words (DWs) deep
asynchronous FIFO. The internal configuration engine retrieves the data from the read port of
the FIFO. The FIFO acts as a cross clock domain buffer from the PCIe system user application
clock rate of 250 MHz to the selected ICAP clock rate. Designers can adjust the ICAP clock rate
up to the maximum rate allowed.

Partial reconfiguration is initiated when the PR loader software first writes the
start-of-configuration (SOC) sequence to the FPGA. The SOC sequence consists of three DWs
that trigger the PR loader state machines to prepare for pending partial reconfiguration. Table 1
shows the definitions of the SOC words.

X-Ref Target - Figure 7

Figure 7: Shim Logic Timing

X883_07_071910

PCIe System clk

TRN Interface

Trn_rsrc_rdy_n

Trn_rdst_rdy_n

Trn_rsof_n

Trn_reof_n

Trn_rd[63:0]

Inserted Wait States

Hdr HdrD1 D2 D3 D4 D6 D7D5 D8

Hdr HdrD1 D2 D3 D4 D6 D7D5 D8

User App Interface

Sta_rsrc_rdy_n

Sta_rdst_rdy_n

Sta_rsof_n

Sta_reof_n

Sta_rd[63:0]

http://www.xilinx.com

Static Partition Detailed Descriptions

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 8

The sequence must be written in the order shown in Table 1. Any configuration word written to
BAR2 prior to the SOC sequence is ignored. The SOC timing is shown in Figure 8.

After writing the SOC sequence, the PR loader application writes the content of the partial
reconfiguration bitfile. The PR loader software reads the partial reconfiguration bitfile from
system memory, extracts the configuration content, and writes a block of double words to the
target address range defined in BAR2. The PR loader software repeats the process until the
last configuration word is written. Software designers do not need to format the partial
reconfiguration file content as long as the entire content is written in the original order.

The internal configuration engine reads the stored configuration words from the FIFO as soon
as the empty flag is deasserted. It reformats and sends the 32-bit configuration DW to the ICAP
while monitoring the FIFO and ICAP status.

After writing the last partial reconfiguration word, the PR loader software writes the
end-of-configuration (EOC) sequence. The EOC sequence consists of three DWs that inform
the PR loader state machines to terminate the partial reconfiguration process. After the EOC is
received, the partial reconfiguration process is considered complete (signal PR_done
asserted). The partial reconfiguration process cannot restart by writing the SOC sequence.
Table 2 shows the definitions of the EOC words.

The EOC timing is shown in Figure 9.

Table 1: SOC Sequence

SOC1 x53545254h

SOC2 x434F4E46h

SOC3 x50434965h

X-Ref Target - Figure 8

Figure 8: SOC Timing

PCIe System clk

Config clk

Wr_rqst

Wr_data

FIFO_rden

FIFO_empty

Config_data

Conf_enable
X883_08_071910

SOC1 SOC2 SOC3 Sync

SOC1 SOC2 SOC3 Sync

D1 D2 D3

Table 2: EOC Sequence

EOC1 x454E445Fh

EOC2 x434F4E46h

EOC3 x50434965h

http://www.xilinx.com

Static Partition Detailed Descriptions

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 9

Startup

Asserting the Virtex-6 FPGA internal global reset after partial reconfiguration resets the PCIe
system interface. Therefore, it is necessary to use a user-synchronous reset for the user
application instead of the global reset. All synchronous elements in the user application should
have synchronous reset. The startup module asserts synchronous reset (RM_trn_reset_n)
throughout partial reconfiguration and for an additional 25 clock cycles after the PCIe system
interface has switched over. This ensures that the user application is properly reset.

After the reset, the user application initializes itself to a state ready for engaging PCIe system
transactions. It then sends a ready signature (rdy_sig) to the startup module to indicate its
readiness. The startup module signals (static_control) the switcher to enable the PCIe
system interface to the reconfigurable partition and disconnects from the static partition. The
start-up switchover timing is shown in Figure 10.

X-Ref Target - Figure 9

Figure 9: EOC Timing

PCIe System clk

Config clk

Wr_rqst

Wr_data

FIFO_rden

FIFO_empty

Config_data

Conf_enable

Pr_done

X883_09_090310

EOC1 EOC2 EOC3

EOC1 EOC2 EOC3Dlast-3 Dlast-2 Dlast-1 Dlast

X-Ref Target - Figure 10

Figure 10: Startup Switchover Timing

PCIe System clk

Pr_done

RM_trn_reset_n

Static_control

Rdy_sig XXXXXXXX Ready Signature

X883_10_071910

http://www.xilinx.com

Design Flow Overview

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 10

Reconfigurable Partition — User Application

The user application is taken from the reference design in Bus Master DMA Performance
Demonstration Reference Design for the Xilinx Endpoint PCI Express Solutions. [Ref 5] The
bus master DMA (BMD) reference design is selected to show that partial reconfiguration and
PCIe system interface switching in the switcher do not:

• Fail on a relatively complex design

• Impact high-performance PCIe system DMA transactions

• Affect the integrity of the PCIe system

• Cause host operating system and application errors

The time needed for partial reconfiguration varies between designs and depends on the size of
the reconfigurable partition as well as the PCIe system throughput. The average throughput of
the tested systems (see Tested Systems, page 44) is about 30 MB/s. The uncompressed
partial reconfiguration file size of this design is about 7.5 MB. The time to load the file based on
a 30 MB/s throughput is about 250 ms.

Design Flow
Overview

Implementing a partially reconfigurable FPGA design is similar to implementing multiple
non-partial reconfiguration designs that share common logic. The designer designates the
portions of the FPGA to be reconfigured, both in terms of the physical size of the region and the
types of resources desired. Then, the designer describes the different module variants that are
to occupy that region. Nearly all FPGA resources are reconfigurable, including block RAM,
DSP blocks, and I/O. The Xilinx ISE® software ensures that the resources used to construct the
reconfigurable functions are completely contained within the defined physical regions and that
no interference with the non-reconfiguring portion of the design occurs.

The PlanAhead design tools manage all the details of building such a design. Multiple netlists,
representing the static (non-reconfiguring) logic and each variant of the reconfigurable portions
of the design, are loaded in; the designer then creates full FPGA design images with these
pieces. Floorplanning, constraint entry, and design rule checks (DRCs) are all accessed
through the PlanAhead software environment. Multiple passes through the place-and-route
tools are used to generate the necessary bitstreams for all full and partial design images; each
pass (called a configuration) represents a complete FPGA design.

