
XAPP1333 (v1.2) April 12, 2022  1
www.xilinx.com

Xilinx is creating an environment where employees, customers, and partners feel welcome and included. To that end, we’re removing noninclusive 
language from our products and related collateral. We’ve launched an internal initiative to remove language that could exclude people or reinforce 
historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive language in our older products as we 
work to make these changes and align with evolving industry standards. Follow this link for more information.

Summary
To store data in non-volatile memory (NVM) using a Zynq® UltraScale+™ device, data must be
stored externally and should be encrypted if it is confidential. All Zynq UltraScale+ devices have
a built-in physically unclonable function (PUF), which can generate a cryptographically strong,
device-unique encryption key that can be used in combination with the built-in advanced
encryption standard (AES) cryptographic core. This key cannot be read by a user, allowing for a
heightened level of key security. Only if a Zynq UltraScale+ device is provisioned to store the
PUF configuration information in eFUSEs and if Rivest-Shamir-Adleman (RSA) Authentication is
registered and enabled in eFUSEs, then the PUF’s device-unique encryption key can be used to
encrypt and decrypt user data, which can then be stored and read from external non-volatile
memory. Download the reference design files for this application note from the Xilinx website. For 
detailed information about the design files, see Reference Design.

Introduction
The PUF takes advantage of silicon variations unique to Zynq UltraScale+ devices to generate a 
device-unique encryption key that cannot be read by anyone, including the user. Along with 
generating a unique encryption key, the PUF also generates the required helper data so that the 
PUF can exactly regenerate the encryption key later. The details of the PUF are described in the 
Zynq UltraScale+ MPSoC: Technical Reference Manual (UG1085) [Ref 2]. Normally, the PUF’s 
encryption key, referred to as the Key Encryption Key (KEK), is used for encrypting a user’s 
plain-text red key so that a user’s red key can be stored encrypted in black key form in either 
eFUSES or the boot header. The black encryption key is then decrypted using the PUF’s KEK to 
generate the red key, which in turn is used for decrypting the boot information during secure 
boot. This use of the PUF is shown in the following figure.

IMPORTANT: The PUF characterization results confirm that over the life of the device, the PUF is expected to 
reliably regenerate the KEK across all voltages and temperatures assuming registration at a nominal 
voltage and temperature.

IMPORTANT: The RSA_EN eFUSE must be programmed in order to use the PUF’s device-unique encryption 
key to encrypt and decrypt user data. Once this is programmed, Boot Header based authentication 
(bh_auth_enable) can no longer be used.

Application Note: Zynq UltraSale+ Devices

XAPP1333 (v1.2) April 12, 2022

External Secure Storage Using the PUF 
Author: Nathan Menhorn

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=https:;d=design_security.html
https://www.xilinx.com/member/forms/download/design-license.html?cid=66a2ad28-1b59-4b49-9e1a-a33e847df88c
https://secure.xilinx.com/webreg/clickthrough.do?cid=66a2ad28-1b59-4b49-9e1a-a33e847df88c
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=1


Introduction

XAPP1333 (v1.2) April 12, 2022  2
www.xilinx.com

When the PUF is registered in eFUSEs and RSA authentication is enabled in eFUSEs, 
documented in Programming BBRAM and eFUSEs (XAPP1319) [Ref 3], the PUF’s device-unique 
encryption key can be used to encrypt and decrypt any user data. This encrypted data can then 
be stored externally to the Zynq UltraScale+ device, which is the focus of this application note. 
The RSA authentication settings cannot be stored in the boot header when using the PUF to 
encrypt and decrypt user data.

IMPORTANT: When the RSA_ENABLE eFUSEs are programmed, boot header authentication is no longer 
permitted.

The process of using the PUF to encrypt user data is shown in Figure 2 and works as follows: a 
user generates data that must be encrypted and appends an optional ID. This optional ID can 
be used to validate that the correct version of data that is being used, such as when the data 
consists of encryption key information or configuration and is useful in preventing replay 
attacks. Even though the ID is optional, Xilinx highly recommends using it to ensure a more 
secure system. The optional ID enables key/data revocation as the user data packet can be 
revoked by burning one of the 256-bit user eFUSEs. Each of the 256-bit user eFUSEs can be 
mapped to 256 different 8-bit user IDs. Keep in mind that user eFUSEs are a shared resource as 
the fuses could be used for Enhanced Key Revocation software, a tamper log (see Developing 
Tamper-Resistant Designs with Zynq UltraScale+ Devices (XAPP1323) [Ref 4], or any other user 
function.

Next, the PUF is enabled to regenerate the PUF’s device-unique encryption key, which is loaded 
into the AES cryptographic core to encrypt the data. Xilinx recommends minimizing the use of 
the PUF’s key by keeping the user data small or implementing an advanced key-rolling 
architecture where the PUF’s device-unique key is only used to encrypt the first portion of a 
larger sized data, thereby minimizing its exposure. This helps to avoid differential power 
analysis (DPA) attacks. After the encrypted data is written to external memory, the data is read 

X-Ref Target - Figure 1

Figure 1: Encrypting and Decrypting the Device Key Using PUF

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=2


Introduction

XAPP1333 (v1.2) April 12, 2022  3
www.xilinx.com

back and decrypted to verify the process using the GCM authentication tag. If the data is 
authenticated, the user selected ID is safe to use. Conversely, if the data verification fails, a 
revocation penalty can take place, such as burning an associated user eFUSE.

