
XAPP551 (v2.0) July 30, 2010 www.xilinx.com 1

© Copyright 2005–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. All other trademarks are the property of their respective owners.

Summary Many digital communication standards employ convolution coding as a means of forward error
correction (FEC). Data encoded in this way generally is decoded with a Viterbi decoder, which
operates by constructing a trellis of state probabilities and branch metrics. The transmitted data
is often terminated with a number of zeros to force the encoder back to the zero state. This
allows the decoder to start decoding from a known state, however, extra symbols have to be
transmitted over the channel.

Another termination technique is to ensure the trellis start and end states are identical. This
technique is referred to as tail biting and has the advantage of not requiring any extra symbols
to be transmitted. Tail biting is used in several popular communications standards, such as the
IEEE Standard for Local and Metropolitan Area Networks - Part 16 (IEEE 802.16e) and the
3GPP Long Term Evolution (LTE) standard. This application note gives some background on
the different termination techniques used in these standards, explains how to implement them
using the Xilinx® Viterbi decoder LogiCORE™ module (version 6.2 or later), and includes a
number of simulation reference designs to illustrate operation of the Viterbi decoder.

Viterbi
Decoding

A description of the general Viterbi decoding algorithm is beyond the scope of this document.
Refer to the Internet for available tutorial notes. The important concept to understand is that a
trellis is constructed by computing the cost of being in each possible convolution encoder state
at every symbol period. The data bit (0 or 1) most likely to have caused entry to each state is
stored in a table. For example, if the encoder has a six register delay line (that is, constraint
length 7), 26 bits are stored for each cycle. After a number of clock cycles, defined by the
traceback length, the decoder traces back through the trellis, outputting the data bits for the
most likely survivor path. This operation is referred to as traceback. Then these bits are passed
through a last in, first out (LIFO) structure, so they are output in the order originally received.
Usually the traceback length is set to be greater than six times the constraint length or greater
than 12 times if the data is punctured.

Figure 1 shows an example where the data bits causing entry to each state in the trellis are
stored while TB Block 0 is received (TB is the traceback length). As more symbols are received,
the data bits causing entry to each state in the trellis for Block 1 are stored. At this point, there
are two traceback lengths’ worth of data stored. The decoder now performs the traceback
operation on Block 1, finding the most likely survivor path. The data bits for Block 1 are not
output at this time. This operation determines the correct state to start the traceback through
Block 0. In other words, Block 1 is used for training to start the traceback of Block 0 from the

Application Note: All Virtex and Spartan® FPGA Families

XAPP551 (v2.0) July 30, 2010

Viterbi Decoder Block Decoding - Trellis
Termination and Tail Biting
Author: Michael Francis

X-Ref Target - Figure 1

Figure 1: Viterbi Decoder Traceback

Receive TB symbols Receive TB symbols

TB Block 0 TB Block 1

Receive TB symbols

TB Block 2

Begin training traceback
for TB Block 0 now

Traceback for TB Block 0

X551_01_011405

http://www.xilinx.com

Viterbi Block Decoding

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 2

correct state. In reality, the upper and lower arrows in Figure 1 are skewed in time. The
traceback for a block occurs some time after the last symbol in the block is sampled. The arrows
are positioned to show on which data the operation is acting. The blocks are sometimes
referred to as windows, and the technique of processing one window at a time is referred to as
the sliding window technique. In the same way, Block 2 is used as a training sequence to start
the traceback of Block 1 from the correct state.

Viterbi Block
Decoding

Convolution codes are not strictly block codes. The decoder operates on a continuous stream
of incoming encoded data, splitting it into traceback lengths for processing. However, it is
convenient to split the data into packets and regard each packet as a self-contained,
independent block. Each packet can contain many traceback lengths of data. Generally, the
encoder is forced to a known starting state and then forced to a known ending state after the
last data bit is shifted in. The most frequently used methods to terminate the trellis in a Viterbi
decoder are:

• Trellis truncation

• Trellis termination

• Tail biting

Trellis Truncation

Trellis truncation is the simplest of all the methods (see Figure 2). The encoder is reset to zero
at the beginning of each packet. Then the data is shifted in. Nothing is done to force the
encoder into a special termination state.

This method has these advantages:

• It is simple to implement.

• The code rate is not affected, that is, the ratio of original data bits to transmitted bits
remains the same. If the encoder code rate is R and N bits are input, then a total of N/R
bits are transmitted.

This method has these disadvantages:

• The bit error rate (BER) performance of the code is degraded because the decoder does
not know from which state to start the last traceback.

• There is no data to use as a training sequence to find the correct state. The distance
properties of the convolution code are lost at the end of the packet.

http://www.xilinx.com

Viterbi Block Decoding

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 3

Trellis Termination (Tail Bits)

Trellis termination is the most common technique. The encoder is reset to zero at the beginning
of each packet as in trellis truncation. This operation generally happens automatically, as the
previous packet ends in state 0. After all data bits are shifted into the encoder, another Z zero
bits are shifted in, where Z is the number of register stages in the encoder shift register. This
resets the encoder state back to zero. The final output symbols are generated as the Zth zero
is on the input to the encoder shift register. On the next clock cycle, the encoder enters state 0
and no more symbols are transmitted for this packet.

Figure 3 shows this process for a constraint length 7 example. The encoder is initialized to all
zeros, and the first symbol is formed when DATA_IN = d0. The last symbol of the packet is
formed when dN-1 is in the right-most register and the final zero is on DATA_IN. After one more
shift, the encoder is returned to the all zero state. Note that the DATA_OUT symbols are not
transmitted for this state. The decoder can begin traceback for the packet in the certain
knowledge that state 0 is the correct state from which to start.