Partitions ensure that the logic and routing common to each of the multiple designs is
absolutely identical. After one design configuration meets all requirements, the designer can
reuse the results from that implementation to create the other configurations. After all
configurations are implemented, verification routines validate consistency among all the
versions. All these checks combine to guarantee a safe environment when loading a partial
bitstream into an operating FPGA.

Partial reconfiguration support in the PlanAhead software is a special license-enabled feature.
Visit the Xilinx partial reconfiguration website
(http://www.xilinx.com/tools/partial-reconfiguration) for more availability information.

http://www.xilinx.com
http://www.xilinx.com/tools/partial-reconfiguration

Design Flow Overview

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 11

Figure 11 shows the partial reconfiguration design flow summary.

Below is a high-level description of the partial reconfiguration flow:

1. Customize and create Integrated Block for PCI Express in the CORE Generator software.

2. Synthesize the static partition (switcher, PR loader, and Integrated Block for PCI Express)
and reconfigurable partition (user application) source codes.

3. Create a PlanAhead software partial reconfiguration project. Import the static partition as
the top-level module.

4. Define a reconfigurable module for the user application. Load the user application as the
primary reconfigurable module and define a black box variant.

5. Create physical constraints. The reconfigurable partition must have area_group range
physical constraints to designate which physical resources are parts of that reconfigurable
partition.

6. Run partial reconfiguration design rule checks.

7. Two implementation configurations are created: one for the full design reconfigurable
module and one for the black box reconfigurable module.

8. Implement the first configuration for the full design reconfigurable module. Promote the
design after completion, then implement the configuration for the black box reconfigurable
module.

9. Run BitGen on the first configuration (Config1) to create a full user application (Full_UA) as
well as a partial user application (Partial_UA) bitfile, which is loaded during the second
stage configuration. The full user application bitfile is not used.

10. Run BitGen on the black box configuration (Config2) to create a partial black box
(Partial_BB) and a full black box (Full_BB) bitfile, which is loaded during the first stage
configuration. The partial black box bitfile is not used.

X-Ref Target - Figure 11

Figure 11: Partial Reconfiguration Design Flow

FPC ModuleUser App

Synthesis Synthesis

Implementation 1

BitGen

Full_UA Full_BBPartial_UA

User App
RM

Top
SP

Black Box
RM

Design 1

Implementation 2

BitGen

Partial_BB

Design 2

HDL Sources

Netlists

Design

Bitfiles

X883_11_070710

Promote

http://www.xilinx.com

Application Software

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 12

Application
Software

Designing the PR Loader Drivers

The PR loader drivers are created by the Jungo WinDriver development tool. Two driver files
(wdapi1020.dll and PR_PCIe_V6.sys) are provided in the reference design to support
the PR loader application.

Xilinx developed the PR loader driver and GUI application for this reference design using the
Jungo WinDriver software. Jungo granted Xilinx a WinDriver license for the purpose of
demonstrating the key features of this reference design.

The Jungo WinDriver wizard produces a driver binary (.sys file) and C code header files (.h)
that are used for the software application development. No actual source code for the driver is
produced.

The Jungo license agreement explicitly prohibits Xilinx from releasing any files generated by
the Jungo software other than the driver binary. Contact Jungo directly for source code
availability.

Designing the PR Loader Application

The PR loader application included in the reference design is compiled in Visual Basic 6. A
high-level flow diagram is shown in Figure 12. A fixed-size block of the partial reconfiguration
file content is copied directly to the target memory range defined in BAR2. This process repeats
until the last partial reconfiguration word is written.

This is an excerpt of the Visual Basic 6 subroutine responsible for sending the partial
reconfiguration file to the FPC module:

Private Sub BtnReconfig_Click()
 Dim File_Name As String
 Dim File_Length As Long
 Dim fnum As Integer
 Dim BufferLength As Integer

X-Ref Target - Figure 12

Figure 12: PR Loader Application Flow

PR
File

Open File
Handle

Read File to a Buffer Remainder
Exists?

Last
Loop?

= 1st
Write?

Get Char From the
1st PR Position

Get Next Char

Memcpy()

Write SOC
Sequence

Yes

Yes

YesNo

No

No

Assign BAR2 Virtual
Address to a Pointer

Memcpy() the
Remainder

Write EOC
Sequence

Close File

Exit

Locate the First
Config Word

Calculate Number of Loops
to Write the PR File

Calculate the
Remainder Size to
Complete the PR

X883_12_070710

http://www.xilinx.com

Application Software

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 13

 'BufferLength defines the size of the write buffer in DWs
 'Its size in bytes should not exceed the memory range defined in BAR2
 BufferLength = 400

 Dim data() As file_buffer
 Dim tx_data() As file_buffer
 Dim remainder As Integer
 Dim LoopNumber As Long

 Dim pData As Long
 Dim data_length As Long
 Dim i As Long
 Dim FF_pos As Long
 Dim ReadChar As Byte

 On Error GoTo ErrHandle

 'extract the PR filename from the GUI
 With ComDiag
 .Filter = "*.bit|*.bit"
 .CancelError = True
 .ShowOpen
 End With
 File_Name = ComDiag.FileName

 'Find position of first FF and do all calculations based on that character position
 fnum = FreeFile 'supply the next available file number
 Open File_Name For Binary Access Read As fnum 'Assign file to a file handle
 FF_pos = 0 'reset character position
 Get #fnum, , ReadChar
 While ReadChar <> 255 'read character sequentially until not equal to xFF
 FF_pos = FF_pos + 1 'Keep track of the character position
 Get #fnum, , ReadChar 'Get one character at a time
 Wend
 FF_pos = FF_pos + 1
 Close fnum

 File_Length = FileLen(File_Name)
 File_Length = File_Length / 4 'Gives the number how many Longs need to be read

 fnum = FreeFile

 ReDim data(1 To BufferLength)
 ReDim tx_data(1 To BufferLength)

 remainder = File_Length Mod BufferLength
 LoopNumber = File_Length / BufferLength

 'Calling the Jungo driver to assign virtual address of BAR2 to pData
 pData = (hML507_MK.cardReg.Card.Item(hML605_MK.addrDesc(ML605_MK_AD_BAR2).Index).dw4)
 data_length = UBound(data) * (4 * LenB(data(0).bytes(0)))

 Dim dbg_file As String
 Open File_Name For Binary Access Read As #fnum
 i = 1

 'Write Start-of-Configuration sequence to FPC module
 'data_length=12, 3 words with 4 bytes each
 ' Start_Word has the SOC sequence definitions
 Call memcpy(pData, VarPtr(Start_Word(0)), 12)

 While i <= LoopNumber
 ReDim data(1 To BufferLength)
 If i = 1 Then
 Get #fnum, FF_pos, data
 Else
 Get #fnum, , data
 End If
 ' write to the memory mapped range directly
 Call memcpy(pData, VarPtr(data(1)), data_length)
 i = i + 1
 Wend

http://www.xilinx.com

Simulation

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 14

 If remainder > 0 Then
 ReDim data(1 To remainder)
 Get #fnum, , data
 ' write to the memory mapped range directly
 Call memcpy(pData, VarPtr(data(1)), 4 * remainder)
 End If

 'Write End-of-Configuration sequence to FPC module
 Call memcpy(pData, VarPtr(End_Word(0)), 12)

 Close #fnum

 Exit Sub
ErrHandle:
 Err.Clear
 On Error GoTo 0
 Exit Sub

End Sub

Simulation The reference design includes resources to support functional simulation in the ModelSim
simulator. See the Virtex-6 FPGA Integrated Block for PCI Express User Guide [Ref 1] for
further information.