Decrypting external data using the PUF is shown in Figure 3 and works as follows: the encrypted 
data packet is read from the external memory location followed by regeneration of the PUF 
decryption key. The data is then decrypted and authenticated via the GCM tag. If authentication 
passes and if the ID from the decrypted data has not been revoked in user eFUSEs, then the data 
is valid and can be used. Conversely, if the GCM tag authentication fails, then a penalty can be 
invoked and the decryption process could be stopped to avoid side channel attacks such as 
DPA. Furthermore, if the decryption process authenticates but the data’s ID has been revoked in 
user eFUSEs, the data is invalid and should not be used.

IMPORTANT: The PUF KEK isn’t a FIPS legal key for storing data outside a cryptographic boundary. 
However, you can create a FIPS-legal KEK, encrypt the FIPS-legal KEK with the PUF KEK, store the encrypted 
FIPS-legal KEK in eFUSEs, and subsequently use the FIPS-legal KEK to store data outside the cryptographic 
boundary.

X-Ref Target - Figure 2

Figure 2: Normal Encryption Process Using PUF

Generate New Data 
(append user ID) Generate PUF Key Encrypt Data

Write Encrypte Data
to External Memory

Readback and 
Decrypt Data from 
External Memory

Data Safe for Use Invoke Penalty
(Burn user eFUSE)

GCM
Tag

Pass?

YES NO

X26448-032122

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=3


Hardware and Software Requirements

XAPP1333 (v1.2) April 12, 2022  4
www.xilinx.com

Hardware and Software Requirements
The hardware and software requirements for the reference systems are as follows:

• ZCU102 Evaluation Board
• AC power adapter (12 VDC)
• USB type-A to USB mini-B cable x2
• Optional Platform JTAG hardware and associated cables
• Secure Digital (SD) card formatted using the FAT file system
• Xilinx Vitis™ Development Environment (Vitis IDE) 2021.2
• Required design files, which can be downloaded here.

IMPORTANT: Programming any of the eFUSE settings noted in Table 12-13 in Zynq UltraScale+ MPSoC: 
Technical Reference (UG1085) [Ref 2] precludes Xilinx test access. Consequently, Xilinx may not accept 
return material authorization (RMA) request.

X-Ref Target - Figure 3

Figure 3: Using the PUF for Decryption

Read Encrypted 
Data from External 

Memory
Generate PUF Key Decrypt Data

Compare ID to ID 
in eFUSE array

Data Safe for Use Invalid Data 
(Do not use)ID Valid?Yes No

GCM 
Tag 

Pass?
Invoke Penalty 

(Burn user eFUSE)
Yes No

X26418-031622

Send Feedback

https://secure.xilinx.com/webreg/clickthrough.do?cid=66a2ad28-1b59-4b49-9e1a-a33e847df88c
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=4


Create a New Embedded Project for the Zynq UltraScale+ MPSoC

XAPP1333 (v1.2) April 12, 2022  5
www.xilinx.com

Create a New Embedded Project for the Zynq UltraScale+ 
MPSoC

Perform the following steps to create a new embedded project for the Zynq UltraScale+ MPSoC. 
A brief description is covered in this section. Step-by-step instructions can be found in 
Appendix A. For detailed elaboration on each step, refer to the UltraScale+ MPSoC: Embedded 
Design Tutorial (UG1209) [Ref 5] for further details.

1. Open up Vivado® Design Suite and create the hardware design required for the Zynq 
UltraScale+ ZCU102 Evaluation Board. The PL is not required for this lab so all the PS-PL 
interfaces are disabled and no bitstream is exported.

2. Export the hardware and launch Xilinx Vitis® IDE from within the Vivado Design Suite.
3. Create a platform project using the XSA file exported from Vivado. The platform projects will 

automatically create ZCU102_XAPP1333 platform that includes standalone domain BSP, 
first stage boot loader projects called zynqmp_fsbl and zynqmp_pmufw along with their 
associated Board Support Packages named zynqmp_fsbl_bsp and zynqmp_pmufw_bsp 
running respectively on the ARM Cortex-A53 processor in the APU domain and TMR 
MicroBaze processor in the PMU domain.

4. Build the platform, including zynqmp_fsbl and zynqmp_pmufw, by right-clicking on the  
ZCU102_XAPP1333 platform and select Project -> Build Project from the main menu. 

5. Create a HelloWorld project to verify the hardware and software setup before proceeding.

Key Generation
Key generation is covered in detail in the Secure Boot section of UltraScale+ MPSoC: Embedded 
Design Tutorial (UG1209) [Ref 5] so only a summary pertaining to this application note is 
documented here.

AES Key Generation 

Create a new directory in the Xilinx Vitis workspace root directory (called Keys). The Vitis root 
directory can be found the same level as the HelloWorld folder. Generate a device key and its 
associated IV, an operational key, and one partition block key and its associated IV. Combine 
these keys and IVs into a file named multiple_keys.nky. Alternatively, copy the Keys folder 
found in the reference design documents to use for this lab or, if desired, use them as a 
template and insert your own key and IV values. 

Device  zcu9eg;                                                             
Key 0   0123456789012345678901234567890123456789012345678901234567890123;   
IV      01DBD60260A7EC34DE5F6A494;                                              
Key Opt E070C542B6680A855724793A75222391E663CBD35F45D070F22F703A5CA31B45;   
Key 1   0000000100000001000000010000000100000001000000010000000100000001;     
IV 1    000000010000000100000001; 

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=5


PUF eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  6
www.xilinx.com

Encrypting the boot image is not required to use the PUF for encrypting user data. However, 
Xilinx highly recommends doing so, which is used throughout this application note.

IMPORTANT: Be sure to use your own AES keys and associated IVs for operational devices. The keys 
provided in this lab are for demonstration purposes and are not cryptographically strong. Per the NIST 
Special Publication (SP) 800-38D Recommendation for Block Cipher Modes of Operation: 
Galois/Counter Mode (GCM), new IVs need to be used each time a key is used to encrypt new data. This means that 

if the boot image is updated, a new IV needs to be selected and provided to Bootgen.

