

Aurora 8B10B for GTY UltraScale+, Zynq UltraScale+ MPSoC and RFSoC

Author: Antonello Di Fresco and Paolo Novellini

Summary

This application note targets the Aurora 8B10B protocol for GTY transceivers in UltraScale+[™] devices. A reference design with a customized Aurora IP is provided to support the GTY transceiver when connected to a device supporting only the Aurora 8B10B protocol, such as Artix-7. The reference design is based on Xilinx[®] LogiCORE[™] IP AXI Chip2Chip core.

Reference Design

Two reference designs were created to validate the Aurora 8B10B core with GTY transceivers. To verify interoperability, one reference design implements an AXI Chip2Chip Master and the other reference design implements an AXI Chip2Chip Slave. The AXI Chip2Chip Master is developed for either RFSoC or Virtex[®] UltraScale+ devices. The AXI Chip2Chip Slave is developed for Artix[®]-7 devices.

For more information on this IP core, see the AXI Chip2Chip Product Guide (PG067) [Ref 1].

Download the reference design files for this application note from the Xilinx website.

Tool Flow and Verification

The following checklist indicates the tool flow and verification procedures used for the provided reference design.

Parameter	Description
General	
Developer Name	Xilinx
Target Devices	UltraScale+, Zynq UltraScale+ MPSoC and RFSoC
Source code provided?	Yes
Source code format (if provided)	Verilog
Design uses code or IP from existing reference design, application note, 3rd party or Vivado software? If yes, list.	AXI Chip2Chip v5.0
	Aurora 8B/10B v11.1
	Aurora_8b10b_gty v1.0
Simulation	
Functional simulation performed	Yes

Table 1: Reference Design Matrix

Table 1: Reference Design Matrix (Cont'd)

Parameter	Description
Timing simulation performed?	No
Testbench provided for functional and timing simulation?	Yes
Test bench format	Verilog
Simulator software and version	Vivado simulator 2018.1 and Modelsim 10.6b
SPICE/IBIS simulations	No
Implementation	
Synthesis software tools/versions used	Vivado tools 2018.1
Implementation software tools/versions used	Vivado tools 2018.1
Static timing analysis performed	Yes
Hardware Verification	
Hardware verified	Yes
Platform used for verification	AC701, ZCU1254, VCU1262

For the Master reference design, the top-level code is axi_chip2chip_master_exdes.v.
The top-level ports are described in Table 2.

Name	Size	Direction	Description
reset	1	Input	Global system reset
gt_refclk_p	1	Input	Differential input clk to GT. 491.52MHz
gt_refclk_n	1	Input	Differential input clk to GT. 491.52MHz
aurora_rx_p_mas	1	Input	Differential serial GT RX input for lane 0.
aurora_rx_n_mas	1	Input	Differential serial GT RX input for lane 0.
aurora_tx_p_mas	1	Output	Differential serial GT TX output for lane 0.
aurora_tx_n_mas	1	Output	Differential serial GT TX output for lane 0.
pma_init	1	Input	GTY Reset.
start_traffic	1	Input	Start traffic generator test.
t_axi_calib_done_out_mas	1	Output	Asserted when Link Detect FSM is in the SYNC state.
t_axi_calib_error_out_mas	1	Output	Multiple bits are received with errors in the Master or Slave AXI Chip2Chip core.
axi_c2c_link_error_out_mas	1	Output	Asserted when the AXI Chip2Chip Slave core is reset during normal operations.
t_axi_phy_error_out_mas	1	Output	Link Detect FSM failed due to a configuration mismatch of Master and Slave AXI Chip2Chip cores.
lite_error	1	Output	AXI4-Lite interface error.
axi4_error	1	Output	AXI4 interface error.

Table 2: axi_chip2chip_master_exdes.v Port List

For the Slave reference design the top-level code is axi_chip2chip_slave_exdes.v. The top-level ports are described in Table 3.