Figure 13 shows the board-level simulation setup for the design. The PCI Express Root Port
Model is a test bench environment for the test program interface. It provides a source
mechanism for generating downstream TLP traffic to stimulate the target FPC module and a
destination mechanism for receiving upstream TLP traffic from the FPC module.

X-Ref Target - Figure 13

Figure 13: Root Port Model and FPC Design

Usrapp_com
Output
Logs

Test
Program

Root Port Model

FPC

PCIe Device Bus

dsport

PCIe Device IB

Switcher

PR Loader

ICAP

BMDStartup

Usrapp_rx Usrapp_tx

X883_13_072610

8 8

http://www.xilinx.com

Simulation

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 15

Source code for the Root Port Model is included to provide a starting point for a custom
test bench. This code initializes the configuration space of the Integrated Block for PCI Express
core, creates TLP transactions, generates TLP logs, and provides an interface for creating and
verifying tests.

The Root Port Model consists of these blocks:

• dsport (Downstream Root Port)

• usrapp_tx

• usrapp_rx

• usrapp_com

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCIe
system link to the FPC module. In turn, the FPC module transmits TLPs across the PCIe
system link to the dsport block, which is subsequently passed to the usrapp_rx block. The
dsport and core are responsible for the data link layer and physical link layer processing when
communicating across the PCIe device bus. Both the usrapp_tx and usrapp_rx utilize the
usrapp_com block for shared functions—for example, TLP processing and log file outputting.
Transaction sequences or test programs are initiated by the usrapp_tx block to stimulate the
endpoint device’s bus interface. TLP responses from the endpoint device are received by the
usrapp_rx block. Communication between the usrapp_tx and usrapp_rx blocks allows
the usrapp_tx block to verify correct behavior and act accordingly when the usrapp_rx
block has received TLPs from the endpoint device.

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during
each simulation run. Log files rx.dat and tx.dat each contain a detailed record of every TLP
that was received and transmitted, respectively, by the Root Port Model. With an understanding
of the expected TLP transmission during a specific test case, users can easily isolate the
failure.

The log file error.dat is used in conjunction with the expectation tasks. Test programs that
utilize the expectation tasks generate a general error message to standard output.

Running Functional Simulation
1. Change the directory to <project_directory>/sim.

2. Modify these logical libraries in modelsim.ini to point to the physical library paths
compiled in the system:

• secureip

• simprims_ver

• unisims_ver

• xilinxcorelib_ver

• unimacro_ver

3. Launch the ModelSim simulator.

4. In the console, run the script file by entering this command:

do simulate_mti.do

5. The script compiles source codes and launches the simulator. The simulation runs for
about 80 µs. The results are displayed in several waveform windows.

Simulation Description

The simulation mimics an actual FPC module use scenario from PCIe system initialization to
DMA read data transfer. The different stages of the simulation are described here:

1. Prior to this state, the static partition has already been configured and is ready for
enumeration. When the PCIe system link is up and ready, the Root Port Model issues
Type 0 configuration requests to initialize BARs in the Integrated Block for PCI Express.

http://www.xilinx.com

Simulation

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 16

2. The host begins sending the partial reconfiguration bitstream in the form of packetized
memory write request (MWr) TLPs. The first few TLPs contain the SOC sequence followed
by the actual partial reconfiguration contents (see Figure 14).

3. After sending the last partial reconfiguration word, the host releases the EOC sequence
and signals the PR loader to terminate the partial reconfiguration process. This is indicated
by the pr_done signal. Soon after, the signal static_control, which controls the PCIe system
interface connections, switches over to the BMD (see Figure 15).

Note: The partial reconfiguration bitstream in this simulation is a sample of a real bitstream. It does
not contain valid configuration words and its size is also significantly reduced.

X-Ref Target - Figure 14

Figure 14: Simulation Waveform (Beginning)

X883_14_070510

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 17

4. The host reads the BMD design descriptor registers in the form of memory read request
(MRd) TLPs.

5. The BMD responds by completing the read request with the register contents.

6. The host programs the BMD design descriptor registers to set up a DMA read request.

7. The BMD acknowledges the DMA read request and begins sending a sequence of back-to-
back MRd TLPs.

8. The Root Port Model responds by sending completion with data (CplD) TLPs.

Note: The simulation validates the FPC module and the user-defined functionality. It does not fully
validate the ICAP functionality.

Building the
Project

System Requirements

The following are required for the reference design:

• ML605 demonstration platform (XC6VLX240T-FF1156 production device)
• ISE Design Suite 12.3 or newer. Partial reconfiguration is a license-enabled feature
• X86 system with Windows XP Service Pack 3 installed

Step 1 — Extract the Reference Design
1. Extract the contents of the reference design zip file xapp883_Fast_Config_PCIe.zip

to the desired <project_directory>

Note: <project_directory> is the project root directory under which all directory paths
throughout this section reside.

Step 2 — Generate the Integrated Block for PCI Express
1. Launch the CORE Generator software.

X-Ref Target - Figure 15

Figure 15: Simulation Waveform (End)

X883_15_070510

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 18

2. Select File New Project. Create a new CORE Generator software project in
\hw\coregen\XAPP883.cgp.

3. Select Project Project Options. Specify these settings:

Part:

• Family: Virtex6
• Device: xc6vlx240t
• Package: FF1156
• Speed Grade: -1

Generation:

• Design Entry: Verilog
• Simulation Files: Behavioral
• Other Output Products: Uncheck ASY Symbol File
• Flow Settings

- Vendor: Other

Leave the other settings at their default values and click OK.

4. Select Standard Bus Interfaces PCI Express Virtex-6 Integrated Block for PCI
Express version 1.6 under the IP catalog pane. This launches the Virtex-6 FPGA
Integrated Block for PCI Express wizard.