In trellis termination, both the start state and end state are known by the decoder. This method
has these advantages:

• It is fairly simple to implement.

• Unlike simple trellis truncation, the termination does not affect the error correction
properties of the convolution code.

X-Ref Target - Figure 2

Figure 2: Convolutional Encoding for Trellis Truncation Termination

DATA_IN d0
Encoder state during transmission
of first output symbol

d0 d1 d2 dN–7 dN–6 dN–5 dN–4 dN–3 dN–2 dN–1

Input packet
first bit

Input packet
last bit

Input packet (N bits)

DATA_IN

+

DATA_OUT_V(0)

+

DATA_OUT_V(1)

Encoder state after transmission
of last output symbol

Shift N input bits into encoder and
transmit a total of N output symbols

+

DATA_OUT_V(0)

+

DATA_OUT_V(1)

X551_03_040810

0 0 0 0 0 0

dn-1 dn-2 dn-3 dn-4 dn-5 dn-6

http://www.xilinx.com

Viterbi Block Decoding

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 4

This method has these disadvantages:

• Extra bits have to be transmitted, reducing the code rate. If there are N bits in the packet,
(N + Z)/R bits are transmitted, where Z is the number of zeros set by the constraint
length - 1 and R is the encoder code rate.

• The extra bits consume additional transmission time and slightly reduce the energy-per-bit
to noise-power-spectral-density ratio (Eb/No) for a given probability of error. Typically, the
overall effect is insignificant except when N is very small.

Tail Biting

Tail biting attempts to overcome the problem of transmitting extra termination bits experienced
by trellis termination. The tail biting technique has these advantages:

• The code rate is not affected. N/R bits are transmitted.

• The error correction properties of the convolution code are not affected.

The disadvantages are:

• Because training is required to determine the correct start state and initial traceback state,
decoding latency is increased over trellis termination.

• Receiver complexity is slightly increased.

Tail biting can be done by:

1. Using the last Z data bits of the packet to initialize the encoder shift register prior to
transmission of the packet (number of bits Z = constraint length - 1). No output symbols are
transmitted during encoder initialization. This means that the encoder start state and end
state for the packet are identical. It also implies that the entire packet must be available at

X-Ref Target - Figure 3

Figure 3: Convolution Encoding for Trellis Zero Termination

DATA_IN d0
Encoder state during transmission
of first output symbol

000000

Input packet
first bit

Input packet
last bit

Input packet (N+6 bits)

DATA_IN

+

DATA_OUT_V(0)

+

DATA_OUT_V(1)

Encoder state after transmission
of last output symbol0 0 0 0 0 0

Shift N+6 input bits into encoder and
transmit a total of N+6 output symbols

+

DATA_OUT_V(0)

+

DATA_OUT_V(1)

0 0 0 0 0 0

X551_02_011405

dN–1d2d1d0

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 5

the encoder before the first symbol is transmitted. Figure 4 illustrates this method for an
example with constraint length 7. The encoder is initialized to the last six bits of the packet,
and the first symbol is formed when DATA_IN = d0. The last symbol of the packet is formed
when dN-1 is on DATA_IN. One more shift puts the encoder back into the initial state. The
decoder can then begin traceback of the packet from that state.

2. Initializing the encoder with the first Z data bits of the packet—again not transmitting any
output symbols during this time. The remaining (N - Z) data bits are then encoded and
transmitted, followed by the first Z bits. This has the same effect of causing the start and
end states to be identical. The advantage of this method is that it does not require the entire
packet before encoding starts. However, the bits are out of sequence at the receiver.

Implementation All termination methods presented can be implemented with the Convolutional Encoder [Ref 1]
and Viterbi decoder [Ref 2].

Trellis Truncation Encoding

Convolutional encoding can be implemented using the Convolutional Encoder (version 6.2 or
later). However, because the encoder is relatively simple, another option is to write RTL code
for the encoder. In the example shown in Figure 5, a 270-bit packet is input into the
convolutional encoder, resulting in 270 symbols. Each symbol is 2 bits for a 1/2 code rate.

X-Ref Target - Figure 4

Figure 4: Convolution Encoding for Tail Biting Termination

DATA_IN d0
Encoder state during transmission
of first output symbol

d0 d1 d2 dN–7 dN–6 dN–5 dN–4 dN–3 dN–2 dN–1

Input packet
first bit

Input packet
last bit

Input packet (N bits)

DATA_IN

+

DATA_OUT_V(0)

+

DATA_OUT_V(1)

Encoder state after transmission
of last output symbol

Shift N input bits into encoder and
transmit a total of N output symbols

+

DATA_OUT_V(0)

+

DATA_OUT_V(1)

X551_20_111109

dN-1 dN-2 dN-3 dN-4
dN-5 dN-6

dN-1 dN-2
dN-3 dN-4 dN-5 dN-6

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 6

Trellis Termination Encoding

Convolutional encoding can be implemented using either the Convolutional Encoder IP, or
inferred from RTL code. In the example shown in Figure 6, the traceback length is 54 for a
constraint length equal to 9. The packet length is 108 bits, and 8 zeros are appended to the
original packet (constraint length – 1). In Figure 6, the code rate is 1/3, and the number of zeros
appended is 8.

The output from the encoder consumes a total of 108 + 8 cycles. This method can be used with
any length packet. A number of zeros (constraint length - 1) still needs to be added, even if the
packet length is less than the traceback length.