Name	Size	Direction	Description
reset	1	Input	Global system reset
gtxq1_p	1	Input	Differential input clk to GT. 491.52MHz
gtxq1_n	1	Input	Differential input clk to GT. 491.52MHz
aurora_rx_p_slv	1	Input	Differential serial GT RX input for lane 0.
aurora_rx_n_slv	1	Input	Differential serial GT RX input for lane 0.
aurora_tx_p_slv	1	Output	Differential serial GT TX output for lane 0.
aurora_tx_n_slv	1	Output	Differential serial GT TX output for lane 0.
pma_init	1	Input	GTP Reset.
t_axi_calib_done_out_slv	1	Output	Asserted when Link Detect FSM is in the SYNC state.
t_axi_calib_error_out_slv	1	Output	Multiple bits are received with errors in the Master or Slave AXI Chip2Chip core.
t_axi_phy_error_out_slv	1	Output	Link Detect FSM failed due to a configuration mismatch of Master and Slave AXI Chip2Chip cores.
lite_error	1	Output	AXI4-Lite interface error.
axi4_error	1	Output	AXI4 interface error.

Table 3: axi_chip2chip_slave_exdes.v Port List

Hardware Architecture

Figure 1 shows the demonstration test bench with Aurora interface and the high-level block diagram for each reference design.

Figure 1: Hardware Test Bench

In the Master design, shown in Figure 2, the AXI Chip2Chip and the Aurora 8B10B for GTY are connected using IP Integrator.

The block design is instantiated in a wrapper where there is test logic.

Figure 2: AXI Chip2Chip and Aurora Block Design

Figure 3 shows the Master AXI Chip2Chip configuration.

A Re-customize IP	maximum at a	x
AXI Chip2Chip Bridge (5.0)		A
Ocumentation IP Location		
Show disabled ports	Component Name axi_chip2chip_0 User Advanced Global Configuration Options Chip2Chip Mode Master Clocking Mode Independent AXI-Lite Mode Master AXI Interface Configuration Options Data Width 32 Address Width 32 Address Width 32 Address Width 32 Physical Layer Configuration Options PHY Type AURORABB10B PHY Width Compact 2-1 Compact 2-1	flow.
	ОК	Cancel

Figure 3: Master AXI Chip2Chip Configuration

The final design of the Master side is the same as the example design that is automatically generated from the AXI Chip2Chip core.

For the Slave side, the design has been generated automatically from the AXI Chip2Chip core and configured as Slave.

Figure 4 shows the Slave AXI Chip2Chip configuration.

Re-customize IP		x
AXI Chip2Chip Bridge (5.0)	•	
Occumentation 📄 IP Location C Switch to Defaults		
Show disabled ports	User Advanced Component Name ad_chip2chip_slave Global Configuration Options Chip2Chip Mode Slave Clocking Mode Independent XXI-Life Mode Slave Slave XXI-Life Mode Slave Slave XXI-Life Mode Slave Slave XXI-Life Mode Slave Slave<th></th>	
	OK Cancel	

Figure 4: Slave AXI Chip2Chip Configuration

Because the line rate cannot be configured from the AXI Chip2Chip wizard, the Aurora core must be reconfigured to be the same line rate of the Master side after the example design Slave Chip2Chip is generated. Figure 5 shows the selected configuration.

Aurora 8B10B (11.1)		×
1 Documentation 📄 IP Location C Switch to Defaults		
Show disabled ports USER_DATA_M_AVI_RX + USER_DATA_S_AVI_RX + USER_DATA_S_AVI_RX + USER_DATA_S_AVI_TX Ink_rest_out + OT_DIFF_REFCLK1 + OT_DIFF_REFCLK1 + OT_DIFF_CLK + OT_DIFF_CLK + OT_DIFF_CLK + OT_DEFLAL_RX + COD_RE_CONTROL + OT_SERIAL_RX gt_rest_out + oT_serial_RX gt_rest_out + oT_serial_RX gt_rest_out + oT_serial_RX gt_pilloutek_out gt_pilloutek_out gt_pilloutek_out - ot_serial_rx	Component Name aurora_8b10b_0 Core Options GT Selections Shared Logic Physical Layer	
	Debug and Control Vivado Lab Tools Additional transceiver control and status ports	
	ОК	Cancel

Figure 5: Aurora 8B10B Slave Configuration

Clocking Architecture

Table 4 lists the primary clocks required for the design.