RSA Asymmetric Key Generation

For this application note, generate a pair of RSA keys called psk0.pem and ssk0.pem. 
Alternatively, these keys are provided in the design documents in the Keys folder. RSA 
authentication is required to use the PUF for encrypting and decrypting user data. While this 
application note does not require the use of a secondary key set, Xilinx highly recommends 
doing so in an operational application.

Generate SHA3 of Public RSA Asymmetric Key

Generate the associated SHA3 hash of the RSA PPK and name the output file sha3.txt. 
Alternatively, this hash can be found in the design documents in the Keys folder.

PUF eFUSE Configuration
IMPORTANT: THESE INSTRUCTIONS MODIFY THE EFUSES ON THE ZCU102 DEVELOPMENT BOARD AND 
MAY LIMIT FUTURE USE OF THE DEVELOPMENT BOARD FOR NON-SECURE TESTING AND DEBUGGING!

IMPORTANT: Programming any of the noted eFUSE settings noted in Table 12-13 Zynq UltraScale+ MPSoC: 
Technical Reference Manual (UG1085) [Ref 2] preclude Xilinx test access. Consequently, Xilinx might not 
accept return material authorization (RMA) requests. See the important note below Table 12-13 of the Zynq 
UltraScale+ MPSoC: Technical Reference (UG1085) [Ref 2].

PUF eFUSE Settings

PUF registration is covered in detail in Using the PUF in the UltraScale+ MPSoC: Embedded 
Design Tutorial (UG1209) [Ref 5] so only a summary pertaining to this application note is 
documented here.

1. In the Vitis workspace for this application note, right-click on the platform.spr that is located 
under ZCU102_XAPP1333 platform in the Explorer view and click Open.

Send Feedback

https://csrc.nist.gov/publications/detail/sp/800-38d/final
http://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://www.xilinx.com
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=6


PUF eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  7
www.xilinx.com

2. Select Board Support Package under standalone on psu_cortexa53_0 in the 
ZCU102_XAPP1333 platform view and click Modify BSP settings.

3. In the Supported Libraries, select xilsecure and xilskey.
4. Click OK to close the window.
5. Right-click the ZCU102_XAPP1333 platform in the Explorer view, which is now marked 

out-of-date, and click Build Project.
6. Select Board Support Package under standalone on psu_cortexa53_0 in the platform view  

that just opened and select Libraries tab in Operating Systems section.
7. Scroll to the bottom of the Libraries tab and click Import Examples for the xilskey library.
8. Check the xilskey_puf_registration example and click OK. This adds the associated project 

to your workspace.
9. Open the xilskey_puf_registration.h file in the src folder under the fully expanded 

xilskey_puf_registration_example_1_system in the Project Explorer tab.
10. Change the definition of XSK_PUF_INFO_ON_UART to TRUE. This setting is extremely 

important to verify the PUF registration completed successfully.
11. Ensure the definition of XSK_PUF_PROGRAM_EFUSE is set to TRUE.
12. Change the definition of XSK_PUF_PROGRAM_SECUREBITS to TRUE.
13. Change the definition of XSK_PUF_SYN_WRLK to TRUE.
14. Set the XSK_PUF_AES_KEY to the Key 0 value in the aes_key.nky file.

X-Ref Target - Figure 4

Figure 4: Standalone BSP for PUF eFUSE registration

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=7


PUF eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  8
www.xilinx.com

15. Set the XSK_PUF_BLACK_KEY_IV to a value that is user choice. This IV is not related to the 
IV created in aes_key.nky and can be any user generated value. This IV is used by 
encryption when encrypting the red key with the PUF’s KEK. 

16. Create a file named puf_iv.txt with the ASCII-HEX string of the PUF IV used in 
XSK_PUF_BLACK_KEY_IV as this is needed during boot. Alternatively, use the one provided 
in the design documents in the Keys folder. 

17. Verify all the required changes are made before continuing as shown in the figure below. 
The xilskey_puf_registration.h file with the example keys, shown in the figure below, is 
included in the reference design in the puf_registration folder.

18. To save changes to xilskey_puf_registration.h click File -> Save in the main toolbar.

PUF Registration into eFUSEs

IMPORTANT: THESE INSTRUCTIONS MODIFY THE EFUSES ON THE ZCU102 DEVELOPMENT BOARD AND 
MIGHT LIMIT FUTURE USE OF THE DEVELOPMENT BOARD FOR TESTING AND DEBUGGING!

To register the PUF into the eFuse, perform the following steps:

1. Right-click on the platform.spr that is located under ZCU102_XAPP1333 platform in the 
Explorer view and click Open.

2. Select Board Support Package under standalone on psu_cortexa53_0 in the 
ZCU102_XAPP1333 platform view and click Modify BSP settings.

X-Ref Target - Figure 5

Figure 5: PUF Registration File Required for eFUSE

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=8


PUF eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  9
www.xilinx.com

3. In the Board Support Package Settings window, expand the Overview tree, then click 
standalone as shown in the figure below.

4. Ensure the stdin and stdout functions are mapped to psu_uart_0 and click OK.
5. In Xilinx Vitis Explorer view, on the left, right-click 

xilskey_puf_registration_example_1_system and select Build Project. 
6. Turn power off to the ZCU102 board.
7. Connect either the USB JTAG connector J2 to the ZCU102 development board and then a 

computer or connect the Platform JTAG to the ZCU102 and the associated hardware to a 
computer.