Tail Biting Encoding

In an example where the constraint length is 7 and the packet length is 270 bits, a circular buffer
stores the packet being transmitted. The last Z bits of the packet are loaded first, followed by the
whole packet. However, the first Z bits are ignored and are not required for transmitting. Thus,
the enable for the encoded data is 270 cycles. In the example shown in Figure 7, the circular
buffer can be implemented using block RAM. As outlined in Trellis Termination Encoding,
another approach is to add the first Z bits of the packet prior to encoding.

X-Ref Target - Figure 5

Figure 5: Convolutional Encoding with Trellis Truncation

X-Ref Target - Figure 6

Figure 6: Convolutional Encoding with Trellis Termination

0

Input Packet 270 bits

Input to Convolutional Encoder 269

0

Full block encoded and
passed to channel and
then decoded.

Output from Convolutional Encoder

269Data_out_v(0)

0 269Data_out_v(1)

X551_14_040810

0 00000000

Input Packet 108 + 8 bits

Input To Convolutional Encoder 107

0

Full block encoded consisting
of 108 symbols + 8, the original
packet and appended zeros
which are passed to channel and
then decoded.

Output From Convolutional Encoder

107 + 8Data_out_v(0)

0 107 + 8Data_out_v(1)

0 107 + 8Data_out_v(2)

X551_15_040810

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 7

Channel Model

A noisy channel model can be implemented using the Additive White Gaussian Noise (AWGN)
core. See Additive White Gaussian Noise (AWGN) Core v1.0 [Ref 3] for details on testing the
encoder/decoder combination.

Trellis Truncation Decoding Implementation

The Viterbi decoder decodes in the normal way, using a sliding window, as shown in Figure 1,
page 1. The trellis construction should start from state 0. The decoder can be forced to give
state 0 the lowest cost at the start of trellis construction (see Trellis Termination Decoder
Implementation, page 9 for details).

Dummy data or data for the next packet is clocked in after the end of the packet to provide a
training sequence for the last block. This training sequence causes the traceback for the last
block to start in a state that might not be the correct state.

One alternative is to not bother with a training sequence for the last block and start the
traceback immediately from the state with the lowest cost. The core can be configured in this
way by selecting Direct Traceback in the core GUI. Select the Best State option to ensure the
traceback begins from the lowest cost state. This option gives the best chance for correct
decoding, however, the results are not as good as when a full training sequence is available. If
traceback is started from the wrong state, some BER degradation occurs at the end of a packet.
Note that the Best State decoding logic increases the core size.

When using the Direct Traceback technique (see Figure 8), the TB_BLOCK input is used to
signal the position of the final TB block of data within a packet. This block is traced back without
a prior training sequence to determine the traceback start state. Traceback of the final TB block
begins immediately after TB_BLOCK is deasserted.

X-Ref Target - Figure 7

Figure 7: Convolutional Encoding with Tail Bits

0

Input Packet 270 bitsInput To Buffer

269

0

Full block encoded and last
270 encoded symbols passed
to channel and then decoded.

Output From Buffer and Input
To Convolutional Encoder

Output From Convolutional Encoder

269264 269

Tail Bits Added to Packet Prior to
Encoding

0 269Data_out_v(0)

0 269Data_out_v(1)

X551_16_040810

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 8

Note relevant to Figure 8:

1. Output latency is shown as two clock cycles for clarity. Actual latency = (8 + output rate)
clock cycles.

In this example, PACKET_START is used to signal the start of the packet. PACKET_START is
used to force the trellis construction to start from a state other than the one the previous block
ended in, as is the case with trellis truncation. See Trellis Termination Decoder Implementation,
page 9 for more details on PACKET_START.

TB_BLOCK can be asserted at any time. The T1 delay in Figure 8 can be any number of clock
cycles and does not have to be an integer number of traceback lengths. The T1 delay is 0 clock
cycles when there is only one traceback block in the packet. Typically the TB_BLOCK pulse has
a duration of the number of remaining clock cycles when the packet length is divided by the
traceback length. If this remainder is zero, then TB_BLOCK should be the same number of
cycles as the traceback length. The TB_BLOCK pulse can be any duration, within the limits
defined in the Viterbi decoder data sheet [Ref 2]. It does not matter if the pulse is less than the
normally required traceback length, because a training sequence is not used to define the start
state of the traceback in this case. TB_BLOCK is used in the same way with trellis termination
and tail biting.

The decoder continues to output decoded data with the normal latency on DATA_OUT. If Direct
Traceback is enabled, the decoder also outputs the data for the last block of the packet on
DATA_OUT_REVERSE. This last block of data is output a small number of clock cycles after
TB_BLOCK is deasserted, and provides data with the lowest possible latency. This is useful if
there is only a single block in a packet because DATA_OUT can be ignored and output data can
be taken from DATA_OUT_REVERSE or DATA_OUT_DIRECT.

Overall latency can be reduced using DATA_OUT_REVERSE even if there are several blocks in
a packet. In this case, DATA_OUT_REVERSE can be buffered in the appropriate locations of a
dual-port RAM while the data for the earlier blocks (on DATA_OUT) is being written to the same
RAM. This means that all decoding has completed as soon as the last symbol for the second
last block on DATA_OUT is written to the RAM. Thus the overall latency can be reduced by TB
cycles.