Table 4: C	lock Req	uirements
------------	----------	-----------

Clock	Master (MHz)	Slave (MHz)
Reference Clock	491.52	491.52
AXI	100	100
System	30	50
DRP	30	50

The two reference design require a single external clock of 491.52MHz. The other clocks are generated internally by using a MMCM.

For the master design using an UltraScale+ device, it is possible to connect a MMCM to the input buffer of the transceiver reference clock IBUFDS_GTE4 through a BUFG_GT. The IBUFDS_GTE4 has an optional output ODIV2 to bring the reference clock to the fabric logic. This output can be configured to produce either the O signal or a divide-by-2 version of the O signal. In this design, it is the same frequency of the O signal, or 491.52MHz.

Figure 6 shows the connections of the buffers to the MMCM. The BUF_GT_SYNC is automatically inserted from the Vivado IDE and is not required to be added in the code.

Figure 6: **BUFG_GT to MMCM Connection**

For the Slave design with a 7 series device, it is possible to use a MMCM to generate the required clock from the external reference clock. In this case, the MMCM can be connected directly to the port O of the IBUFDS_GTE2, which is shared with the clock connected to the transceiver.

Figure 7 shows the connections between the IBUFDS_GTE2 and the MMCM.

Figure 7: IBUFDS_GTE2 to MMCM Connection

Aurora 8B10B GTY

The Aurora 8B10B for GTY is derived from the latest Aurora core v11.1 (which supports GTH and 8b01b) and packaged with the Vivado[®] IDE. The Aurora core configuration is shown in Figure 8.

ne-customize IP			X
Aurora 8B10B (11.1)			A
1 Documentation 🗁 IP Location			
Show disabled ports	Component Name aurora_8b10b_0 Core Options Shared Logic		
	Physical Layer		
	Lane Width (Bytes)	4 ~	
	Line Rate (Gbps)	1.2288	0.5 - 6.6]
	Column Used	right 🗸	
	Lanes	1 *	
	Starting GT Quad	Quad X1Y1 ~	
	Starting GT Lane	X1Y4 ~	[Selected GT X1Y4]
H USER_DATA_\$_AXI_TX	GT Refclk Selection	MGTREFCLK0 of Quad X1Y1 🗸 🗸	
+ GTD_DRP USER_DATA_M_AXI_RX + + CORE_CONTROL TRANSCEIVER_DEBUG +	GT Refclk (MHz)	491.52 🗸	
+ GT_SERIAL_RX CORE_STATUS + reset GT_SERIAL_TX +	Auto INIT clk (MHz)	30.72	[6.25 - 30.72]
- gr_reset unk_reset_out - - init_clk_in tx_out_clk - - user_clk sys_reset_out -	Generate Aurora without GT		
- sync_clk gt_powergood[0:0] - gt_refolk1	Link Layer		
	Dataflow Mode	Duplex 🗸	
	Interface	Streaming 🗸 🗸	
	Flow Control 1	None 🗸 🗸	
	Back Channel 5	Sidebands 🗸 🗸	
	Scrambler/Descrambler	Little Endian Support	
	Debug and Control		
	Additional transceiver contro	I and status ports	
	GT DRP Interface		~
			OK Cancel

Figure 8: Aurora 8B10B Configuration

The xci file defining the GTH is then overwritten with the xci file of the GT wizard that configures the GTY, as shown in Figure 9.