8. Connect a USB cable from the USB Serial port connector J83 on the ZCU102 board to a 
computer and note which COM port was enumerated with the Silicon Labs Quad CP2108 
USB to UART Bridge: Interface 0.

9. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed 
above at 115,200 baud. Enable terminal logging and select a file name and location.

X-Ref Target - Figure 6

Figure 6: Setting Up the UART Output Using the BSP Settings

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=9


PUF eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  10
www.xilinx.com

10. On the ZCU102 development board, set the dip switch SW6 to configure the board for JTAG 
boot mode as shown in the figure below.

11. Power on the ZCU102 board using switch SW1.

X-Ref Target - Figure 7

Figure 7: ZCU102 JTAG Boot Mode Switch

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=10


PUF eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  11
www.xilinx.com

12. Right-click xilskey_puf_registration_example_1 > Run As > Launch Hardware (Single 
Application Debug) as shown in the figure below.

The PUF registration application starts running and outputs information to the terminal as 
shown in the figure below. An example log of the PUF registration is included in the design files 
in the Logs folder called puf_registration_log.log.

X-Ref Target - Figure 8

Figure 8: Running the PUF Registration on the ZCU102 Board

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=11


PUF eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  12
www.xilinx.com

13. Verify line 12 of the UART output is the Red Key that was configured in XSK_PUF_AES_KEY 
in xilskey_puf_registration.h.

14. Verify line 13 of the UART output is the Black Key IV that was configured in 
XSK_PUF_BLACK_KEY_IV in xilskey_puf_registration.h.

• Line 20 of the UART output is the Black Key generated by the AES encryption engine using 
the PUF as a KEK.

X-Ref Target - Figure 9

Figure 9: Terminal Output Registering PUF to eFUSEs

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=12


RSA eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  13
www.xilinx.com

• Line 21 shows that the Black Key was burned into eFUSEs.
• Line 23 of the UART output is the required syndrome data that the PUF uses to regenerate 

its device-unique encryption key. It is the data that is being programmed into the eFUSEs.  
• Lines 31 shows that the PUF information has been burned into eFUSEs.
15. Power off the ZCU102 development board.

RSA eFUSE Configuration
IMPORTANT: THESE INSTRUCTIONS MODIFY THE EFUSES ON THE ZCU102 DEVELOPMENT BOARD AND 
MIGHT LIMIT FUTURE USE OF THE DEVELOPMENT BOARD FOR NON-SECURE TESTING AND DEBUGGING!

IMPORTANT: Programming any of the RSA_EN eFUSE settings preclude Xilinx test access. Consequently, 
Xilinx might not accept return material authorization (RMA) requests.

RSA eFUSE Settings

RSA eFUSE registration is covered in detail in Programming eFUSEs for AES and RSA 
Cryptographic Functions in the Programming BBRAM and RSA_EN eFUSEs [Ref 3], so only a 
summary pertaining to this application note is covered here.

1. Right-click on the platform.spr that is located under ZCU102_XAPP1333 platform in the 
Explorer view and click Open.

2. Select Board Support Package under standalone on psu_cortexa53_0 in the platform 
view  that just opened and select Libraries tab in Operating Systems section.

3. Scroll to the bottom of the libraries tab and click Import Examples for the xilskey library.
4. Check the xilskey_efuseps_zynqmp_example project and click OK. This adds the 

associated project to your workspace.
5. Open the xilskey_efuseps_zynqmp_input.h file in the src folder under the fully expanded 

xilskey_efuseps_zynqmp_example_1_system in the Project Explorer tab.
6. Change the definition of XSK_EFUSEPS_RSA_ENABLE to TRUE. This permanently forces the 

use of RSA authentication.
7. Change the definition of XSK_EFUSEPS_PPK0_WR_LOCK to TRUE. This prevents any 

modifications to the PPK0 hash stored in eFUSEs.

The first set of settings are shown in the figure below:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=13


RSA eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  14
www.xilinx.com

8. In the next section of the configuration, change the definition of 
XSK_EFUSEPS_WRITE_PPK0_HASH to TRUE.

9. Change the definition of XSK_EFUSEPS_PPK0_HASH to the value stored in sha3.txt that 
was created by bootgen (or copied form the Keys directory) from the previous section.

The second set of settings are shown in Figure 11. These settings using the examples keys 
are included in the design files in the xilskey_efuseps_zynqmp_input.h file in the 
rsa_registration folder. The second RSA authentication key (PPK1) is not written for 
this application note but it can be done by changing the value of 
XSK_EFUSEPS_PPK1_WR_LOCK and XSK_EFUSEPS_PPK1_HASH.

10. To save changes to xilskey_efuseps_zynqmp_input.h click File -> Save in the main toolbar.

X-Ref Target - Figure 10

Figure 10: Settings for RSA Authentication When Using eFUSEs - 1

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=14


RSA eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  15
www.xilinx.com

Programming RSA eFUSEs

Program the RSA eFUSEs by performing the following steps:

1. Right-click on the platform.spr that is located under ZCU102_XAPP1333 platform in the 
Explorer view and click Open.

2. Select Board Support Package under standalone on psu_cortexa53_0 in the 
ZCU102_XAPP1333 platform view and click Modify BSP settings.

3. In the Board Support Package Settings window, expand the Overview tree and then click 
standalone, as shown in Figure 4 in step 2 of PUF Registration into eFUSEs.

4. Ensure the stdin and stdout functions are still mapped to psu_uart_0 and click OK.
5. In Xilinx Vitis Explorer view, on the left, right-click 

xilskey_efuseps_zynqmp_example_1_system and select the Build Project option. This 
may have already been completed if your SDK environment is set up to build automatically.