Because data on DATA_OUT_REVERSE is not passed through the LIFO, it comes out in
reverse order. It is immediately followed by the correctly ordered data on DATA_OUT_DIRECT.
In some applications, it might not matter that the data comes out in reverse and
DATA_OUT_REVERSE can be used to give extremely low latency. The data for the final block
still comes out on DATA_OUT after the normal latency, indicated by TB_BLOCK_O. This data is
identical to the final block data output earlier on DATA_OUT_DIRECT. If latency of the final

X-Ref Target - Figure 8

Figure 8: Packet Handling

CLK

PACKET_START

TB_BLOCK

DATA_IN0

DATA_IN1

DATA_OUT_REVERSE

REVERSE_RDY

DATA_OUT_DIRECT

DIRECT_RDY

PACKET_START_O

TB_BLOCK_O

DATA_OUT

T1
Output Latency (see note below figure)

X551_04_040810

T1

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 9

block is not an issue, then it is simplest to always read the decoded data from the DATA_OUT
port and ignore DATA_OUT_REVERSE and DATA_OUT_DIRECT.

Trellis Termination Decoder Implementation

The packet starts and finishes in state 0. It is desirable to force the decoder to begin the trellis
construction from state 0. Nothing special needs to be done if the previous packet received by
the decoder left state 0 as the most likely state. However, this cannot be guaranteed. Figure 9
shows the BER degradation that occurs when the trellis construction relies on the previous
packet ending in state 0 versus forcing the new packet to start from state 0. This constraint
length 7 example has 32-symbol packets and uses Direct Traceback. The degradation at lower
signal-to-noise ratios (SNRs) is approximately 0.5 dB.

Trellis Construction

The decoder can be forced to begin trellis construction from state 0 in one of two ways:

1. Feed in a number of strong zeros prior to the first real data in the packet. A minimum of Z
zero symbols needs to be sampled to force state 0 to have the lowest cost in the decoder
as illustrated in Figure 10. It does not matter where the decoder is in a traceback block
when the zeros are fed in. The zeros between the packets still force the decoder to the
correct state prior to the start of the real packet data. When these zeros are sampled, the

X-Ref Target - Figure 9

Figure 9: Effect of Incorrect Trellis Construction in Trellis Termination

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
BER vs Eb/No

Eb/No (dB)

BER

CL7 packet start
CL7 no packet start

X551_08_011405

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 10

core’s BLOCK_IN input can be asserted. BLOCK_OUT then goes to a logic High when the
data corresponding to the input zeros is output. This signal can be used as a flag to ignore
the output data. BLOCK_OUT is simply BLOCK_IN delayed by the decoding latency.

It is not necessary to insert zeros prior to the first packet after a reset as construction of the
first trellis always begins from state 0.

One advantage of this method is that it also takes care of forcing the traceback to state 0 at
the end of a packet. However, there are other ways of doing this task, as described in
Traceback Start.

2. Use the PACKET_START input to force the trellis construction to start at state 0 or any
other state as defined by the PS_STATE input. This input forces the cost for the start state
to be very low and the cost of all the other states to be very high. The advantage of this
method is that it does not waste any clock cycles while dummy zeros are sampled, as in
Method 1. It also avoids the awkward timing and control logic that might be required to
insert dummy zeros. Refer to Figure 8, page 8 for the PACKET_START timing.

As mentioned at the beginning of this section, it is possible to decode normally without forcing
state 0 to have the lowest cost at the start of a packet. This might cause a BER degradation due
to the reduced likelihood of correcting an error at the start of a packet. The degradation is
noticeable if the channel is noisy when the tail bits for the previous packet are received and
contain errors. Then it is likely that state 0 does not have a significantly lower cost than the other
states as trellis construction for the next packet begins.

Traceback Start

Having taken care of the zero forcing at the start of trellis construction, the user must ensure
that the traceback begins at state 0. The decoder begins traceback from the state with the
lowest cost at the end of the training sequence traceback. If this state can be guaranteed to be
zero, then nothing needs to be done. This will be the case when the next packet begins from
state 0 and is decoded without error, because the first traceback block of the next packet forms
the training sequence for the last traceback block of the current packet. For example, if the last
block of Packet 0 in Figure 10 is being decoded, the first block of Packet 1 is used as the
training sequence. If the traceback through this first block ends in state 0, then the starting state
for the traceback through the last block of Packet 0 will be state 0. Typically this sequence
cannot be guaranteed and the traceback must be forced to start from state 0.

Figure 11 shows the BER degradation that occurs when the traceback relies on the next packet
trellis starting in state 0 versus forcing the traceback to start from state 0. This constraint length
7 example has 96-symbol packets. The degradation at lower SNRs is approximately 0.25 dB.

X-Ref Target - Figure 10

Figure 10: Forcing Trellis Construction Start State to Zero by Zero Insertion
X551_06_021405

Construct
trellis

Packet 0 Packet 1 Packet 2

Traceback
and

output data

Z Z Z

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 11

The traceback of a packet can be forced to start from state 0 in one of two ways:

1. Strong zeros can be inserted between packets in exactly the same way as in the trellis
construction method described in Method 1 on page 9. Again, as long as Z or more zeros
are inserted, traceback can be guaranteed to begin from state 0. As shown in Figure 10,
the zeros do not have to align with the start of the traceback block. All that matters is that
they immediately follow a packet.

This technique assumes that the dummy zeros are immediately followed by the next
packet. If this is the last packet and there is no more data, more dummy input symbols (any
value) should be sampled to flush out the decoder traceback pipeline.