		Receiver			
1.2288	8	Line rate (Gb/s)	1.2288	8	
CPLL	~	PLL type	CPLL	~	
ptions	8	QPLL Fractional-N	options		8
$\begin{array}{c} \text{rce} & 156.25 & \text{Calc} \\ \text{part} & & \\ \text{der} & & \\ & & /(2^{A}24) = 0 \end{array}$	2	Requested refere clock (MHz) Resulting fractiona of QPLL feedback div	al part vider /(2^24) = 0	Calc	
491.52	~	Actual Reference Clock (MHz)	491.52	~]
8B/10B	~	Decoding	8B/10B	~	
32	~	User data width	32	~	
40	~	Internal data width	40	~	
Enable (1)	~	Buffer	Enable (1)	~]
TXOUTCLKPMA	~	RXOUTCLK source	RXOUTCLKPMA	~]
	8	Advanced			۲
Custom		Insertion loss at N	yquist (dB)	14	8
		Equalization mode	(LPM	
		Link coupling		AC	
		Termination		Programmable	,
	1.2288 CPLL point der 156.25 Cald part 0 0 491.52 8B/10B 32 40 Enable (1) TXOUTCLKPMA Custom ✓	1.2288 Image: CPLL Image: CPLL	1.2288 Line rate (Gb/s) CPLL V pptions QPLL type options QPLL Fractional-N nce 156.25 calc Requested refere clock (MHz) part QPLL feedback diversity /(2^24) = 0 Actual Reference Clock (MHz) 491.52 V 8B/10B Decoding 32 V User data width Internal data width Enable (1) V TXOUTCLKPMA RXOUTCLK source Custom Advanced Insertion loss at N Equalization mode Link coupling Termination	1.2288 Line rate (Gb/s) 1.2288 CPLL V PLL type CPLL options Cell Cell CPLL options Cell Cell CPLL options Cell Cell Cell part 0 Cell Cell of Cell Cell Cell ider (2^24) = 0 Cell Cell 491.52 V Actual Reference Clock (MHz) 491.52 8B/10B V Decoding 8B/10B 32 V User data width 32 40 V Internal data width 32 40 V Enable (1) KXOUTCLKPMA TXOUTCLKPMA Custom XOUTCLKPMA Custom V Link coupling Link coupling Termination	1.2288 Line rate (Gb/s) 1.2288 CPLL V patt 0 der 1/(2 ⁴ /24) = 0 491.52 V 8B/10B V 32 V 40 V Enable (1) V TXOUTCLKPMA V Custom V Custom V Line rate (Gb/s) 14 Line rate (Gb/s) 14 Line rate (Gb/s) 14 Color 156.25 Calc Calc PLL type CPLL V QPLL fractional A options Requested reference 156.25 Calc Resulting fractional part of QPLL feedback divider /(2 ^h 24) = 0 Actual Reference Line rate (Gb/s) 491.52 V User data width 32 V User data width 32 V Buffer Enable (1) V RXOUTCLK source RXOUTCLKPMA V Link coupling Link coupling AC Link coupling AC

Figure 9: GTY Configuration

The Aurora 8B10B for GTY is released as an IP and it is compatible with Vivado IP Catalog and IP Integrator. The IP is called aurora_8b10b_gty and it is released as version v1.0 rev.2. Figure 10 shows the symbol of the IP with all available ports.

The Aurora 8B10B ports are listed in Table 5.

