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Summary Many digital communication standards employ convolution coding as a means of forward error 
correction (FEC). Data encoded in this way generally is decoded with a Viterbi decoder, which 
operates by constructing a trellis of state probabilities and branch metrics. The transmitted data 
is often terminated with a number of zeros to force the encoder back to the zero state. This 
allows the decoder to start decoding from a known state, however, extra symbols have to be 
transmitted over the channel. 

Another termination technique is to ensure the trellis start and end states are identical. This 
technique is referred to as tail biting and has the advantage of not requiring any extra symbols 
to be transmitted. Tail biting is used in several popular communications standards, such as the 
IEEE Standard for Local and Metropolitan Area Networks - Part 16 (IEEE 802.16e) and the 
3GPP Long Term Evolution (LTE) standard. This application note gives some background on 
the different termination techniques used in these standards, explains how to implement them 
using the Xilinx® Viterbi decoder LogiCORE™ module (version 6.2 or later), and includes a 
number of simulation reference designs to illustrate operation of the Viterbi decoder.

Viterbi 
Decoding

A description of the general Viterbi decoding algorithm is beyond the scope of this document. 
Refer to the Internet for available tutorial notes. The important concept to understand is that a 
trellis is constructed by computing the cost of being in each possible convolution encoder state 
at every symbol period. The data bit (0 or 1) most likely to have caused entry to each state is 
stored in a table. For example, if the encoder has a six register delay line (that is, constraint 
length 7), 26 bits are stored for each cycle. After a number of clock cycles, defined by the 
traceback length, the decoder traces back through the trellis, outputting the data bits for the 
most likely survivor path. This operation is referred to as traceback. Then these bits are passed 
through a last in, first out (LIFO) structure, so they are output in the order originally received. 
Usually the traceback length is set to be greater than six times the constraint length or greater 
than 12 times if the data is punctured.

Figure 1 shows an example where the data bits causing entry to each state in the trellis are 
stored while TB Block 0 is received (TB is the traceback length). As more symbols are received, 
the data bits causing entry to each state in the trellis for Block 1 are stored. At this point, there 
are two traceback lengths’ worth of data stored. The decoder now performs the traceback 
operation on Block 1, finding the most likely survivor path. The data bits for Block 1 are not 
output at this time. This operation determines the correct state to start the traceback through 
Block 0. In other words, Block 1 is used for training to start the traceback of Block 0 from the 
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Figure 1: Viterbi Decoder Traceback
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correct state. In reality, the upper and lower arrows in Figure 1 are skewed in time. The 
traceback for a block occurs some time after the last symbol in the block is sampled. The arrows 
are positioned to show on which data the operation is acting. The blocks are sometimes 
referred to as windows, and the technique of processing one window at a time is referred to as 
the sliding window technique. In the same way, Block 2 is used as a training sequence to start 
the traceback of Block 1 from the correct state.

Viterbi Block 
Decoding

Convolution codes are not strictly block codes. The decoder operates on a continuous stream 
of incoming encoded data, splitting it into traceback lengths for processing. However, it is 
convenient to split the data into packets and regard each packet as a self-contained, 
independent block. Each packet can contain many traceback lengths of data. Generally, the 
encoder is forced to a known starting state and then forced to a known ending state after the 
last data bit is shifted in. The most frequently used methods to terminate the trellis in a Viterbi 
decoder are:

• Trellis truncation

• Trellis termination

• Tail biting

Trellis Truncation

Trellis truncation is the simplest of all the methods (see Figure 2). The encoder is reset to zero 
at the beginning of each packet. Then the data is shifted in. Nothing is done to force the 
encoder into a special termination state.

This method has these advantages:

• It is simple to implement.

• The code rate is not affected, that is, the ratio of original data bits to transmitted bits 
remains the same. If the encoder code rate is R and N bits are input, then a total of N/R 
bits are transmitted.

This method has these disadvantages:

• The bit error rate (BER) performance of the code is degraded because the decoder does 
not know from which state to start the last traceback.

• There is no data to use as a training sequence to find the correct state. The distance 
properties of the convolution code are lost at the end of the packet.

http://www.xilinx.com
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Trellis Termination (Tail Bits)

Trellis termination is the most common technique. The encoder is reset to zero at the beginning 
of each packet as in trellis truncation. This operation generally happens automatically, as the 
previous packet ends in state 0. After all data bits are shifted into the encoder, another Z zero 
bits are shifted in, where Z is the number of register stages in the encoder shift register. This 
resets the encoder state back to zero. The final output symbols are generated as the Zth zero 
is on the input to the encoder shift register. On the next clock cycle, the encoder enters state 0 
and no more symbols are transmitted for this packet. 