6. Power off the ZCU102 board.

X-Ref Target - Figure 11

Figure 11: Settings for RSA Authentication When Using eFUSEs - 2

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=15


RSA eFUSE Configuration

XAPP1333 (v1.2) April 12, 2022  16
www.xilinx.com

7. Connect either the USB JTAG connector J2 to the ZCU102 development board and then a 
computer or connect the Platform JTAG to the ZCU102 and the associated hardware to a 
computer.

8. Connect a USB cable from the USB Serial port connector J83 on the ZCU102 board to a 
computer and make note of which COM port was enumerated with the Silicon Labs Quad 
CP2108 USB to UART Bridge: Interface 0.

9. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed 
above at 115,200 baud. Enable terminal logging and select a file name and location.

10. On the ZCU102 development board, set the dip switch SW6 to configure the board for 
JTAG boot mode as shown in Figure 7.

11. Power on the ZCU102 board using switch SW1.
12. Right-click xilskey_efuseps_zynqmp_example_1 > Run As > Launch on Hardware (Single 

Application Debug).
13. The RSA eFUSE application starts running and outputs information to the terminal as shown 

in Figure 12. An example log of the writing the RSA eFUSEs is included in the design files in 
the Logs folder called write_rsa_enable_log.log.

14. Verify line 15 from the output terminal matches the SHA3 output that was generated and 
stored in the sha3.txt file.

15. Notice that line 32 from the terminal matches the SHA3 output that was generated and 
stored in sha.txt file.

• Line 32 confirms that RSA authentication is enabled and now required for use because this 
was burned into the eFUSEs.

• Line 33 shows that the PPK0 eFUSE has been programmed and the PPK0 SHA3 value cannot 
be changed.

16. Power off the ZCU102 development board.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=16


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  17
www.xilinx.com

PUF Encryption and Decryption

PUF Encryption Decryption Demo Application

The PUF can now be used for encrypting and decrypting user data because the ZCU102 
development board has been provisioned. Specifically, this section uses a reference design to 
show how to encrypt and decrypt user generated AES keys that are stored on an SD card.

X-Ref Target - Figure 12

Figure 12: Terminal Output While Writing the RSA Settings to eFUSEs

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=17


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  18
www.xilinx.com

1. To support the SD card storage the xilffs library has to be added to application BSP. 
Right-click on the platform.spr that is located under ZCU102_XAPP1333 platform in the 
Explorer view and click Open.

2. Select Board Support Package under standalone on psu_cortexa53_0 in the 
ZCU102_XAPP1333 platform view and click Modify BSP settings.

3. Select xilffs library in the Board Support Package Settings window.  Click on the xilffs 
library that appears on the left in Overview -> standalone and set the enable_exfat 
configuration parameter to true. Click OK.

These settings are shown in the following figure:

4. Right-click the ZCU102_XAPP1333 platform in the Explorer view, which is now marked as 
out-of-date, and click Build Project.

5. In Xilinx Vitis, click File > New > Application Project. If Create a New Application Project 
window appear click Next.

6. Select ZCU102_XAPP1333 platform in the Platform Window and click Next.
7. Type in ExternalKeyStorage in the Application project name:
8. Leave remaining parameters at their default value and click Next. 
9. Leave the domain as standalone on psu_cortexa53_0. These settings are shown in 

Figure 14, Figure 15, and Figure 16.
10. Select Next.
11. Select Empty Application (C).
12. Click Finish.
13. Expand the src folder in ExternalKeyStorage of the Project explorer window.
14. Right-click src and select Import Sources.

X-Ref Target - Figure 13

Figure 13: Configuring Board Support Package Settings in Xilinx Vitis – Standalone Library 
Configuration

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=18


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  19
www.xilinx.com

15. Click Browse in the File system window.
16. Navigate to the ExternalKeyStorage/src folder in the reference design file directory 

and check all “.c” and “.h” files and then click Finish as shown in Figure 17.

X-Ref Target - Figure 14

Figure 14: Creating the ExternalKeyStorage Project in Xilinx Vitis – Platform Selection

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=19


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  20
www.xilinx.com

X-Ref Target - Figure 15

Figure 15: Creating the ExternalKeyStorage Project in Xilinx Vitis – System Selection

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=20


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  21
www.xilinx.com

X-Ref Target - Figure 16

Figure 16: Creating the ExternalKeyStorage Project in Xilinx Vitis – Domain Selection

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=21


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  22
www.xilinx.com

17. Create a new file called ExternalKeyStorage.bif in the ExternalKeyStorage folder. This file 
is also included with the design files and can be copied into the project folder but the paths 
must be updated to point to the correct folders. Manual creation of the BIF file is necessary 
to use the Black Key during boot as the Create Boot Image tool within Xilinx Vitis does not 
currently support this feature. Future revisions of Xilinx Vitis may support this feature.

18. Update the contents of the file to the contents shown in the following figure using the 
correct paths.

X-Ref Target - Figure 17

Figure 17: Importing Files from the Reference Design into the ExternalKeyStorage Project
X26396-031422

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=22


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  23
www.xilinx.com

19. Build the ExternalKeyStorage project in Xilinx Vitis.
20. From the command prompt in the ExternalKeyStorage folder run the following command: 

bootgen –p zcu9eg –arch zynqmp –image ExternalKeyStorage.bif –w –o 
BOOT.bin

21. Power off the ZCU102 board.
22. Copy BOOT.bin to a blank SD card.
23. Load the SD card into the J100 SD slot on the ZCU102 development board.
24. Connect a USB cable from the USB Serial port J83 on the ZCU102 board to a computer and 

make note of which COM port was enumerated with the Silicon Labs Quad CP2108 USB to 
UART Bridge: Interface 0.

25. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed 
above at 115,200 baud. Enable terminal logging and select a file name and location.

X-Ref Target - Figure 18

Figure 18: ExternalKeyStorage.bif File

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=23


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  24
www.xilinx.com

26. On the ZCU102 development board, set the dip switch SW6 to configure the board for SD 
boot mode as shown in the previous figure.

27. Load the SD card into the J100 SD slot on the ZCU102 development board.
28. Power on the ZCU102 board using switch SW1.

In the terminal program, a menu appears as shown in the following figure:

29. Press 1 to encrypt a user key and to save the encrypted key to the external SD card and 
follow the prompts, as illustrated in Figure 21.

X-Ref Target - Figure 19

Figure 19: ZCU102 SD Boot Mode Switch Setting

X-Ref Target - Figure 20C:\Users\ericj\Desktop\XAPP1333\Drawing9 2022.03.15 14.55.19

Figure 20: Main Menu of External Key Storage Demo

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=24


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  25
www.xilinx.com

a. Enter a 96-bit IV. Please note: Do not reuse IV. Per the AES-GCM standard the IV should 
be a new one per every use.

b. Enter an 8-bit key ID. Use an ID of 42 for this key. An ID of 0 is mapped to user eFUSE 0 
bit 0, an ID of 1 is mapped to user eFUSE 0 bit 1, … , an ID of 255 is mapped to user eFUSE 
7 bit 31.

c. Enter a 256-bit AES key.
d. Enter a file name including a file extension (for example, Key1.key) for the key up to 16 

characters long and then press enter when complete.
30. After entering the file name, the program displays the unencrypted key blob which consists 

of the IV, Key’s ID, and the key itself. Afterwards, the ID and AES key are encrypted using the 
PUF’s device-unique KEK, the entire 61 byte encrypted key blob is displayed, and the entire 
encrypted key blob is written to the SD card.

31. Repeat the entire encryption process and encrypt another key and new IV (as per AES-GCM 
standard), using step 29. However, select an ID that is equal to 0xFF and create a unique key 
file name (e.g., Key2.key).

32. Power off the ZCU102 board.
33. Remove the SD card and insert the card into a SD card reader on a computer.
34. Using a browser or the command line, display the contents of the SD card.
35. Make sure both key files generated in step 29 and step 31 appear on the SD card as shown 

in Figure 22.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=25


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  26
www.xilinx.com

36. Open both keys in a hex editor and confirm that they match the encrypted key blobs 
displayed in the user application. KEY1.KEY is shown in the following figure and matches the 
output generated in Figure 21.

X-Ref Target - Figure 21

Figure 21: External Key Storage Encryption

X-Ref Target - Figure 22

Figure 22: Directory Contents of the SD Card after Writing the Encrypted Key

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=26


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  27
www.xilinx.com

37. Remove the SD card from the computer and insert the card into the ZCU102 development 
board.

38. Apply power to the ZCU102 development board. The menu shown in Figure 20 appears.
39. Press 2 to decrypt the data that is stored externally on the SD card.
40. Type in the name of the key file and the file extension used in step 29 (Key1.key).

a. The key is read from the SD card and placed into OCM for processing.
b. The encrypted key blob is displayed.
c. The decryption process of the key blob takes place and the decrypted information is 

displayed showing the IV, key ID, and key.
d. The decrypted GCM tag is compared to the GCM tag stored in the encrypted key blob 

and the software indicates if they match.
e. Lastly, the key ID is mapped to and compared to the associated bit stored in the user 

eFUSEs and the software indicates if the IDs match. In this case, the IDs match. An ID of 
0 is mapped to user eFUSE 0 bit 0, an ID of 1 is mapped to user eFUSE 0 bit 1, … , an ID 
of 255 is mapped to user eFUSE 7 bit 31.

41. Repeat the process and decrypt the second key that was created in step 29.
42. All of the same information from step 40 is displayed and the key is decrypted and passes 

authentication. However, the software simulates ID 255 being revoked and should not be 
used. When ID 255 is read from a decrypted key file, the software replaces the actual value 
read in from User eFUSE 7, 0x0000_0000, with a simulated value of 0x8000_0000. Since bit 31 
of User eFUSE 7 is now set and appears to be burned, this simulates ID 255 as being revoked. 
Decrypting the two test keys is shown in the following figure.

X-Ref Target - Figure 23

Figure 23: Encrypted Key Data Stored in KEY1.KEY Read from the SD Card

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=27


PUF Encryption and Decryption

XAPP1333 (v1.2) April 12, 2022  28
www.xilinx.com

X-Ref Target - Figure 24

Figure 24: External Key Storage Decryption - Decrypting Two Keys and Simulating a 
Revocation of Key with ID 255

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=28


Ordering

XAPP1333 (v1.2) April 12, 2022  29
www.xilinx.com

Ordering

Because of the additional screening required to ensure entropy, Xilinx offers two versions of the
PUF, a 128-bit and a 256-bit. In both cases, the KEK length is 256 bits. These devices require special 
ordering codes (SCD). The PUF is not supported for the standard ordering codes, except for 
development and evaluation, as there is no assurance that there is sufficient entropy in the
KEK. Entropy is measured as described in Zynq UltraScale+ MPSoC PUF Characterization Report
(RPT236) [Ref 6] which is a Xilinx proprietary report. Contact your local Xilinx FAE or sales
person to obtain a copy of the report. Use of the PUF does not require additional licensing fees.