2. Direct Traceback from state 0 can be used for the last block in the packet.

If latency is important, then the processing delay on the last block can be reduced by
selecting this feature. This does away with the training sequence for the last block and
forces the traceback to begin from state 0, saving traceback length clock cycles.

This timing is described in Trellis Truncation Decoding Implementation, page 7 and is
shown in Figure 8, page 8. The Direct Traceback is identical in this case, with the exception
that we are tracing back from state 0 rather than the Best State.

X-Ref Target - Figure 11

Figure 11: Effect of Incorrect Traceback Start State in Trellis Termination

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10-5

10-4

10-3

10-2

10-1

100
BER vs Eb/No

Eb/No (dB)
X551_07_011805

BER

Traceback from forced zero

Traceback not forced

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 12

For punctured data, the best possible BER results are obtained if the training sequences for
all the other blocks in the packet are started from the Best State. See the Viterbi decoder
data sheet [Ref 2] for more details on when to use the Best State logic. It is possible to
trace back from the best state for these blocks while still tracing back from state 0 for the
last block.

There is no BER degradation with Direct Traceback compared to using a training
sequence, because we know for certain that the traceback starts from state 0.

It is also possible to perform Direct Traceback from a non-zero, user-defined state. In this
case, the state value is sampled on the TB_STATE input at the same time as the last data
symbol of the last TB block is sampled.

Figure 12 shows an example with a single small packet, as can be found in the IEEE 802.11a
standard. In this example, the packet contains only a single traceback length, and the
PACKET_START signal is used to force the trellis construction to begin from state 0. As
mentioned above, this can also be achieved by padding with strong zeros prior to the packet.
While TB_BLOCK is High, 24 symbols are sampled. When TB_BLOCK is deasserted, the
decoder begins traceback from state 0 and outputs the packet data in reverse order on
DATA_OUT_REVERSE. This standard requires that the 24-bit header packet is decoded as
quickly as possible. Using DATA_OUT_REVERSE is the fastest way to meet this requirement.
Data follows in non-reversed order on DATA_OUT_DIRECT and DATA_OUT, as described in
the example in Figure 8, page 8.

Tail Biting Decoder Implementation

The implementation of tail biting can depend upon the length of the traceback length. There are
three possible scenarios:

• The packet contains multiple traceback lengths.

• The packet contains a single traceback length.

• The packet is less than the traceback length.

In most tail biting applications, the encoder state is initialized to the last Z bits of the data packet
prior to any transmission. Thus the encoder has the same starting and ending states for a
packet. For optimal decoding, the decoder needs to start the trellis construction from this state.
If not done, some BER degradation occurs due to the reduced likelihood of correcting an error
at the start of a packet. The IEEE 802.16d standard uses this form of tail biting. In the LTE
Uplink Channel Decoder [Ref 4], some of the tail biting techniques discussed are implemented
for the Physical Downlink Control Channel.

X-Ref Target - Figure 12

Figure 12: Trellis Termination with a Single Small Packet

CLK

PACKET_START

TB_BLOCK

DATA_IN0

DATA_IN1

REVERSE_RDY

DATA_OUT_REVERSE

DIRECT_RDY

24 Samples (Rising Clock Edges) Output Latency 24 Output Bits

X551_08_111909

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 13

Packet Contains Multiple Traceback Lengths

This section describes three techniques for decoding packets that contain multiple traceback
lengths: decoding using the first and second traceback blocks, decoding using the last
traceback block first, and decoding for tail biting using the first traceback block first.

Decoding Using First and Second Traceback Blocks

If there are several traceback lengths within a packet, one technique is to decode the first TB
block at the end of the packet. Assuming the packet terminates in the correct state, then the
trellis construction for TB block 0 begins in the correct start state, as illustrated in Figure 13.
This example assumes a packet contains (N + 1) traceback lengths.

TB Block 0 is used at the start of the packet only to ensure the trellis construction for TB Block
1 starts from the correct state. Ignore the output data for TB Block 0 at this time because it
might be incorrect due to not knowing from which state to begin the trellis construction. There
is no point using the PACKET_START input. If we did know from which state to begin trellis
construction, we would use PACKET_START, input the state on PS_STATE, and use the data
output for TB Block 0 at this time without re-inserting TB Block 0 at the end of the packet. The
advantages are:

• The re-insertion of Block 0 at the end also provides the correct training sequence to start
the traceback of Block N from the correct state.

• This method clearly adds extra decoding latency for Block 0.

• The blocks other than the start and end blocks are decoded normally. The end state of one
block automatically provides the start state for the next.

The disadvantages are:

• This method adds extra decoding latency (determined by the packet length) for Block 0.

• The end state of one block automatically provides the start state for the next. Thus, some
buffering is required.

Decoding Using Last Traceback Block First

Another technique is to input TB Block N first, ignoring the output data (see Figure 14). This
technique gives the correct start state for the trellis construction of TB Block 0. This block is
followed by blocks 0 to N. TB Block 0 is input again at the end to provide a training sequence for
decoding TB Block N. The advantages of this technique are:

• All the data is output from the decoder in the correct order.

• There is no delay for the first traceback block.

The disadvantage of this technique is:

• The entire packet must be received before decoding can begin.

X-Ref Target - Figure 13

Figure 13: Decoding for Tail Bits Using First and Second Traceback Blocks
X551_09_021405

Construct trellis

Traceback

TB Block 0 TB Block 1 - - - - - - - - TB Block N TB Block 0 TB Block 1

Training for
Block 0.
Ignore
output data
for Block 1

Output data
for Block 0
now. Also
training for
Block N

Ignore
output data
for Block 0
at this time

Traceback
and output
data
for Block 1
now

Received packet

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 14

Decoding for Tail Biting Using First Traceback Block First

The core’s Direct Traceback feature can be used to perform the decoding without the need to
re-insert TB Block 1 at the end, as in Figure 13. This technique is shown in Figure 15.