Figure 3 shows this process for a constraint length 7 example. The encoder is initialized to all 
zeros, and the first symbol is formed when DATA_IN = d0. The last symbol of the packet is 
formed when dN-1 is in the right-most register and the final zero is on DATA_IN. After one more 
shift, the encoder is returned to the all zero state. Note that the DATA_OUT symbols are not 
transmitted for this state. The decoder can begin traceback for the packet in the certain 
knowledge that state 0 is the correct state from which to start.

In trellis termination, both the start state and end state are known by the decoder. This method 
has these advantages:

• It is fairly simple to implement.

• Unlike simple trellis truncation, the termination does not affect the error correction 
properties of the convolution code.

X-Ref Target - Figure 2

Figure 2: Convolutional Encoding for Trellis Truncation Termination
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This method has these disadvantages:

• Extra bits have to be transmitted, reducing the code rate. If there are N bits in the packet, 
(N + Z)/R bits are transmitted, where Z is the number of zeros set by the constraint 
length - 1 and R is the encoder code rate.

• The extra bits consume additional transmission time and slightly reduce the energy-per-bit 
to noise-power-spectral-density ratio (Eb/No) for a given probability of error. Typically, the 
overall effect is insignificant except when N is very small.

Tail Biting

Tail biting attempts to overcome the problem of transmitting extra termination bits experienced 
by trellis termination. The tail biting technique has these advantages:

• The code rate is not affected. N/R bits are transmitted.

• The error correction properties of the convolution code are not affected.

The disadvantages are:

• Because training is required to determine the correct start state and initial traceback state, 
decoding latency is increased over trellis termination.

• Receiver complexity is slightly increased.

Tail biting can be done by:

1. Using the last Z data bits of the packet to initialize the encoder shift register prior to 
transmission of the packet (number of bits Z = constraint length - 1). No output symbols are 
transmitted during encoder initialization. This means that the encoder start state and end 
state for the packet are identical. It also implies that the entire packet must be available at 

X-Ref Target - Figure 3

Figure 3: Convolution Encoding for Trellis Zero Termination
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the encoder before the first symbol is transmitted. Figure 4 illustrates this method for an 
example with constraint length 7. The encoder is initialized to the last six bits of the packet, 
and the first symbol is formed when DATA_IN = d0. The last symbol of the packet is formed 
when dN-1 is on DATA_IN. One more shift puts the encoder back into the initial state. The 
decoder can then begin traceback of the packet from that state.

2. Initializing the encoder with the first Z data bits of the packet—again not transmitting any 
output symbols during this time. The remaining (N - Z) data bits are then encoded and 
transmitted, followed by the first Z bits. This has the same effect of causing the start and 
end states to be identical. The advantage of this method is that it does not require the entire 
packet before encoding starts. However, the bits are out of sequence at the receiver.

Implementation All termination methods presented can be implemented with the Convolutional Encoder [Ref 1] 
and Viterbi decoder [Ref 2].

Trellis Truncation Encoding

Convolutional encoding can be implemented using the Convolutional Encoder (version 6.2 or 
later). However, because the encoder is relatively simple, another option is to write RTL code 
for the encoder. In the example shown in Figure 5, a 270-bit packet is input into the 
convolutional encoder, resulting in 270 symbols. Each symbol is 2 bits for a 1/2 code rate.

X-Ref Target - Figure 4

Figure 4: Convolution Encoding for Tail Biting Termination
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Trellis Termination Encoding

Convolutional encoding can be implemented using either the Convolutional Encoder IP, or 
inferred from RTL code. In the example shown in Figure 6, the traceback length is 54 for a 
constraint length equal to 9. The packet length is 108 bits, and 8 zeros are appended to the 
original packet (constraint length – 1). In Figure 6, the code rate is 1/3, and the number of zeros 
appended is 8.

The output from the encoder consumes a total of 108 + 8 cycles. This method can be used with 
any length packet. A number of zeros (constraint length - 1) still needs to be added, even if the 
packet length is less than the traceback length.

Tail Biting Encoding

In an example where the constraint length is 7 and the packet length is 270 bits, a circular buffer 
stores the packet being transmitted. The last Z bits of the packet are loaded first, followed by the 
whole packet. However, the first Z bits are ignored and are not required for transmitting. Thus, 
the enable for the encoded data is 270 cycles. In the example shown in Figure 7, the circular 
buffer can be implemented using block RAM. As outlined in Trellis Termination Encoding, 
another approach is to add the first Z bits of the packet prior to encoding.