Conclusion

This application note guides a user on how to use the PUF’s device-unique encryption key in
conjunction with the AES-GCM hardware in order to encrypt user generated data and store the
encrypted data externally. The encrypted data can then be read from external storage and
decrypted using the AES-GCM hardware in conjunction with the PUF’s device-unique key. In
addition, this application note shows how to perform data validation of decrypted data packets
by utilizing values stored in the user programmable section of eFUSEs.

Reference Design
Download the reference design files for this application note from the Xilinx website. The table 
below displays the reference design matrix.

Table  1:  Reference Design Checklist

Parameter Description

General

Developer Name(s) Jim Wesselkamper, Nathan Menhorn, Krzysztof Kepa
Target Devices Zynq UltraScale+ devices
Source code provided? Yes
Source code format (if provided) C
Design uses code or IP from existing reference design, 
application note, 3rd party or Vivado
software? If yes, list.
Simulation
Functional simulation performed No
Timing simulation performed? No

Send Feedback

https://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=66a2ad28-1b59-4b49-9e1a-a33e847df88c
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=29


Document Navigator and Design Hubs

XAPP1333 (v1.2) April 12, 2022  30
www.xilinx.com

Document Navigator and Design Hubs

Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support 
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):
• From the Vivado® IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:
• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator 
page o the Xilinx website.

Appendix-A

Creating the Zynq UltraScale+ ZCU102 Evaluation Board Hardware 
Design

1. Open Vivado Design Suite.
2. In the Quick Start tab click Create Project.
3. Click Next in the Create a New Vivado Project page.

Testbench provided for functional and timing 
simulation?

No

Testbench format N/A
Simulator software and version N/A
SPICE/IBIS simulations N/A
Implementation software tool(s) and version Vitis 2021.2
Static timing analysis performed? No
Hardware Verification

Hardware verified? Yes
Platform used for verification ZCU102 evaluation board

Parameter Description

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=30


Document Navigator and Design Hubs

XAPP1333 (v1.2) April 12, 2022  31
www.xilinx.com

4. Enter ZCU102 in the Project name.
5. Enter or select an appropriate working directory in the Project location.
6. Click Next on the Project Name page.
7. In Project Type, select RTL Project and uncheck two boxes for Do not specify sources at

this time and Project is an extensible Vitis platform.
8. Click Next on the Project Type page.
9. Click Next on the Add Sources page.
10. Click Next on the Add Constraints (optional) page.
11. On the Default Part page, click the Boards tab.
12. Type in ZCU102 in the Search.
13. Click the Zynq UltraScale+ ZCU102 Evaluation Board.
14. Click Next on the Default Part page.
15. Click Finish on the New Project Summary Page and wait while the project is being created.
16. In the Project Manager tab located on the left of the Vivado workspace, click IP

INTEGRATOR > Create Block Design.
17. When the Create Block Design window appears, type in ZCU102 in Design name. Leave

everything else set to default.
18. Click OK and wait while the design is created.
19. In the Diagram section of the workspace, located on the top right, click the + button to add

IP.
20. When the Search box appears, type in ZYNQ.
21. Double-click Zynq UltraScale+ MPSoC and wait while the part is added to the design.
22. Click Run Block Automation at the top of the Diagram window.
23. After the Run Block Automation window appears, select All Automation and Apply Board

Preset, click OK and wait while the automation takes place.
24. Double-click the Zynq UltraScale+ part in the Diagram window.
25. Click Page Navigator > PS-PL Configuration located on the left of the Zynq UltraScale+

(3.3) window.
26. Click PS-PL Interfaces located in the PS-PL Configuration window.
27. Click Master Interface and uncheck the AXI HPM0 FPD and AXI HPM1 FPD parameters.
28. Click OK to close the window.
29. Pres F6 to validate the design.
30. Click OK when the Validate Design window opens indicating the validation was successful.
31. In the BLOCK DESIGN window, click the Sources tab in the upper left-hand corner.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=31


Document Navigator and Design Hubs

XAPP1333 (v1.2) April 12, 2022  32
www.xilinx.com

32. Right-click ZCU102 under Design Sources and select Create HDL Wrapper.
33. When the Create HDL Wrapper window opens, click Let Vivado manage wrapper and 

auto-update, then click OK and wait while the sources are created.
34. In the BLOCK DESIGN window in the upper left corner on the Sources tab, expand the 

ZCU102_wrapper.
35. Right-click ZCU102_i: ZCU102 and select Generate Output Products.
36. Leave the default settings in the Generate Output Products window. Click Generate and 

wait while the IP is being generated.
37. Click OK when the Generate Output Products window displays Out-of-context module 

run was launched for generating output products.

Exporting the ZCU102 Hardware and Launching Xilinx Vitis IDE

1. In the main Vivado Design Suite toolbar select File > Export > Export Hardware.
2. Click Next in the Export Hardware Platform window. 
3. Select Pre-synthesis output and then click Next in Output window. 
4. Leave the XSA file name and location default values and click Next in Files window. 
5. Click Finish in Exporting Hardware Platform window. 
6. In the main Vivado Design Suite toolbar select Tools -> Launch Vitis IDE.
7. If Vitis IDE Launcher window opens then in the Workspace provide appropriate working 

directory to create Vitis workspace and click Launch.
8. In the Welcome tab click Create Platform Project under Project column. If no Welcome tab is 

present then in the main toolbar click File -> New -> Platform Project. 
9. Type in ZCU102 XAPP1333 as Platform project name in Create new platform window and 

click Next.
10. In Hardware Specification section of Platform window click Browse to search the XSA file 

location. 
11. In Create Platform from XSA window navigate to location that was provided in step 3, 

select the previously experted XSA file and click Open. Back in Hardware Specification 
section of Platform window the file should appear in the XSA File selection.