5. Set up the PCIe system lane width:

Name the Integrated Block for PCI Express v6_pcie_v1_6 in the Component Name field.
Select PCI Express Endpoint device in the Device/Port Type pull-down menu. Select X8
in the Lane Width pull-down menu. Leave the other settings at their default values.

6. Set up the base address registers:

Select BAR0 and specify the following:

• Type: memory
• 64 bit: uncheck
• Size: 1 Kilobytes

BAR0 is the base address definition for the user application (BMD reference design).

Select BAR2 and set the following:

• Type: memory
• 64 bit: uncheck
• Size: 2 Kilobytes

BAR2 is the base address definition for the PR loader.

Leave the other settings at their default values.

The page should look similar to Figure 16. Click Next to proceed to the next page.

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 19

7. Set up the PCIe system ID and class:

Specify the following on page 3 of the wizard.

Note: The PR loader driver does not recognize the FPC module if these settings are not correctly
matched.

• Vendor ID: 10EE

• Device ID: 1969

• Revision ID: 00

• Subsystem Vendor ID: 10EE

• Subsystem ID: 1969

• Base Class: 05

• Sub-Class: 80

• Interface: 00

• Cardbus CIS Pointer: 00000000

The result should look like Figure 17. Click Next to proceed.

X-Ref Target - Figure 16

Figure 16: Setting Up Base Address Registers

X883_16_070510

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 20

8. Set up the payload size:

Select 512 bytes in the Max Payload Size pull-down menu under Device Capabilities
Register. Click Next until reaching the Pinout Selection page (Page 9).

9. Set up the pinout selection:

Select ML 605 in the Xilinx Development Board pull-down menu under Xilinx Development
Boards. The PCIe Block Location changes to X0Y0 automatically. Click Next until reaching
Advanced Setting 2 (Page 11).

10. Set up the reference clock:

Select 100MHz in the Frequency (MHz) pull-down menu under Reference Clock
Frequency.

11. Click Generate to create the Integrated Block for PCI Express. Close the readme window
after reading the information, but keep the CORE Generator software open to generate the
next core.

12. Copy the source codes from the Coregen directory:

Copy hw\Coregen\v6_pcie_v1_6\source* hw\Source\PCIe_x8_gen1\source

13. Copy the source codes from the custom directory to the source directory:

Copy /y hw\Source\PCIe_x8_gen1\source\custom* hw\Source\PCIe_x8_gen1\source

The custom codes modify the PCIe system clock module to include extra clocks for the PR
loader. The code reduces the use of the MMCM and simplifies the clocking scheme.

14. Select Memories & Storage Elements FIFOs FIFO Generator version 6.2 under
the IP catalog pane. This brings up the FIFO Generator wizard.

15. Specify the Component Name to be config_FIFO. Select Independent Clocks (RD_CLK,
WR_CLK) Built-in FIFO. Click Next.

16. Select Standard FIFO under Read Mode.

X-Ref Target - Figure 17

Figure 17: Setting Up Device Configuration Parameters

X883_17_070510

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 21

17. Specify 250 for Write Clock Frequency (MHz) and 50 for Read Clock Frequency (MHz).

18. Under Data Port Parameters, specify the Write Width to be 32 and Write Depth to be 1024.

The result should look like Figure 18. Click Next.

19. Select Overflow Flag and Active High. Select Underflow Flag and Active High. Click
Next.

20. Select Single Programmable Full Threshold Constant in the Programmable Full Type
pull-down menu. Click Generate. The result should look like Figure 19.

X-Ref Target - Figure 18

Figure 18: FIFO Generator Wizard, Page 2

X-Ref Target - Figure 19

Figure 19: FIFO Generator Wizard, Page 4

X883_18_070510

X883_19_070510

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 22

Step 3 — Synthesize the Design
1. Change directory to \hw\Tools.

2. At the command prompt, run this command:

xtclsh xpartition.tcl data.tcl

This launches the Xilinx Synthesis Technology (XST) in batch mode and synthesizes the
reference design. These messages appear after a successful run:

**** Synthesizing with XST ****

xst -ifn Top.xst

xst -ifn UserDesign.xst

Step 4 — Create the Partial Reconfiguration Project
1. Start the PlanAhead software.

2. Click Create New Project and click Next. Set a new project name and location; this
reference design uses \hw\PlanAhead.

3. Select Specify synthesized (EDIF or NGC) netlist. Click Next.

4. Browse to the netlist and select \hw\Synth_XST\Top\Top.ngc in the Top Netlist File
field.

5. Click Add Directories and select \hw\Coregen as the netlist search directory. Click
Select. Click Next.

6. Click Add Files… Set the constraints file to \hw\Source\UCF\XAPP883_ML605.ucf,
and click Next.

7. Select the device xc6vlx240tff1156-1 by scrolling through the list or by using the filters to
narrow the part selection. Changing the part in a partial reconfiguration project is not
supported.

8. Review the project summary and click Finish.

At this point, the project has no modifications for partial reconfiguration; it is a regular FPGA
design and PlanAhead project. The PlanAhead environment should look like Figure 20.

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 23

Step 5 — Load the Netlist Planner
1. Select Flow Netlist Design, or click the Netlist Design tab on the left side of the

window.

The top-level netlist being loaded into the PlanAhead tool is seen. When it finishes loading,
an “Undefined Modules Found” warning message and a “Constraint File Errors” warning
message are displayed, as shown in Figure 21 and Figure 22.

X-Ref Target - Figure 20

Figure 20: Initial PlanAhead Tool Project

X883_20_070510

X-Ref Target - Figure 21

Figure 21: Undefined Instance Warning

X883_21_070510

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 24

These messages are expected, and are the result of not pointing the New Project wizard to
the locations of these files. This is done in the subsequent steps.

2. Click OK on the warning message.

3. Set the partial reconfiguration attribute for the project. Select the File Set PR Project
menu command.

Note: This menu command is visible only if a valid partial reconfiguration license exists. The
bottom-right status bar changes from Post-Synthesis Flow to Partial Reconfiguration
Flow.

Step 6 — Create the Reconfigurable Partition
1. In the Netlist frame, right-click app(pcie_app_v6) and select Set Partition. This

launches the Set Partition wizard.

2. Click Next to select whether or not the partition is reconfigurable. Because app does not
have a netlist associated with it, it is a black box and therefore must be a reconfigurable
partition.

3. Click Next and name the module RM_App_one. Make sure the selection is set to Netlist
already available for this Reconfigurable Module and click Next again.

4. Set the top netlist file to hw\Synth_XST\UserDesign\UserDesign.ngc, and click
Next.

Note: It is not necessary to set the optional netlist directories. This option is available for
reconfigurable modules that have lower-level netlists associated with them.