X-Ref Target - Figure 5

Figure 5: Convolutional Encoding with Trellis Truncation

X-Ref Target - Figure 6

Figure 6: Convolutional Encoding with Trellis Termination
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Channel Model

A noisy channel model can be implemented using the Additive White Gaussian Noise (AWGN) 
core. See Additive White Gaussian Noise (AWGN) Core v1.0 [Ref 3] for details on testing the 
encoder/decoder combination.

Trellis Truncation Decoding Implementation

The Viterbi decoder decodes in the normal way, using a sliding window, as shown in Figure 1, 
page 1. The trellis construction should start from state 0. The decoder can be forced to give 
state 0 the lowest cost at the start of trellis construction (see Trellis Termination Decoder 
Implementation, page 9 for details).

Dummy data or data for the next packet is clocked in after the end of the packet to provide a 
training sequence for the last block. This training sequence causes the traceback for the last 
block to start in a state that might not be the correct state.

One alternative is to not bother with a training sequence for the last block and start the 
traceback immediately from the state with the lowest cost. The core can be configured in this 
way by selecting Direct Traceback in the core GUI. Select the Best State option to ensure the 
traceback begins from the lowest cost state. This option gives the best chance for correct 
decoding, however, the results are not as good as when a full training sequence is available. If 
traceback is started from the wrong state, some BER degradation occurs at the end of a packet. 
Note that the Best State decoding logic increases the core size.

When using the Direct Traceback technique (see Figure 8), the TB_BLOCK input is used to 
signal the position of the final TB block of data within a packet. This block is traced back without 
a prior training sequence to determine the traceback start state. Traceback of the final TB block 
begins immediately after TB_BLOCK is deasserted.

X-Ref Target - Figure 7

Figure 7: Convolutional Encoding with Tail Bits

0

Input Packet 270 bitsInput To Buffer

269

0

Full block encoded and last
270 encoded symbols passed
to channel and then decoded.

Output From Buffer and Input
To Convolutional Encoder

Output From Convolutional Encoder

269264 269

Tail Bits Added to Packet Prior to
Encoding

0 269Data_out_v(0)

0 269Data_out_v(1)

X551_16_040810

http://www.xilinx.com


Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com  8

Note relevant to Figure 8:

1. Output latency is shown as two clock cycles for clarity. Actual latency = (8 + output rate) 
clock cycles.

In this example, PACKET_START is used to signal the start of the packet. PACKET_START is 
used to force the trellis construction to start from a state other than the one the previous block 
ended in, as is the case with trellis truncation. See Trellis Termination Decoder Implementation, 
page 9 for more details on PACKET_START.

TB_BLOCK can be asserted at any time. The T1 delay in Figure 8 can be any number of clock 
cycles and does not have to be an integer number of traceback lengths. The T1 delay is 0 clock 
cycles when there is only one traceback block in the packet. Typically the TB_BLOCK pulse has 
a duration of the number of remaining clock cycles when the packet length is divided by the 
traceback length. If this remainder is zero, then TB_BLOCK should be the same number of 
cycles as the traceback length. The TB_BLOCK pulse can be any duration, within the limits 
defined in the Viterbi decoder data sheet [Ref 2]. It does not matter if the pulse is less than the 
normally required traceback length, because a training sequence is not used to define the start 
state of the traceback in this case. TB_BLOCK is used in the same way with trellis termination 
and tail biting.

The decoder continues to output decoded data with the normal latency on DATA_OUT. If Direct 
Traceback is enabled, the decoder also outputs the data for the last block of the packet on 
DATA_OUT_REVERSE. This last block of data is output a small number of clock cycles after 
TB_BLOCK is deasserted, and provides data with the lowest possible latency. This is useful if 
there is only a single block in a packet because DATA_OUT can be ignored and output data can 
be taken from DATA_OUT_REVERSE or DATA_OUT_DIRECT.

Overall latency can be reduced using DATA_OUT_REVERSE even if there are several blocks in 
a packet. In this case, DATA_OUT_REVERSE can be buffered in the appropriate locations of a 
dual-port RAM while the data for the earlier blocks (on DATA_OUT) is being written to the same 
RAM. This means that all decoding has completed as soon as the last symbol for the second 
last block on DATA_OUT is written to the RAM. Thus the overall latency can be reduced by TB 
cycles.