Table 5: Aurora 8	B10B Ports List	t
-------------------	-----------------	---

Port	Direction	Description	
GT_SERIAL_RX	Input	Differential serial data input pin.	
gt_refclk	Input	Transceiver Reference Clock. To be connected to an IBUFDS_GTE4.	
USER_DATA_S_AXI_TX	Input/Output	User Slave AXI Stream port.	
GT0_DRP	Input	DRP port. DRP clock is 30 MHz and can be connected together to intit_clk_in.	
reset_pb	Input	Resets the Aurora 8B/10B core (active-High).	
init_clk_in	Input	Core clock. 30 MHz.	
PMA_INIT	Input	Transceiver reset.	
loopback[2:0]	Input	GTY loopback port for test purpose. Default "000".	
USER_DATA_M_AXI_RX	Output	User Master AXI Stream port.	
GT_SERIAL_TX	Output	Differential serial data output pin.	
HARD_ERR	Output	Hard error detected (asserted until Aurora 8B/10B core resets).	
SOFT_ERR	Output	Soft error detected in the incoming serial stream.	
LANE_UP	Output	Asserted upon successful lane initialization.	
mmcm_not_locked	Output	GTY Txpmaresetdone_out.	
CHANNEL_UP	Output	Asserted when Aurora 8B/10B channel initialization is complete and the channel is ready for data transfer.	
rx_resetdone	Output	GTY RX reset completed.	
tx_resetdone	Output	GTY TX reset completed.	
tx_lock	Output	GTY cpll lock.	

Table .	5:	Aurora	8B10B	Ports	List	(Cont'd)
---------	----	--------	-------	-------	------	----------

Port	Direction	Description
TRANSCEIVER_DEBUG	Input/Output	Additional Transceiver debugging ports.
user_clk_out	Output	GTY user clock out.

Test Bench Simulation

A behavioral simulation has been performed to validate the new Aurora core and a test bench is provided and tested with Vivado simulator and Mentor Questa Sim.

The demonstration test bench performs the following tasks:

- Generates input clock signals.
- Applies a reset to the example design.
- Waits for one of the interrupt signals (Link Status, Configuration Error (Aurora PHY) and Multi-Bit Error) to be asserted. If Link status is asserted, a stable link is established between the Master and Slave AXI Chip2Chip cores. If Configuration Error or Multi-Bit Error is asserted, the test bench fails with Error: Link Not Detected.
- If a link is successfully established, Link detected is displayed in the console.
- The traffic generator starts generating fixed traffic patterns at the inputs of the AXI Chip2Chip cores.
- The traffic checker checks the output signals of the AXI Chip2Chip cores against expected patterns. If the received data has an error, then error messages are issued at the console with the name, expected value and actual value of the signal in error condition.
- The transactions are shown for a time interval of 10,000 ns and the test bench finishes with the Test Completed Successfully in the console.

The following example shows a section of the log of the full simulation:

```
# Link detected
# R Match exp_axi_rdata = ffffffff, exp_axi_rid = 3f, exp_axi_rlast = 0,
exp_axi_rresp = 0
# R Match s_axi_rdata = ffffffff, s_axi_rid = 3f, s_axi_rlast = 0, s_axi_rresp
= 0
# B Match exp_axi_bid = 00, exp_axi_bresp = 3
# B Match s_axi_bid = 00, s_axi_bresp = 3
# W Match exp_axi_wdata = ffffffff, exp_axi_wuser = f, exp_axi_wlast = 1,
exp_axi_wstrb = f
# W Match m_axi_wdata = ffffffff, m_axi_wuser = f, m_axi_wlast = 1, m_axi_wstrb
= f
# R Match exp_axi_rdata = 00000002, exp_axi_rid = 01, exp_axi_rlast = 1,
exp_axi_rresp = 1
# R Match s_axi_rdata = 00000002, s_axi_rid = 01, s_axi_rlast = 1, s_axi_rresp
= 1
# W Match exp_axi_wdata = fffffffe, exp_axi_wuser = d, exp_axi_wlast = 0,
exp_axi_wstrb = f
# W Match m_axi_wdata = fffffffe, m_axi_wuser = d, m_axi_wlast = 0, m_axi_wstrb
= f
```



```
# W Match exp_axi_wdata = fffffffd, exp_axi_wuser = b, exp_axi_wlast = 1,
exp_axi_wstrb = f
# W Match m_axi_wdata = fffffffd, m_axi_wuser = b, m_axi_wlast = 1, m_axi_wstrb
= f
# AW Match exp_axi_awaddr = 00000000, exp_axi_awburst = 0, exp_axi_awid =
00,exp_axi_awlen = 00, exp_axi_awsize = 0
# AW Match m_axi_awaddr = 00000000, m_axi_awburst = 0, m_axi_awid = 00, m_axi_awlen
# M_AXI LITE AW channel exp aw 000000aa prot 2, act aw 000000aa prot 2
# M_AXI LITE W channel exp w 00000154 strb 4, act w 00000154 strb 4
# Test Completed Successfully
# ** Note: $finish
                    :
../../../../sources/testbench/axi_chip2chip_master_exdes_tb.v(133)
    Time: 2675335100 ps Iteration: 0 Instance: /axi_chip2chip_master_exdes_tb
#
```