12. Leave other settings with default values, and then click Finish. After importing the 
hardware, you should see a project named ZCU102_XAPP1333 that was automatically 
created based upon the ZCU102 evaluation board. The platform is marked out-of-date 
because the software components are not yet built by Vitis.

13. To build the platform in Vitis Select the ZCU102 XAPP1333 platform in the explorer view on 
the upper, left side and in the main toolbar click Project -> Build Project.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=32


Document Navigator and Design Hubs

XAPP1333 (v1.2) April 12, 2022  33
www.xilinx.com

Validate the Hardware and Software with the Hello World 
Application 

1. In the main Xilinx Vitis toolbar, select File > New > Application Project. If the Create a 
New Application Project window appears, click Next..

2. Select ZCU102_XAPP1333 platform in the Platform window and then click Next.
3. In the Application Project Details type in HelloWorld in the Application project name. Leave 

remaining parameters at their default value and click Next.
4. Leave the domain as standalone on psu_cortexa53_0 and click Next.
5. On the Template page of the New Project window, select Hello World.
6. Click Finish.
7. Right-click on the platform.spr that is located under ZCU102_XAPP1333 platform in the 

Explorer view and click Open. 
8. Select Board Support Package Settings under standalone on psu_cortexa53_0 in the 

ZCU102_XAPP1333 platform view and click Modify BSP settings.
9. In the Board Support Package Settings window expand the Overview tree and then click 

standalone.
10. Make sure the stdin and stdout functions are mapped to psu_uart_0 and click OK.
11. Right-click the HelloWorld project and select Build Project.
12. Connect either the USB JTAG connector J2 to the ZCU102 development board and then to a 

computer or connect the Platform JTAG to the ZCU102 via J8 and the associated hardware to 
a computer.

13. Connect a USB cable from the USB Serial port connector J83 on the ZCU102 board to a 
computer and make note of which COM port was enumerated with the Silicon Labs Quad 
CP2108 USB to UART Bridge: Interface 0.

14. Open a terminal program such as PuTTY or Tera Term and connect to the COM port listed 
above at 115,200 baud.

15. On the ZCU102 development board set the dip switch to configure the board for JTAG boot 
mode as shown in Figure 7.

16. Right-click the HelloWorld project and select Run As > Launch on Hardware (Single).
17. Verify that “Hello World” is output on the terminal screen. The hardware and software is 

properly configured and is now ready for use.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=33


References

XAPP1333 (v1.2) April 12, 2022  34
www.xilinx.com

References
1. Design Security Lounge
2. Zynq UltraScale+ MPSoC Device: Technical Reference Manual (UG1085) 
3. Programming BBRAM and eFUSEs (XAPP1319) 
4. Developing Tamper-Resistant Designs with Zynq UltraScale+ Devices (XAPP1323)
5. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209) 
6. Zynq UltraScale+ MPSoC PUF Characterization Report (RPT236). Available in Design Security 

Lounge.
7. NIST Special Publication (SP) 800-38D Recommendation for Block Cipher Modes of Operation: 

Galois/Counter Mode (GCM)

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the 
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL 

Section Revision Summary

04/12/2022 Version 1.2

Throughout document Updated SDK information to Vitis across all content
Introduction Updated 2 block diagrams
PUF eFUSE Configuration Added 1 new figure, replaced 2 and removed 1
PUF Encryption and Decryption Added 2 new figures, replaced 6 and removed 2

Ordering
Updated SDK steps to Vitis steps and removed sub-section: 
Creating the First Stage Boot Loader (FSBL) and Board 
Support Package (BSP)

05/28/2021 Version 1.1

Introduction • Added a note for further clarity about boot header 
permissibility

• Added a note about the PUF Key
06/26/2018 Version 1.0

Initial Xilinx release. N/A

Send Feedback

https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=https:;d=ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=https:;d=design_security.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://www.xilinx.com/cgi-bin/docs/ndoc?t=https:;d=design_security.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge 
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/support/documentation/application_notes/xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/cgi-bin/docs/ndoc?t=security-lounge
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/member/design_security.html.
https://www.xilinx.com/member/design_security.html.
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=34


Please Read: Important Legal Notices

XAPP1333 (v1.2) April 12, 2022  35
www.xilinx.com

WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in 
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, 
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, 
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result 
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the 
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the 
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written 
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which 
can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license 
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe 
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of 
Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF 
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY 
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN").  
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH 
SYSTEMS FOR SAFETY PURPOSES.  USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF 
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2018-2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Kria, Spartan, Versal, Virtex, Vitis, Vivado, Zynq, and 
other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the 
property of their respective owners.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1333&Title=External%20Secure%20Storage%20Using%20the%20PUF&releaseVersion=1.2&docPage=35

	External Secure Storage Using the PUF
	Summary
	Introduction
	Hardware and Software Requirements
	Create a New Embedded Project for the Zynq UltraScale+ MPSoC
	Key Generation
	AES Key Generation
	RSA Asymmetric Key Generation
	Generate SHA3 of Public RSA Asymmetric Key

	PUF eFUSE Configuration
	PUF eFUSE Settings
	PUF Registration into eFUSEs

	RSA eFUSE Configuration
	RSA eFUSE Settings
	Programming RSA eFUSEs

	PUF Encryption and Decryption
	PUF Encryption Decryption Demo Application

	Ordering
	Conclusion
	Reference Design
	Document Navigator and Design Hubs
	Appendix A
	Creating the Zynq UltraScale+ ZCU102 Evaluation Board Hardware Design
	Exporting the ZCU102 Hardware and Launching Xilinx Vitis IDE
	Validate the Hardware and Software with the Hello World Application

	References
	Revision History
	Please Read: Important Legal Notices