Because data on DATA_OUT_REVERSE is not passed through the LIFO, it comes out in 
reverse order. It is immediately followed by the correctly ordered data on DATA_OUT_DIRECT. 
In some applications, it might not matter that the data comes out in reverse and 
DATA_OUT_REVERSE can be used to give extremely low latency. The data for the final block 
still comes out on DATA_OUT after the normal latency, indicated by TB_BLOCK_O. This data is 
identical to the final block data output earlier on DATA_OUT_DIRECT. If latency of the final 

X-Ref Target - Figure 8

Figure 8: Packet Handling
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block is not an issue, then it is simplest to always read the decoded data from the DATA_OUT 
port and ignore DATA_OUT_REVERSE and DATA_OUT_DIRECT.

Trellis Termination Decoder Implementation

The packet starts and finishes in state 0. It is desirable to force the decoder to begin the trellis 
construction from state 0. Nothing special needs to be done if the previous packet received by 
the decoder left state 0 as the most likely state. However, this cannot be guaranteed. Figure 9 
shows the BER degradation that occurs when the trellis construction relies on the previous 
packet ending in state 0 versus forcing the new packet to start from state 0. This constraint 
length 7 example has 32-symbol packets and uses Direct Traceback. The degradation at lower 
signal-to-noise ratios (SNRs) is approximately 0.5 dB.

Trellis Construction

The decoder can be forced to begin trellis construction from state 0 in one of two ways:

1. Feed in a number of strong zeros prior to the first real data in the packet. A minimum of Z 
zero symbols needs to be sampled to force state 0 to have the lowest cost in the decoder 
as illustrated in Figure 10. It does not matter where the decoder is in a traceback block 
when the zeros are fed in. The zeros between the packets still force the decoder to the 
correct state prior to the start of the real packet data. When these zeros are sampled, the 

X-Ref Target - Figure 9

Figure 9: Effect of Incorrect Trellis Construction in Trellis Termination
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core’s BLOCK_IN input can be asserted. BLOCK_OUT then goes to a logic High when the 
data corresponding to the input zeros is output. This signal can be used as a flag to ignore 
the output data. BLOCK_OUT is simply BLOCK_IN delayed by the decoding latency.

It is not necessary to insert zeros prior to the first packet after a reset as construction of the 
first trellis always begins from state 0.

One advantage of this method is that it also takes care of forcing the traceback to state 0 at 
the end of a packet. However, there are other ways of doing this task, as described in 
Traceback Start.

2. Use the PACKET_START input to force the trellis construction to start at state 0 or any 
other state as defined by the PS_STATE input. This input forces the cost for the start state 
to be very low and the cost of all the other states to be very high. The advantage of this 
method is that it does not waste any clock cycles while dummy zeros are sampled, as in 
Method 1. It also avoids the awkward timing and control logic that might be required to 
insert dummy zeros. Refer to Figure 8, page 8 for the PACKET_START timing.

As mentioned at the beginning of this section, it is possible to decode normally without forcing 
state 0 to have the lowest cost at the start of a packet. This might cause a BER degradation due 
to the reduced likelihood of correcting an error at the start of a packet. The degradation is 
noticeable if the channel is noisy when the tail bits for the previous packet are received and 
contain errors. Then it is likely that state 0 does not have a significantly lower cost than the other 
states as trellis construction for the next packet begins.

Traceback Start

Having taken care of the zero forcing at the start of trellis construction, the user must ensure 
that the traceback begins at state 0. The decoder begins traceback from the state with the 
lowest cost at the end of the training sequence traceback. If this state can be guaranteed to be 
zero, then nothing needs to be done. This will be the case when the next packet begins from 
state 0 and is decoded without error, because the first traceback block of the next packet forms 
the training sequence for the last traceback block of the current packet. For example, if the last 
block of Packet 0 in Figure 10 is being decoded, the first block of Packet 1 is used as the 
training sequence. If the traceback through this first block ends in state 0, then the starting state 
for the traceback through the last block of Packet 0 will be state 0. Typically this sequence 
cannot be guaranteed and the traceback must be forced to start from state 0.

Figure 11 shows the BER degradation that occurs when the traceback relies on the next packet 
trellis starting in state 0 versus forcing the traceback to start from state 0. This constraint length 
7 example has 96-symbol packets. The degradation at lower SNRs is approximately 0.25 dB.

X-Ref Target - Figure 10
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The traceback of a packet can be forced to start from state 0 in one of two ways:

1. Strong zeros can be inserted between packets in exactly the same way as in the trellis 
construction method described in Method 1 on page 9. Again, as long as Z or more zeros 
are inserted, traceback can be guaranteed to begin from state 0. As shown in Figure 10, 
the zeros do not have to align with the start of the traceback block. All that matters is that 
they immediately follow a packet.