The Figure 11 shows the waveform of the behavioral simulation. The pink signals are asserted when the link between master and slave works properly.

Figure 11: Waveform Behavioral Simulation

Reference Design Files

The Reference Design for the Master AXI Chip2Chip is for the Xilinx ZCU1254 and VCU1262 evaluation boards. The directory structure is the same for both. Figure 12 shows the directory structure for the Zynq[®] UltraScale+ RFSoC (ZCU1254) device design files.

Figure 12: ZCU1254 Directory Structure

The ZCU1254 folder contains the hardware design deliverables listed in Table 6.

Folder Name	Description
Board	Contains all required scripts and a programming file for the board test
Sources/constraints	Contains the I/O and timing constraints file
Sources/hdl	Contains the source code deliverable files
Sources/ip_catalog	Contains the Xilinx IP cores required for the design
Sources/ip_design	Contains the Aurora_8B10B_gty IP and source files
Sources/testbench	Contains the test bench files for simulation
Vivado/scripts	Contains the design creation script for both Windows and Linux operating systems
	in command line and in Vivado design suite IDE mode
Ready_to_test	Contains programming files to configure the ZCU1254 evaluation board

Table 6: ZCU1254 Hardware Design Deliverables

The readme.txt file provides the details on the folder structure, tool version, and revision.

The Reference Design for the Slave AXI Chip2Chip is for the Xilinx AC701 evaluation. Figure 13 shows the directory structure for the Artix-7 device (AC701) design files.

Figure 13: AC701 Directory Structure

The AC701 folder contains the hardware design deliverables listed in Table 7.

Folder Name	Description	
Board	Contains all required scripts and a programming file for the board test	
Sources/constraints	Contains the I/O and timing constraints file	
Sources/hdl	Contains the source code deliverable files	
Sources/ip_catalog	Contains the Xilinx IP cores required for the design	
Vivado/scripts	Contains the design creation script for both Windows and Linux operating systems in command line and in Vivado design suite IDE mode	
Ready_to_test	Contains programming files to configure the AC701 evaluation board	

Table 7: AC701 Hardware Design Deliverables

The readme.txt file provides the details on the folder structure, tool version, and revision.

Project Creation

A script is provided in order to create the Vivado project. The script can be sourced either in a shell configured for the Vivado tool or in the Tcl console available in the GUI.

MASTER Reference Design

From the shell move to the scripts directory and execute the following command:

```
vivado -mode tcl -source ultrascalep_c2c_master.tcl
```

In the TCL Console of GUI, move to the script directory and type:

```
source ./ultrascalep_c2c_master.tcl
```

SLAVE Reference Design

From the shell move to the scripts directory and execute the following command:

```
vivado -mode tcl -source artix7_c2c_slave.tcl
```

In the TCL Console of GUI, move to the script directory and type:

source ./artix7_c2c_slave.tcl

The script creates the project by importing all of the design files needed for the design implementation and simulation.

Hardware Test

The reference design has been validated in hardware using the Xilinx Evaluation Board ZCU1254 rev. D, VCU1262 rev. B, and the AC701 rev1.0.