5. Click Next again.

Note: It is not necessary to set the optional constraint files. This option is available for
reconfigurable modules that have module-level constraint files associated with them.

6. This last screen is the Set Partition summary. Click Finish to complete this task.

7. The icon for app in the Netlist frame changes to an orange diamond in a white box,
indicating that the reconfigurable module netlist has been added to the project. The orange
diamond indicates that it is a reconfigurable partition. The partial reconfiguration project
now has one reconfigurable module and one elaborated netlist, as shown in Figure 23.

X-Ref Target - Figure 22

Figure 22: Constraint File Errors Message

X-Ref Target - Figure 23

Figure 23: Adding Reconfigurable Modules

X883_22_111010

X883_23_111010

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 25

Step 7 — Create the Black Box Reconfigurable Module
1. Right-click app in the netlist frame and select Add Reconfigurable Module… This brings

up the Add Reconfigurable Module wizard.

2. Click Next and name the module RM_App_BB.

3. Select Add this Reconfigurable module as a black box without a netlist and click Next.

4. Click Finish (see Figure 24).

5. Right-click on RM_App_one and select Set as Active Reconfigurable Module. These
actions load the netlists into the PlanAhead software and prepare the design for the first
configuration.

Step 8 — Create the Physical Constraints

The reconfigurable partition app must have area_group range physical constraints to designate
which physical resources are parts of that reconfigurable partition. All physical resources not
part of the area_group range of a reconfigurable partition are part of the static logic. (Static
logic is unaffected by partial reconfiguration and remains operational during the reconfiguration
process.) The area_group range constraints should not be created until the reconfigurable
partition has been created with the Set Reconfigurable Partition… command, as described in
Step 6 — Create the Reconfigurable Partition, page 24.

The area_group range constraints can be added to the user constraints file (UCF) with a text
editor or by using a graphical floorplanning tool such as the PlanAhead software.

1. In the Physical Constraints frame, select the reconfigurable partition pblock_app.

2. To the left of the floorplan frame, click the Set Pblock Size icon (see Figure 25).

Note: Ensure that the Draw Pblock function is not clicked; its icon looks similar to Set Pblock Size.
As an alternative to clicking the icon, the user can right-click pblock_app and then select Set
Pblock Size from the menu.

3. Drag a box that encompasses SLICE_X0Y0 through SLICE_X123Y239.

4. After drawing the bounding box, select only the SLICE, DSP48, and RAMB36 resources
for the area group (see Figure 26).

X-Ref Target - Figure 24

Figure 24: Adding the Black Box

X-Ref Target - Figure 25

Figure 25: Set Pblock Size

X883_24_111010

X883_25_093010

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 26

5. Click the Add Pblock Rectangle button and draw two more boxes from Slice_X124Y0 to
Slice_X161Y78 and from Slice_X124Y200 to X161Y239. Select only the SLICE, DSP48,
and RAMB36 resources.

Xilinx recommends aligning the partition boundary to the clock region boundary. See the
Known Issues section for more details. The floorplan of the entire design should resemble
Figure 27.

X-Ref Target - Figure 26

Figure 26: Setting Pblock Resources

X883_26_111010

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 27

6. Save the floorplan back to the original UCF with File Export Constraints… and save to
hw\Source\UCF\XAPP883.ucf, overwriting the original UCF. After saving, click
XAPP883.ucf in the Sources frame to view the new constraints:

INST "app" AREA_GROUP = "pblock_app";

AREA_GROUP "pblock_app" RANGE=SLICE_X124Y200:SLICE_X161Y239,
SLICE_X124Y0:SLICE_X161Y78, SLICE_X0Y0:SLICE_X123Y239;

AREA_GROUP "pblock_app" RANGE=DSP48_X6Y80:DSP48_X7Y95,
DSP48_X0Y0:DSP48_X7Y29, DSP48_X0Y32:DSP48_X5Y95;

AREA_GROUP "pblock_app" RANGE=RAMB36_X6Y40:RAMB36_X8Y47,
RAMB36_X0Y0:RAMB36_X8Y14, RAMB36_X0Y16:RAMB36_X5Y47;

X-Ref Target - Figure 27

Figure 27: Floorplan of the Static and Reconfigurable Partitions

X883_27_111010

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 28

Step 9 — Partial Reconfiguration Design Rule Checks

There are many partial reconfiguration specific design rules that must be followed to implement
a valid design. Some of these rules have been incorporated in the design rule checker of the
PlanAhead tool. These rules should be run on the partial reconfiguration design before
implementing configurations and generating bit files.

1. Select Tools Run DRC… or click Run DRC on the left side of the GUI under the netlist
planner. Mark only the Partial Reconfig checkbox and click OK (see Figure 28).

The console shows the DRC output. The reference design should pass all DRCs but should
display a warning (Figure 29) that the black_box module is not in a configuration. (A
reconfigurable module must be in a configuration, because it is the configuration that is
ultimately implemented.)

The warning can be ignored for now because it is resolved before the end of this tutorial.

X-Ref Target - Figure 28

Figure 28: Run DRC Frame

X-Ref Target - Figure 29

Figure 29: Warning Message in DRC Results

X883_28_093010

X883_29_093010

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 29

Step 10 — Creating the Configurations
1. Select Tools Create Multiple Runs…

2. Click Next, confirm Part, and click Next again.

3. Name the new run config_2. Click the ellipsis (…) under Partition Action. Specify the
partition to be RM_App_BB, as shown in Figure 30, then click OK.

4. Click Next.

5. Select the radio button Do not launch now, and click Next.

6. Click Finish.

The Design Runs window should now look like Figure 31.

Step 11 — Implementing the Configurations
1. Right-click config_1 in the Design Runs window and select Launch Runs… Click OK to

accept the launch options and start implementation.

2. After the configuration finishes, review the timing report to check for timing errors.

3. Select Promote Partitions and click OK in the Implementation Completed window (see
Figure 32).

4. Click Select Implemented and click OK in the Promote Partitions window.

In the Configurations frame, config_1 has a status of Promoted and the Static Logic for
config_2 is updated to Not Started (see Figure 33).

X-Ref Target - Figure 30

Figure 30: Specify Partition Frame

X-Ref Target - Figure 31

Figure 31: Design Runs Frame

X-Ref Target - Figure 32

Figure 32: Implementation Completed Window

X883_30_093010

X883_31_093010

X883_32_093010

http://www.xilinx.com

Building the Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 30

5. Right-click config_2 in the Design Runs window and select Launch Runs… Click OK to
start implementation.

Step 12 — Creating the Bitfiles
1. Right-click config_1 in the Design Runs window and select Generate Bitstream. Click

OK to start creating the bitfile.