This technique assumes that the dummy zeros are immediately followed by the next 
packet. If this is the last packet and there is no more data, more dummy input symbols (any 
value) should be sampled to flush out the decoder traceback pipeline.

2. Direct Traceback from state 0 can be used for the last block in the packet.

If latency is important, then the processing delay on the last block can be reduced by 
selecting this feature. This does away with the training sequence for the last block and 
forces the traceback to begin from state 0, saving traceback length clock cycles.

This timing is described in Trellis Truncation Decoding Implementation, page 7 and is 
shown in Figure 8, page 8. The Direct Traceback is identical in this case, with the exception 
that we are tracing back from state 0 rather than the Best State.

X-Ref Target - Figure 11

Figure 11: Effect of Incorrect Traceback Start State in Trellis Termination
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For punctured data, the best possible BER results are obtained if the training sequences for 
all the other blocks in the packet are started from the Best State. See the Viterbi decoder 
data sheet [Ref 2] for more details on when to use the Best State logic. It is possible to 
trace back from the best state for these blocks while still tracing back from state 0 for the 
last block.

There is no BER degradation with Direct Traceback compared to using a training 
sequence, because we know for certain that the traceback starts from state 0.

It is also possible to perform Direct Traceback from a non-zero, user-defined state. In this 
case, the state value is sampled on the TB_STATE input at the same time as the last data 
symbol of the last TB block is sampled.

Figure 12 shows an example with a single small packet, as can be found in the IEEE 802.11a 
standard. In this example, the packet contains only a single traceback length, and the 
PACKET_START signal is used to force the trellis construction to begin from state 0. As 
mentioned above, this can also be achieved by padding with strong zeros prior to the packet. 
While TB_BLOCK is High, 24 symbols are sampled. When TB_BLOCK is deasserted, the 
decoder begins traceback from state 0 and outputs the packet data in reverse order on 
DATA_OUT_REVERSE. This standard requires that the 24-bit header packet is decoded as 
quickly as possible. Using DATA_OUT_REVERSE is the fastest way to meet this requirement. 
Data follows in non-reversed order on DATA_OUT_DIRECT and DATA_OUT, as described in 
the example in Figure 8, page 8.

Tail Biting Decoder Implementation

The implementation of tail biting can depend upon the length of the traceback length. There are 
three possible scenarios:

• The packet contains multiple traceback lengths.

• The packet contains a single traceback length.

• The packet is less than the traceback length.

In most tail biting applications, the encoder state is initialized to the last Z bits of the data packet 
prior to any transmission. Thus the encoder has the same starting and ending states for a 
packet. For optimal decoding, the decoder needs to start the trellis construction from this state. 
If not done, some BER degradation occurs due to the reduced likelihood of correcting an error 
at the start of a packet. The IEEE 802.16d standard uses this form of tail biting. In the LTE 
Uplink Channel Decoder [Ref 4], some of the tail biting techniques discussed are implemented 
for the Physical Downlink Control Channel.

X-Ref Target - Figure 12

Figure 12: Trellis Termination with a Single Small Packet
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Packet Contains Multiple Traceback Lengths

This section describes three techniques for decoding packets that contain multiple traceback 
lengths: decoding using the first and second traceback blocks, decoding using the last 
traceback block first, and decoding for tail biting using the first traceback block first.

Decoding Using First and Second Traceback Blocks

If there are several traceback lengths within a packet, one technique is to decode the first TB 
block at the end of the packet. Assuming the packet terminates in the correct state, then the 
trellis construction for TB block 0 begins in the correct start state, as illustrated in Figure 13. 
This example assumes a packet contains (N + 1) traceback lengths.

TB Block 0 is used at the start of the packet only to ensure the trellis construction for TB Block 
1 starts from the correct state. Ignore the output data for TB Block 0 at this time because it 
might be incorrect due to not knowing from which state to begin the trellis construction. There 
is no point using the PACKET_START input. If we did know from which state to begin trellis 
construction, we would use PACKET_START, input the state on PS_STATE, and use the data 
output for TB Block 0 at this time without re-inserting TB Block 0 at the end of the packet. The 
advantages are:

• The re-insertion of Block 0 at the end also provides the correct training sequence to start 
the traceback of Block N from the correct state. 

• This method clearly adds extra decoding latency for Block 0.

• The blocks other than the start and end blocks are decoded normally. The end state of one 
block automatically provides the start state for the next.

The disadvantages are:

• This method adds extra decoding latency (determined by the packet length) for Block 0.