In this case, TB Block 0 is still used initially to obtain the correct starting state for the trellis
construction during TB Block 1 and the first output data for TB Block 0 is ignored. When the
data for TB Block 1 appears on DATA_OUT, the first Z bits can be saved in a register, giving the
correct traceback start state to begin the decoding of TB Block 0. Thus TB Block 1 does not
need to be re-inserted at the end of the packet to determine the start state for the TB Block 0
traceback. Simply apply the saved start state on the TB_STATE input at the same time that the
last symbol of TB BLOCK 0 is sampled on DATA_IN (the timing is shown in Figure 16). In this
example, the constraint length is 7 and Z is 6. The first six bits of TB Block 1 are decoded as
110000 binary, giving the state the encoder shift register was in immediately after TB Block 0
and hence the correct state with which to begin the Direct Traceback of TB Block 0. Input a
value of 3 (000011 binary) on TB_STATE at the end of the TB_BLOCK pulse. The traceback of
TB Block 0 then begins from the correct state (3) without requiring a training sequence. Not all
clock cycles are shown in Figure 16. In reality, the blocks and latencies are longer than shown.

X-Ref Target - Figure 14

Figure 14: Decoding for Tail Biting Using Last Traceback Blocks

TB Block 0TB Block N• • • • • • • •TB Block 0TB Block N

Received Packet

Ignore Output Data
for Block N Now

Training Data for
Block N
Ignore Output Data
for Block 0

Traceback and
Output for Block
0 Now

Traceback and
Output for Block
0 Now

X551_17_100309

X-Ref Target - Figure 15

Figure 15: Decoding for Tail Biting using Direct Traceback

X551_10_021405

Construct trellis

Output data
for Block 0 now.
Also training for
Block N

Traceback

TB Block 0

Traceback and
output data
for Block 1
now

- - - - - - - - TB Block N TB Block 0

Ignore
output data
for Block 0
at this time

Received packet

TB_BLOCK

TB Block 1

First Z bits of TB Block 1 are
used as input values on TB_STATE

X-Ref Target - Figure 16

Figure 16: Timing for Direct Traceback Tail Biting Technique

Re-input TB Block 0

Output TB Block 0 Output TB Block 1 Output remaining TB Blocks 2 to N

Input TB Block NInput TB Blocks 2 to N-1Input TB Block 1Input TB Block 0

Decoder Latency

CLK

TB_BLOCK

TB_STATE

DATA_IN0

DATA_IN1

DATA_OUT

3

1 0 0 0 01

X551_11_021405

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 15

This technique relies on being able to decode the first Z bits of TB Block 1 before the state value
is required for the TB_STATE input. There might not be sufficient time to perform this operation
if there is only a small number of TB Blocks in a packet. In this case, the method shown in
Figure 13, page 13 can be used.

Packet Contains Single Traceback Length

If the packet contains only a single traceback length, then the technique is effectively the same
as passing Block 0 through the decoder three times: once to ensure the correct start state for
the trellis construction, once to construct the trellis, and once to perform the correct training so
the traceback begins from the correct state (see Figure 17). The Direct Traceback technique
cannot be used in this case, because the traceback start state cannot be obtained to apply to
TB_STATE.

Block 0 must be passed through three times. If it passes through only twice, BER degradation
is substantial, resulting in almost all packets decoding incorrectly. Figure 18 shows a small
32-symbol, constraint length 3 example. The curves for tail biting, implemented by passing the
block through the decoder three times and a standard continuous stream (non-tail biting)
decoder are almost identical. The curve obtained when the block is only passed through twice
shows considerably worse BER performance. For larger constraint lengths, this performance is
even worse because the likelihood of choosing the correct starting state by chance is reduced.

X-Ref Target - Figure 17

Figure 17: Single Block Packet
X551_12_021405

Construct trellis

TB Block 0

Traceback and

TB Block 0 TB Block 0

Training for
Block 0.output data

for Block 0
now

Ignore
output data
for Block 0
at this time

Ignore
output data

Received
 packet

http://www.xilinx.com

Implementation

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 16

Packet Contains Less Than One Traceback Length

In this case the packet of data is less than the traceback length. Thus, the decoder does not
have enough data to construct the trellis, start at the correct point in the trellis, and perform the
correct training. Therefore, copies of the packet data are repeated before and after the actual
packet block. The repeated packet data is traceback length to allow construction and training of
the data.

In the example shown in Figure 19, the packet length is 27 bits and the traceback length is
42 bits. Because tail biting is being performed, the last Z bits of the packet are used to initialize
the decoder. A traceback-length block of data is the first input to the Viterbi decoder from the
circular buffer. The block consists of the last 15 bits of the packet followed by the 27 packet bits.
The 27-bit block being decoded is then input, indicated by assertion of the BLOCK_IN signal,
followed by another 27-bit block and the first 15 bits of the next block, which is used for
traceback training. The Viterbi decoder outputs the 27-bit packet indicated by the RDY signal and
the BLOCK_OUT signal.