BitGen creates two bitfiles. Config_1.bit is the full-configuration bitfile that includes the
static and reconfigurable partitions. Config_1_app_RM_APP_one_partial.bit
contains only the user application implementation and is used in the partial reconfiguration
stage.

2. Right-click config_2 in the Design Runs window and select Generate Bitstream.

3. Specify -g compress in the More Options field, as shown in Figure 34.

BitGen again creates two bitfiles. Config_2_app_RM_APP_BB_partial.bit is the
black box implementation of the user application plus the PR loader. Config_2.bit is the

X-Ref Target - Figure 33

Figure 33: Configurations and Design Runs Frames

X-Ref Target - Figure 34

Figure 34: BitGen Option Selection Window

X883_33_093010

X883_34_093010

http://www.xilinx.com

Creating a User Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 31

PR loader implementation. It is used to bring up the PCIe system link and support the
subsequent partial reconfiguration.

Note: Use of the compression option is crucial to meet the PCIe system configuration time
requirement. It reduces the regular bitfile size of an XC6VLX240T device from 9 MB to about 2 MB.
Because of the smaller bitfile size, it is possible to complete the initial configuration in much less time.

4. Click OK to start creating bitfile.

Creating a User
Project

This reference design can be used as a template to apply to a user design because of the
modular nature of the reference design and of the partial reconfiguration flow. The steps to
create a user project are:

1. Customize the Integrated Block for PCI Express core settings to suit the user design
requirements, especially the BAR, PCIe device ID, and class. In this reference design,
BAR2 and BAR0 are the address ranges for the PR loader and the user application,
respectively. Refer to Step 2 — Generate the Integrated Block for PCI Express, page 17 in
the Building the Project section.

2. Replace the instance app in the top-level file Fast_PCIe_config_top.v with the user
design. Preserve the existing top-level PCIe device connections.

3. Replace all source file paths in \hw\Synth_XST\UserDesign\UserDesign.prj with
the source files in the user design.

4. Refer to Step 3 — Synthesize the Design, page 22 in the Building the Project section to
synthesize the user design.

5. Right-click app in the Netlist frame and select Update Reconfigurable Module (see
Figure 35). Click Next.

6. Set the top netlist file to hw\Synth_XST\UserDesign\UserDesign.ngc and click
Next.

7. Click Next again, then click Finish.

This updates the user design netlist. The new design takes effect in the next
implementation.

8. If the static partition netlist is updated and the netlist is not copied into the project, the
PlanAhead tool automatically updates it. Otherwise, right-click the top-level netlist in the
Sources frame and select Update File to refresh the netlist (see Figure 36).

X-Ref Target - Figure 35

Figure 35: Update Reconfigurable Module

X883_35_093010

http://www.xilinx.com

Creating a User Project

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 32

9. Select the new top-level netlist and click Open. The PlanAhead software asks the user to
reload the netlist. Click Reload (see Figure 37).

10. When asked which source netlist is the top level, select the target netlist (see Figure 38).
Click OK.

X-Ref Target - Figure 36

Figure 36: Update the Top-Level Netlist

X-Ref Target - Figure 37

Figure 37: Reload the Top-Level Netlist

X-Ref Target - Figure 38

Figure 38: Select the Target Netlist

X883_36_093010

X883_37_093010

X883_38_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 33

The user can now start from Step 9 — Partial Reconfiguration Design Rule Checks, page 28 in
the Building the Project section and proceed to build the project.

Reference
Design
Demonstration

The steps in this section guide the user through setting up and running the demonstration. The
demonstration can be run without building the reference design first. Pre-built bitfiles are
available.

1. Extract the zip file FPC_release.zip to the <ref_design_dir> directory.

Note: <ref_design_dir> is the project root directory to all directory paths throughout this
section.

2. Copy all files in \sw\Jungo to <WindowsXP_install_path>\system32.

This step installs the Jungo WinDriver libraries and driver (rev. 10.2) in Windows XP.
COMDLD32.OCX should be backed up if the file already exists.

3. Run \sw\XAPP1052\win32_application\setup.exe to install the Bus Master DMA
demonstration executable.

4. Connect the ML605 board to an available PCIe device slot in the host system. Connect the
ATX power cable to J25. Set switch SW2 to the ON position.

The demonstration first needs to configure the static partition in the FPGA. This initiates the
PCIe system link for the host to download partial reconfiguration later. The following steps
guide the user through the process of programming the PR loader in the on-board Xilinx
Platform Flash:

5. Connect the mini USB cable connector to the J22 connector on the ML605 board. Connect
the other end to a USB connector to the host system.

6. To enable Platform Flash programming, set DIP switch S2 on the ML605 as follows:

S2-1 ON
S2-2 OFF
S2-3 OFF
S2-4 ON
S2-5 ON
S2-6 OFF

7. Set DIP switch S1 as follows to avoid loading from the CompactFlash card:

S1-1 OFF
S1-2 OFF
S1-3 OFF
S1-4 OFF

8. Launch iMPACT and select the Create PROM File flow. The PROM File Formatter window
appears, as shown in Figure 39.

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 34

9. Select Configure Single FPGA under BPI Flash in “Step 1. Select Storage Target.” Click
the green right arrow and proceed to “Step 2. Add Storage Device(s).”

10. Select Virtex6 as the Target FPGA. Select xcf128x [16M] for Storage Device (Bytes). Click
Add Storage Device. Click the green right arrow and proceed to “Step 3. Enter Data.”

11. Specify PR_Loader in the Output File Name field and select a directory in the Output File
Location field. Leave the default entries in the other fields. The Formatter should look like
Figure 40. Click OK to proceed.

12. The window shown in Figure 41 appears. Click OK.

X-Ref Target - Figure 39

Figure 39: PROM File Formatter

X-Ref Target - Figure 40

Figure 40: Setting PROM Parameters

X883_39_093010

X883_40_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 35

13. Select \hw\PlanAhead\PlanAhead.runs\config_2\config_2.bit in the Add
Device window. Click Open.

If the project has not been built, the bitfile can be replaced with the pre-built version
\config\bitfiles\PR_Loader.bit.

This is the bitfile of the first stage of configuration. It includes the logic (PCIe device link,
switcher, and loader) to support partial reconfiguration later. Because it is a compressed
bitfile, its size is about 2 MB.