• The end state of one block automatically provides the start state for the next. Thus, some 
buffering is required. 

Decoding Using Last Traceback Block First

Another technique is to input TB Block N first, ignoring the output data (see Figure 14). This 
technique gives the correct start state for the trellis construction of TB Block 0. This block is 
followed by blocks 0 to N. TB Block 0 is input again at the end to provide a training sequence for 
decoding TB Block N. The advantages of this technique are:

• All the data is output from the decoder in the correct order. 

• There is no delay for the first traceback block. 

The disadvantage of this technique is: 

• The entire packet must be received before decoding can begin.

X-Ref Target - Figure 13

Figure 13: Decoding for Tail Bits Using First and Second Traceback Blocks
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Decoding for Tail Biting Using First Traceback Block First

The core’s Direct Traceback feature can be used to perform the decoding without the need to 
re-insert TB Block 1 at the end, as in Figure 13. This technique is shown in Figure 15.

In this case, TB Block 0 is still used initially to obtain the correct starting state for the trellis 
construction during TB Block 1 and the first output data for TB Block 0 is ignored. When the 
data for TB Block 1 appears on DATA_OUT, the first Z bits can be saved in a register, giving the 
correct traceback start state to begin the decoding of TB Block 0. Thus TB Block 1 does not 
need to be re-inserted at the end of the packet to determine the start state for the TB Block 0 
traceback. Simply apply the saved start state on the TB_STATE input at the same time that the 
last symbol of TB BLOCK 0 is sampled on DATA_IN (the timing is shown in Figure 16). In this 
example, the constraint length is 7 and Z is 6. The first six bits of TB Block 1 are decoded as 
110000 binary, giving the state the encoder shift register was in immediately after TB Block 0 
and hence the correct state with which to begin the Direct Traceback of TB Block 0. Input a 
value of 3 (000011 binary) on TB_STATE at the end of the TB_BLOCK pulse. The traceback of 
TB Block 0 then begins from the correct state (3) without requiring a training sequence. Not all 
clock cycles are shown in Figure 16. In reality, the blocks and latencies are longer than shown.

X-Ref Target - Figure 14

Figure 14: Decoding for Tail Biting Using Last Traceback Blocks
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X-Ref Target - Figure 15

Figure 15: Decoding for Tail Biting using Direct Traceback
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Figure 16: Timing for Direct Traceback Tail Biting Technique
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This technique relies on being able to decode the first Z bits of TB Block 1 before the state value 
is required for the TB_STATE input. There might not be sufficient time to perform this operation 
if there is only a small number of TB Blocks in a packet. In this case, the method shown in 
Figure 13, page 13 can be used.

Packet Contains Single Traceback Length

If the packet contains only a single traceback length, then the technique is effectively the same 
as passing Block 0 through the decoder three times: once to ensure the correct start state for 
the trellis construction, once to construct the trellis, and once to perform the correct training so 
the traceback begins from the correct state (see Figure 17). The Direct Traceback technique 
cannot be used in this case, because the traceback start state cannot be obtained to apply to 
TB_STATE.

Block 0 must be passed through three times. If it passes through only twice, BER degradation 
is substantial, resulting in almost all packets decoding incorrectly. Figure 18 shows a small 
32-symbol, constraint length 3 example. The curves for tail biting, implemented by passing the 
block through the decoder three times and a standard continuous stream (non-tail biting) 
decoder are almost identical. The curve obtained when the block is only passed through twice 
shows considerably worse BER performance. For larger constraint lengths, this performance is 
even worse because the likelihood of choosing the correct starting state by chance is reduced.

X-Ref Target - Figure 17

Figure 17: Single Block Packet
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Packet Contains Less Than One Traceback Length

In this case the packet of data is less than the traceback length. Thus, the decoder does not 
have enough data to construct the trellis, start at the correct point in the trellis, and perform the 
correct training. Therefore, copies of the packet data are repeated before and after the actual 
packet block. The repeated packet data is traceback length to allow construction and training of 
the data.

In the example shown in Figure 19, the packet length is 27 bits and the traceback length is 
42 bits. Because tail biting is being performed, the last Z bits of the packet are used to initialize 
the decoder. A traceback-length block of data is the first input to the Viterbi decoder from the 
circular buffer. The block consists of the last 15 bits of the packet followed by the 27 packet bits. 
The 27-bit block being decoded is then input, indicated by assertion of the BLOCK_IN signal, 
followed by another 27-bit block and the first 15 bits of the next block, which is used for 
traceback training. The Viterbi decoder outputs the 27-bit packet indicated by the RDY signal and 
the BLOCK_OUT signal.