X-Ref Target - Figure 18

Figure 18: Effect of Incorrect Trellis Construction in Tail Biting

3 4 5 6 7 8 9 10 11 12 13
10-7

10-6

10-5

10-4

10-3

10-2

10-1 BER vs Eb/No

Eb/No (dB)

BER

 CL3 Continuous

 CL3 3 Blocks

 CL3 2 Blocks

X551_13_120304

http://www.xilinx.com

Recommendations

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 17

Refer to Tail Biting Example in the design section.

Recommendations When implementing a termination system, these recommendations should be kept in mind:

• Use trellis termination or tail biting methods.

• Only use tail biting if it is specified in the standard.

• Use direct traceback if latency is important.

• Set the soft width of the Viterbi decoder to four.

• Set the traceback length to 6 times the constraint length for normal data and 12 times for
punctured data.

Reference
Designs

The reference design files can be downloaded at
https://secure.xilinx.com/webreg/clickthrough.do?cid=146331. Table 1 shows the reference
design checklist for this application note.

X-Ref Target - Figure 19

Figure 19: Decoding for Tail Bits for Small Packet Lengths

TB Block N2612 140260 26 260 0

260

Block to be
Decoded

Traceback
TrainingCost Training

42 Symbols of Soft Data 42 Symbols of Soft Data

Decoded Output
Data From Viterbi

Decoder

Output From Viterbi
Circular Buffer

and Input to
Viterbi Decoder

X551_18_040810

Table 1: Reference Design Checklist

Parameter Description

General

Target devices (stepping level, ES, production, speed grades) Virtex®-6 FPGAs

Source code provided Y

Source code format VHDL

Design uses IP from CORE Generator software Y

Simulation

Functional simulation performed Y

Timing simulation performed N

Testbench used for functional and timing simulations Y

Testbench format VHDL

Simulator software/version used ModelSim 6.5c

SPICE/IBIS simulations N

Implementation

Synthesis software tools/version used XST 12.1

Implementation software tools/versions used ISE 12.1

Static timing analysis performed Y

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=146331

Reference Designs

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 18

The xapp551.zip file associated with this application note contains three termination scheme
examples: tail biting, trellis termination training sequence, and trellis termination direct
traceback. Each example contains an XISE file that can be opened with the Xilinx ISE® design
suite (version 11.3 or later), a Viterbi decoder implementation, testbench files, and DO scripts
for ModelSim simulations. The example files are not synthesizable, but they illustrate how these
techniques aid the development of hardware solutions.

The examples share a similar format, which is outlined in Table 2, Table 3, and Table 4. Also
provided is a data source, which can be put into packets and sent through a convolutional
encoder. A channel model is used to add noise to the encoded signal before decoding. The
decoded signal is then compared with the delayed version of the data source.

Tail Biting Example

This example shows tail biting techniques. The example files are described in Table 2.

Hardware Verification

Hardware verified N

Hardware platform used for verification NA

X-Ref Target - Figure 20

Figure 20: Testbench Configuration

Table 1: Reference Design Checklist (Cont’d)

Parameter Description

Convolution
Encoder

Convolution
Encoder

Channel with
AWGN

Viterbi
Decoder

X551_19_100309

Channel Viterbi
Decoder

ComparePacket
Stimulus

Stimulus –
Random Packet
Lengths with
Random Data

Table 2: Description of Files for Tail Biting Example

Directory File Name Description

tail_biting/sim/test

tb.vhd

This file instantiates the blocks shown in Figure 20, but for
tail biting. It shows how the testbench processes the input
packet through the various buffering, encoding, and
decoding stages.

tail_biting/sim/globals
fifo_wrap.vhd

This file is the wrapper for the FIFO in the
CORE Generator™ software.

glb_dpm.vhd
This file is the wrapper for the dual port block RAM in the
CORE Generator software.

global_types_pkg.vhd This file contains global type and constant definitions.

tail_biting/sim/enc
circ_buffer_enc.vhd

This file contains the circular buffer used for reading the six
tail biting bits.

conv_enc.vhd
This file contains the convolutional encoder with circular
buffer instantiation. This is a constraint length 7 encoder with
a rate of 1/3.

tail_biting/sim/channel
awgn_gen.vhd

This file contains the behavioral model for the AWGN
channel.

http://www.xilinx.com

Reference Designs

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 19

To run the simulation, the vit.do file is executed. This file compiles the design files, opens a
wave window, and simulates the design. The packet size can be modified by changing these
lines in the tb.vhd file:

constant PACKET_ULIMIT : positive := 100; -- upper limit on packet size
constant PACKET_LLIMIT : positive := 20; -- lower limit on packet size

Trellis Termination Training Sequence Example

This example illustrates the Viterbi decoder used in a trellis termination scheme. To run the
vit.do file in the ISE software project, select simulation and double-click.

The example files are described in Table 3.

To run the simulation, open the ISE software project and run the behavioral simulation. This file
compiles the design files, opens a wave window, and simulates the design. The packet size can
be modified by changing these lines in the tb.vhd file.

-- patterned or random input
 constant RANDOM_INPUT : boolean := TRUE;
 -- limit size of random input packets >= 1
 constant PACKET_LIMIT : positive := 40; -- can be set to any value

tail_biting/sim/dec
circ_buffer_dec.vhd

This file contains the circular buffer, which is used for
generating the training sequence that is wrapped around the
Viterbi packet to be decoded.

vit_dec.vhd
This file contains the top level of the decoder. It instantiates
the circular buffer and Viterbi decoder. It handles block valid
and data flow signals.

tail_biting/ vit.do This file is the simulation script for use with ModelSim.

wave_vit.do
This file is the simulation script for use with ModelSim that
puts the relevant signals in the wave window.

tail_biting.xise
This file contains the ISE software project. To run the
implementation, open tail_biting.xise with the ISE
tool and run the flow.