14. Click No when asked to add another device file (see Figure 42).

15. Use the default values in the MultiBoot BPI Revision and Data File Assignment window and
click OK (see Figure 43).

X-Ref Target - Figure 41

Figure 41: Add Device Start

X-Ref Target - Figure 42

Figure 42: Add Another Device

X-Ref Target - Figure 43

Figure 43: MultiBoot Settings

X883_41_093010

X883_42_093010

X883_43_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 36

16. Click Generate File… under iMPACT processes. The PROM file is created after a short
moment (see Figure 44).

17. Click on Boundary Scan in the iMPACT Flows pane. Right-click the FPGA and select Add
SPI/BPI Flash… (see Figure 45).

18. Select PR_Loader.mcs from the user-selected directory and click Open.

A pre-built version of this file can be found at \config\PROM\Fast_PCIe_Loader.mcs.

19. Use the default values shown in Figure 46 and click OK.

20. Right-click the green FLASH icon and select Program (see Figure 47).

X-Ref Target - Figure 44

Figure 44: Successful PROM File Generation

X-Ref Target - Figure 45

Figure 45: Add SPI/BPI Flash

X-Ref Target - Figure 46

Figure 46: Select Attached BPI PROM

X883_44_093010

X883_45_093010

X883_46_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 37

21. Use the default settings and click OK (see Figure 48).

iMPACT finishes programming the Platform Flash in several minutes.

Note: After the Platform Flash has been programmed, the PR loader is automatically configured
upon power-up. Because the PR loader bitfile is highly compressed (< 2 MB) and utilizes only a small
amount of FPGA resources, its configuration time (from power-on to PCIe device link ready) is
typically around 20 ms.

22. Turn off and restart the system. This allows the FPGA to be configured from the Platform
Flash, which now contains the first stage PR loader. The MMCM Locked (DS21) and Link
Ready (DS22) LEDs are turned on.

23. After Windows starts running, install the PR loader drivers by running the batch file:

sw\FPC_Loader\drivers\install_PR_Loader_driver.bat

The batch file installs two PR loader drivers, DEVICE and PR_PCIe_V6. After completion, the
two drivers appear under Jungo in the Windows Device Manager, as shown in Figure 49.

X-Ref Target - Figure 47

Figure 47: Program the PROM

X-Ref Target - Figure 48

Figure 48: Device 2 Programming Properties

X883_47_093010

X883_48_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 38

24. Launch the Loader application in \sw\FPC_Loader\app\FPC_Loader.exe. The
window shown in Figure 50 appears.

Note: The board status indicates that the reference design has been found on the ML605
demonstration board. If the GUI does not find the board, make sure the ML605 board is powered and
the drivers were loaded successfully.

25. Click the Reconfigure FPGA button. The window shown in Figure 51 appears.

X-Ref Target - Figure 49

Figure 49: Device Manager Listing

X-Ref Target - Figure 50

Figure 50: PR Loader Application

X883_49_093010

X883_50_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 39

26. Select \hw\PlanAhead\PlanAhead.runs\config_1\Config_1_app_
RM_APP_one_partial.bit and click Open. This is the configuration file for the user
application, which is the BMD reference design from Bus Master DMA Performance
Demonstration Reference Design for the Xilinx Endpoint PCI Express Solutions. [Ref 5]

If the project has not been built, the bitfile can be replaced with the pre-built version:
\config\bitfiles\Partial_Reconfig.bit.

After the last step, the PR Completed LED (DS14) turns on, indicating that the FPGA has
been partially reconfigured successfully. At this point, the BMD has control of the PCIe
device bus. The PR loader and the application no longer work.

27. Close the demonstration application. Uninstall the PR loader drivers by running the
command:

\sw\FPC_Loader\drivers\unstall_PR_Loader_driver.bat

The results of this operation should look like the window shown in Figure 52.

28. Install the BMD driver by running the command:

sw\XAPP1052\win32_driver\install_BMD_driver.bat

On some systems, software and hardware installation warning messages might be seen.
Examples are shown in Figure 53 and Figure 54. Click Continue Anyway to proceed.

X-Ref Target - Figure 51

Figure 51: Select User Application Partial Bitfile

X-Ref Target - Figure 52

Figure 52: PR Loader Device Drivers Removed

X883_51_093010

X883_52_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 40

After the installation, the driver PCIe Bus Master DMA Demo Driver for Windows XP,
Ver 2.0.0.2 appears under Other Devices in Device Manager, as shown in Figure 55.

X-Ref Target - Figure 53

Figure 53: Software Compatibility Warning

X-Ref Target - Figure 54

Figure 54: Hardware Compatibility Warning

X883_53_093010

X883_54_093010

http://www.xilinx.com

Reference Design Demonstration

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 41

29. Launch the Performance Demo for PCIe application from the Windows Start menu, as
shown in Figure 56.

30. The application GUI shown in Figure 57 appears.

X-Ref Target - Figure 55

Figure 55: Bus Master DMA Demo Driver in Windows Device Manager

X-Ref Target - Figure 56

Figure 56: Launch Performance Demo for PCIe

X883_55_093010

X883_56_093010

http://www.xilinx.com

Other Design Considerations

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 42

31. Select Write or Read in Test Mode, and click the Start button to initiate the DMA
transactions. The performance results appear in the Result boxes. Vary the TLP Size and
TLPs to Transfer settings and observe the changes in performance.

Other Design
Considerations

This section describes additional considerations in generating the design:

• The partial reconfiguration flow does not support bidirectional pins to the reconfigurable
partition. Any bidirectional functionality must remain in the static partition.

• The ChipScope™ analyzer ILA and ICON cores cannot be instantiated in the
reconfigurable partition because they contain global logic. These cores must remain in the
static partition.

• The reconfigurable partition should not overlap the MMCM feedback path. The clock
feedback path resides in the HCLK region directly adjacent to the MMCM. Overlap could
disrupt MMCM operation during reconfiguration.

• This reference design does not support bitstream encryption.

• The reconfiguration data written to the ICAP is loaded in the configuration memory cells
directly without error screening (although error screening can be added by the user).
Therefore, corrupted data can potentially disrupt the correct operation of the user design
or cause contentions. However, the PCIe system has error checking and handling
capability built into the packets, guaranteeing packet integrity across the link. This can
greatly reduce the potential risks. However, the user should ensure that the
reconfiguration data is sent in the correct order from the host application. Any mistakes
made prior to writing to the target address range (before packet CRC generation) are not
detected by the PCIe system error detection mechanism.

X-Ref Target - Figure 57

Figure 57: BMD Application GUI

X883_57_093010

http://www.xilinx.com

Reference Design

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 43

• There are two ICAP_VIRTEX6 resources in each device, but only the top ICAP (X0Y1)
can support partial reconfiguration. The ISE tool automatically places the ICAP_VIRTEX6
in the correct location.