X-Ref Target - Figure 18

Figure 18: Effect of Incorrect Trellis Construction in Tail Biting
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Refer to Tail Biting Example in the design section.

Recommendations When implementing a termination system, these recommendations should be kept in mind:

• Use trellis termination or tail biting methods.

• Only use tail biting if it is specified in the standard. 

• Use direct traceback if latency is important.

• Set the soft width of the Viterbi decoder to four. 

• Set the traceback length to 6 times the constraint length for normal data and 12 times for 
punctured data.

Reference 
Designs

The reference design files can be downloaded at 
https://secure.xilinx.com/webreg/clickthrough.do?cid=146331. Table 1 shows the reference 
design checklist for this application note.

X-Ref Target - Figure 19

Figure 19: Decoding for Tail Bits for Small Packet Lengths
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Table  1:  Reference Design Checklist

Parameter Description

General

Target devices (stepping level, ES, production, speed grades) Virtex®-6 FPGAs

Source code provided Y

Source code format VHDL

Design uses IP from CORE Generator software Y

Simulation

Functional simulation performed Y

Timing simulation performed N

Testbench used for functional and timing simulations Y

Testbench format VHDL

Simulator software/version used ModelSim 6.5c

SPICE/IBIS simulations N

Implementation

Synthesis software tools/version used XST 12.1

Implementation software tools/versions used ISE 12.1

Static timing analysis performed Y

http://www.xilinx.com
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The xapp551.zip file associated with this application note contains three termination scheme 
examples: tail biting, trellis termination training sequence, and trellis termination direct 
traceback. Each example contains an XISE file that can be opened with the Xilinx ISE® design 
suite (version 11.3 or later), a Viterbi decoder implementation, testbench files, and DO scripts 
for ModelSim simulations. The example files are not synthesizable, but they illustrate how these 
techniques aid the development of hardware solutions. 

The examples share a similar format, which is outlined in Table 2, Table 3, and Table 4. Also 
provided is a data source, which can be put into packets and sent through a convolutional 
encoder. A channel model is used to add noise to the encoded signal before decoding. The 
decoded signal is then compared with the delayed version of the data source.

Tail Biting Example

This example shows tail biting techniques. The example files are described in Table 2.

Hardware Verification

Hardware verified N

Hardware platform used for verification NA

X-Ref Target - Figure 20

Figure 20: Testbench Configuration
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Table  2:  Description of Files for Tail Biting Example

Directory File Name Description

tail_biting/sim/test

tb.vhd

This file instantiates the blocks shown in Figure 20, but for 
tail biting. It shows how the testbench processes the input 
packet through the various buffering, encoding, and 
decoding stages.

tail_biting/sim/globals
fifo_wrap.vhd

This file is the wrapper for the FIFO in the 
CORE Generator™ software.

glb_dpm.vhd
This file is the wrapper for the dual port block RAM in the 
CORE Generator software.

global_types_pkg.vhd This file contains global type and constant definitions.

tail_biting/sim/enc
circ_buffer_enc.vhd

This file contains the circular buffer used for reading the six 
tail biting bits.

conv_enc.vhd
This file contains the convolutional encoder with circular 
buffer instantiation. This is a constraint length 7 encoder with 
a rate of 1/3.

tail_biting/sim/channel
awgn_gen.vhd

This file contains the behavioral model for the AWGN 
channel.
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To run the simulation, the vit.do file is executed. This file compiles the design files, opens a 
wave window, and simulates the design. The packet size can be modified by changing these 
lines in the tb.vhd file:

constant PACKET_ULIMIT : positive := 100; -- upper limit on packet size
constant PACKET_LLIMIT : positive := 20;  -- lower limit on packet size

Trellis Termination Training Sequence Example

This example illustrates the Viterbi decoder used in a trellis termination scheme. To run the 
vit.do file in the ISE software project, select simulation and double-click.

The example files are described in Table 3.

To run the simulation, open the ISE software project and run the behavioral simulation. This file 
compiles the design files, opens a wave window, and simulates the design. The packet size can 
be modified by changing these lines in the tb.vhd file.