Table 2: Description of Files for Tail Biting Example (Cont’d)

Directory File Name Description

Table 3: Description of Files for Trellis Termination Training Sequence Example

Directory File Name Description

training_seq/sim/test

tb.vhd

This file instantiates the blocks shown Figure 20, but for trellis
termination. It shows how the testbench processes the input
packet through the various buffering, encoding, and decoding
stages.

training_seq/sim/globals conversion_pkg.vhd This file is the package file for converting signals.

training_seq/sim/enc
conv_enc.vhd

This file contains the convolutional encoder with circular buffer
instantiation. This is a constraint length 7 encoder with rate 1/2.

training_seq/channel awgn_gen.vhd This file contains the behavioral model for the AWGN channel.

training_seq/ training_seq.do This file is the simulation script for use with ModelSim.

wave_vit.do
This file is the simulation script for use with ModelSim that puts
the relevant signals in the wave window.

training_seq.xise
This file contains the ISE software project. To run the
implementation, open training_seq.xise with the ISE tool
and run the flow.

http://www.xilinx.com

Conclusion

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 20

Trellis Termination Direct Traceback Example

This example illustrates the trellis termination using direct traceback. The example files are
described in Table 4.

The simulation is run by opening the ISE software project and running the behavioral
simulation.

Conclusion In the latest communication standards, some control information is required to be sent via
packets. These packets can vary in length. This application note describes how, using trellis
termination and tail biting techniques, these packets can be transmitted and decoded
successfully using the Xilinx Viterbi decoder.

References These product pages provide additional information and links useful to this application note:

1. Convolutional Encoder
http://www.xilinx.com/products/ipcenter/Convolutional_Encoder.htm

2. Viterbi Decoder
http://www.xilinx.com/products/ipcenter/Viterbi_Decoder.htm

3. Additive White Gaussian Noise (AWGN) Core
http://www.xilinx.com/products/ipcenter/DO-DI-AWGN.htm

4. 3GPP LTE UL Channel Decoder
http://www.xilinx.com/products/ipcenter/DO-DI-CHDEC-LTE.htm

Table 4: Description of Files for Trellis Termination Direct Traceback Example

Directory File Name Description

direct_traceback/sim/test

tb.vhd

This file instantiates the blocks shown in Figure 20, but
for direct traceback. It shows how the testbench
processes the input packet through the various
buffering, encoding, and decoding stages.

direct_traceback/sim/globals conversion_pkg.vhd This file is the package file for converting signals.

direct_traceback/enc
conv_enc.vhd

This file contains the convolutional encoder with
circular buffer instantiation. This is a constraint length
9 encoder with rate 1/2.

direct_traceback/sim/channel
awgn_gen.vhd

This file contains the behavioral model for the AWGN
channel.

direct_traceback/ direct_traceback.do This file is the simulation script for use with ModelSim.

wave_vit.do
This file is the simulation script for use with ModelSim
that puts the relevant signals in the wave window.

direct_traceback.xise
This file contains the ISE software project. To run the
implementation, open direct_traceback.xise
with the ISE tool and run the flow.

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/Convolutional_Encoder.htm
http://www.xilinx.com/products/ipcenter/Viterbi_Decoder.htm
http://www.xilinx.com/products/ipcenter/DO-DI-CHDEC-LTE.htm
http://www.xilinx.com/products/ipcenter/DO-DI-AWGN.htm

Revision History

XAPP551 (v2.0) July 30, 2010 www.xilinx.com 21

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Date Version Description of Revisions

02/14/05 1.0 Initial Xilinx release.

07/30/10 2.0 Added Figure 2, Figure 5, Figure 6, Figure 7, Figure 14, Figure 19, and
Figure 20.
Added Trellis Truncation Encoding, Trellis Termination Encoding, Tail
Biting Encoding, Channel Model, Traceback Start, Packet Contains
Multiple Traceback Lengths, Packet Contains Single Traceback Length,
Packet Contains Less Than One Traceback Length, Recommendations,
Reference Designs, and References sections.
Clarified that reference designs are simulation reference designs in
Summary. Updated traceback length setting for data punctures in Viterbi
Decoding. Reorganized text in Tail Biting. Added possible scenarios to
the beginning of Tail Biting Decoder Implementation. Added Table 1.

http://www.xilinx.com

	Viterbi Decoder Block Decoding - Trellis Termination and Tail Biting
	Summary
	Viterbi Decoding
	Viterbi Block Decoding
	Trellis Truncation
	Trellis Termination (Tail Bits)
	Tail Biting

	Implementation
	Trellis Truncation Encoding
	Trellis Termination Encoding
	Tail Biting Encoding
	Channel Model
	Trellis Truncation Decoding Implementation
	Trellis Termination Decoder Implementation
	Trellis Construction
	Traceback Start
	Tail Biting Decoder Implementation
	Packet Contains Multiple Traceback Lengths
	Decoding Using First and Second Traceback Blocks
	Decoding Using Last Traceback Block First
	Decoding for Tail Biting Using First Traceback Block First

	Packet Contains Single Traceback Length
	Packet Contains Less Than One Traceback Length

	Recommendations
	Reference Designs
	Tail Biting Example
	Trellis Termination Training Sequence Example
	Trellis Termination Direct Traceback Example

	Conclusion
	References
	Revision History
	Notice of Disclaimer