Reference
Design

The reference design files for this application note can be downloaded at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=149163

The reference design matrix is shown in Table 3.

Resource
Utilization

The FPGA resources utilized by the design are summarized in Table 4.

Table 3: Reference Design Matrix

Parameter Description

General

Developer Name Xilinx

Target Devices (Stepping Level, ES, Production, Speed Grades) Virtex-6 FPGA
(XC6VLX240T-FF1156-1)

Source Code Provided? Yes

Source Code Format Verilog

Design Uses Code or IP from Existing Reference Design,
Application Note, 3rd party, or CORE Generator Software?

Yes

Simulation

Functional Simulation Performed? Yes

Timing Simulation Performed? No

Testbench Provided for Functional and Timing Simulations? Yes

Testbench Format Verilog

Simulator Software and Version ModelSim SE 6.4b

SPICE/IBIS Simulations? No

Implementation

Synthesis Software Tools and Version XST 12.2

Implementation Software Tools and Version ISE Design Suite 12.2

Static Timing Analysis Performed? Yes

Hardware Verification

Hardware Verified? Yes

Hardware Platform Used for Verification ML605 evaluation board

Table 4: Resources Usage Between Static and Reconfigurable Partitions

Resources Static Partition Reconfigurable Partition
(BMD Design)

LUTs 1697 1589

Flip-Flops 1649 1127

Block RAMs 9 0

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=149163

Software Support

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 44

Software
Support

The reference design supports these software and tool environments:

• Verilog HDL source codes
• Functional simulation in ModelSim 6.4b
• XST
• PlanAhead tool v12.1/12.2
• ISE Design Suite 12.1/12.2
• Windows XP Service Pack 3
• Windows .NET Framework 3.0 or above

Tested Systems The reference design has been tested in these host system environments:

• ASUS p5B-VM
• CPU: Pentium 4 531 (3.0 GHz)
• Chipset: Intel P965/G965
• Southbridge: Intel 828011HB/HR (ICH8/R)

• Intel desktop D975XBX
• CPU: Pentium D (3.0 GHz)
• Chipset: Intel 975 Express Chipset
• Southbridge: Intel 82801GR (ICH7R)

Known Issues Readback verification after partial reconfiguration shows fewer than 250 mismatches. This is
caused by an error in the BitGen mask file and does not impact the intended functionality of the
reference design.

The current implementation tools can mistakenly put block RAMs belonging to a static partition
in the same configuration frame with block RAMs from a reconfigurable partition. The contents
of the block RAMs in the static partition might get corrupted during partial reconfiguration of the
affected configuration frame. Therefore, it is recommended to align the partition boundary to
the clock region boundary. Because the configuration frame boundary lines up with the clock
region boundary, doing so has the effect of preventing block RAMs from the static partition
combining with block RAMs from the reconfigurable partition in the same configuration frame.

References This application note uses these references:

1. UG517, Virtex-6 FPGA Integrated Block for PCI Express User Guide.

2. UG702, Partial Reconfiguration User Guide.

3. UG360, Virtex-6 FPGA Configuration User Guide.

4. DS152, Virtex-6 FPGA Data Sheet: DC and Switching Characteristics.

5. XAPP1052, Bus Master DMA Performance Demonstration Reference Design for the Xilinx
Endpoint PCI Express Solutions.

Appendix The reference design hierarchical structure [module name/(instance name)] is shown
here:

FPC_top
v6_pcie_v1_6 (core)

trn_lnk_up_n (trn_lnk_up_n_i)
trn_lnk_up_n_int (trn_lnk_up_n_int_i)
trn_reset_n (trn_reset_n_i)
trn_reset_n_int (trn_reset_n_int_i)
trn_reset_delay (trn_reset_delay_i)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/v6_pcie_ug517.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
Bus Master DMA Performance Demonstration
Reference Design for the Xilinx Endpoint PCI
Express® Solutions

Revision History

XAPP883 (v1.0) November 19, 2010 www.xilinx.com 45

pcie_clocking (pcie_clocking_i)
pcie_2_0_v6 (pcie_2_0_i)

pcie_gtx_v6 (pcie_gt_i)
gtx_wrapper_v6 (gtx_v6_i)

GTXE1 (GTXD[i])
Switcher (Switcher_i)
RM_startup (RM_startup_i)
PR_Loader (PR_Loader_i)

PIO (PIO)
PIO_EP (PIO_EP)

ICAP_access (ICAP_ACC)
ICAP_mod(ICAP)

ICAP_VIRTEX6 (ICAP_VIRTEX6_i)
data_transfer (data_transfer_i)

config_FIFO (config_FIFO_i)
PIO_EP_MEM_ACCESS (EP_MEM)
PIO_64_RX_ENGINE (EP_RX)
PIO_64_TX_ENGINE (EP_TX)

PIO_TO_CTRL (PIO_TO)
pcie_app_v6 (app)

BMD (BMD)
BMD_EP (BMD_EP)

BMD_EP_MEM_ACCESS(EP_MEM)
BMD_RX_ENGINE (EP_RX)
BMD_TX_ENGINE (EP_TX)
BMD_RD_THROTTLE (RD_THR)

BMD_TO_CTRL (BMD_TO)
BMD_CFG_CTRL (BMD_CF)

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

11/19/10 1.0 Initial Xilinx release.

http://www.xilinx.com

	Fast Configuration of PCI Express Technology through Partial Reconfiguration
	Summary
	Overview
	Static Partition Bitstream Compression and Timing
	Static Partition Detailed Descriptions
	Clocking
	Integrated Block for PCI Express
	Switcher
	PR Loader
	Startup
	Reconfigurable Partition — User Application

	Design Flow Overview
	Application Software
	Designing the PR Loader Drivers
	Designing the PR Loader Application

	Simulation
	Running Functional Simulation
	Simulation Description

	Building the Project
	System Requirements
	Step 1 — Extract the Reference Design
	Step 2 — Generate the Integrated Block for PCI Express
	Step 3 — Synthesize the Design
	Step 4 — Create the Partial Reconfiguration Project
	Step 5 — Load the Netlist Planner
	Step 6 — Create the Reconfigurable Partition
	Step 7 — Create the Black Box Reconfigurable Module
	Step 8 — Create the Physical Constraints
	Step 9 — Partial Reconfiguration Design Rule Checks
	Step 10 — Creating the Configurations
	Step 11 — Implementing the Configurations
	Step 12 — Creating the Bitfiles

	Creating a User Project
	Reference Design Demonstration
	Other Design Considerations
	Reference Design
	Resource Utilization
	Software Support
	Tested Systems
	Known Issues
	References
	Appendix
	Revision History
	Notice of Disclaimer