-- patterned or random input
  constant RANDOM_INPUT : boolean := TRUE;
  -- limit size of random input packets >= 1
  constant PACKET_LIMIT : positive := 40; -- can be set to any value

tail_biting/sim/dec
circ_buffer_dec.vhd

This file contains the circular buffer, which is used for 
generating the training sequence that is wrapped around the 
Viterbi packet to be decoded.

vit_dec.vhd
This file contains the top level of the decoder. It instantiates 
the circular buffer and Viterbi decoder. It handles block valid 
and data flow signals.

tail_biting/ vit.do This file is the simulation script for use with ModelSim.

wave_vit.do
This file is the simulation script for use with ModelSim that 
puts the relevant signals in the wave window.

tail_biting.xise
This file contains the ISE software project. To run the 
implementation, open tail_biting.xise with the ISE 
tool and run the flow.

Table  2:  Description of Files for Tail Biting Example (Cont’d)

Directory File Name Description

Table  3:  Description of Files for Trellis Termination Training Sequence Example

Directory File Name Description

training_seq/sim/test

tb.vhd

This file instantiates the blocks shown Figure 20, but for trellis 
termination. It shows how the testbench processes the input 
packet through the various buffering, encoding, and decoding 
stages.

training_seq/sim/globals conversion_pkg.vhd This file is the package file for converting signals.

training_seq/sim/enc
conv_enc.vhd

This file contains the convolutional encoder with circular buffer 
instantiation. This is a constraint length 7 encoder with rate 1/2.

training_seq/channel awgn_gen.vhd This file contains the behavioral model for the AWGN channel.

training_seq/ training_seq.do This file is the simulation script for use with ModelSim.

wave_vit.do
This file is the simulation script for use with ModelSim that puts 
the relevant signals in the wave window.

training_seq.xise
This file contains the ISE software project. To run the 
implementation, open training_seq.xise with the ISE tool 
and run the flow. 

http://www.xilinx.com
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Trellis Termination Direct Traceback Example

This example illustrates the trellis termination using direct traceback. The example files are 
described in Table 4.

The simulation is run by opening the ISE software project and running the behavioral 
simulation.

Conclusion In the latest communication standards, some control information is required to be sent via 
packets. These packets can vary in length. This application note describes how, using trellis 
termination and tail biting techniques, these packets can be transmitted and decoded 
successfully using the Xilinx Viterbi decoder.

References These product pages provide additional information and links useful to this application note:

1. Convolutional Encoder
http://www.xilinx.com/products/ipcenter/Convolutional_Encoder.htm

2. Viterbi Decoder
http://www.xilinx.com/products/ipcenter/Viterbi_Decoder.htm

3. Additive White Gaussian Noise (AWGN) Core
http://www.xilinx.com/products/ipcenter/DO-DI-AWGN.htm

4. 3GPP LTE UL Channel Decoder
http://www.xilinx.com/products/ipcenter/DO-DI-CHDEC-LTE.htm

Table  4:  Description of Files for Trellis Termination Direct Traceback Example

Directory File Name Description

direct_traceback/sim/test

tb.vhd

This file instantiates the blocks shown in Figure 20, but 
for direct traceback. It shows how the testbench 
processes the input packet through the various 
buffering, encoding, and decoding stages.

direct_traceback/sim/globals conversion_pkg.vhd This file is the package file for converting signals.

direct_traceback/enc
conv_enc.vhd

This file contains the convolutional encoder with 
circular buffer instantiation. This is a constraint length 
9 encoder with rate 1/2.

direct_traceback/sim/channel
awgn_gen.vhd

This file contains the behavioral model for the AWGN 
channel.

direct_traceback/ direct_traceback.do This file is the simulation script for use with ModelSim.

wave_vit.do
This file is the simulation script for use with ModelSim 
that puts the relevant signals in the wave window.

direct_traceback.xise
This file contains the ISE software project. To run the 
implementation, open direct_traceback.xise 
with the ISE tool and run the flow.

http://www.xilinx.com
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http://www.xilinx.com/products/ipcenter/Viterbi_Decoder.htm
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Revision 
History

The following table shows the revision history for this document.

Notice of 
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

02/14/05 1.0 Initial Xilinx release.

07/30/10 2.0 Added Figure 2, Figure 5, Figure 6, Figure 7, Figure 14, Figure 19, and 
Figure 20. 
Added Trellis Truncation Encoding, Trellis Termination Encoding, Tail 
Biting Encoding, Channel Model, Traceback Start, Packet Contains 
Multiple Traceback Lengths, Packet Contains Single Traceback Length, 
Packet Contains Less Than One Traceback Length, Recommendations, 
Reference Designs, and References sections.
Clarified that reference designs are simulation reference designs in 
Summary. Updated traceback length setting for data punctures in Viterbi 
Decoding. Reorganized text in Tail Biting. Added possible scenarios to 
the beginning of Tail Biting Decoder Implementation. Added Table 1.
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