The location of the GTs can be fixed via xdc constraints. For both designs the constraints are delivered specific to the boards used during the development. If needed, they can be modified accordingly to the requirements.

Table 8 shows the Clock and Data connection for the boards used for the test.

Board	Connector	Ref. Clock P/N	GT RX P/N	GT TX P/N
ZCU1254	Samtec BullsEye	128_CLK0	128_RX0	128_TX0
VCU1262	Samtec BullsEye	224_CLK0	224_RX0	224_TX0
AC701	SMA	J25/J26	J46/J47	J44/J45

Table	8:	Board	Connections
-------	----	-------	-------------

The Vivado debugger is used to run the test. VIOs are defined to force the state of some signals. The Aurora link connection can also be tested individually looping the GTs. The loopback can be

done via external cable or with a VIO. "010" is a configuration for a Near-End PMA loopback. Details about loopback can be found in the *UltraScale Architecture GTY Transceivers User Guide* (UG578) [Ref 3] and 7 Series FPGAs GTP Transceivers User Guide (UG482) [Ref 4].

Each board needs only an external reference clock of 491.52MHz. The other clocks needed for the reference designs are derived internally in the FPGAs from the reference clock.

Figure 14 shows the VIO setup of the Master design and the status of the outputs debug signals.

Name	Value	Activity	Direction
∿ mmcm_not_locked_1	•		Input
∿ clk_locked	•		Input
🛥 sysreset_i	0]	Output
∿a gtreset_vio_i	0]	Output
> 🍓 loopback_vio_i[2:0]	[B] 000		Output
🎍 channel_up	٢		Input
🐱 lane_up	٢		Input
┺ rx_resetdone_1	٩		Input
┺ tx_resetdone_1	٢		Input
🐱 t_axi_calib_done_out_mas	۹		Input
🖕 t_axi_phy_error_out_mas	٩		Input
🎍 t_axi_calib_error_out_mas	•		Input
🛯 🗢 axi_c2c_link_error_out_mas	۹		Input
∿ axi4_error	•		Input
► lite_error	٢		Input
<mark>ኈ tx_lock</mark>	٢		Input
∿a start_traffic_i	1		Output

Figure 14: Master VIOs Setup

To run the test, use the VIO configuration in Table 9.

Table 9: VIO Signals

Signal	Description	Working Status Signal	
Outputs			
sysreset_i	Design reset (not the Transceiver).	Active-High	
gtreset_vio_i	Transceiver reset.	Active-High	
start_traffic	The traffic generator starts generating fixed traffic patterns at the inputs of the AXI Chip2Chip cores.	Active-High	

Signal	Description	Working Status Signal
loopback_vio_i[2:0]	Transceiver loopback	"000" Normal operation
		"010": Near-End PMA Loopback
Inputs		
mmcm_not_locked_1	Txpmaresetdone_out	0 or green
clk_locked	MMCM free running clock locked.	1 or green
lane_up	Asserted upon successful lane initialization.	1 or green
channel_up	Asserted when Aurora 8B/10B channel initialization is complete and the channel is ready for data transfer.	1 or green
rx_resetdone_1	GTY RX reset completed.	1 or green
tx_resetdone_1	GTY TX reset completed.	1 or green
t_axi_calib_done_out_mas (axi_c2c_link_status_out)	Link Status: Asserted when Link Detect FSM is in the SYNC state. Deasserted when either the Master or Slave AXI Chip2Chip core is under reset or when the Link Detect FSM is not in the SYNC state.	1 or green
t_axi_phy_error_out_mas (axi_c2c_multi_bit_error_out)	Multi-bit Error Interrupt: When asserted, this interrupt indicates multiple bits are received with errors in the Master or Slave AXI Chip2Chip core.	0 or green
t_axi_calib_error_out_mas	If the Master does not receive the expected pattern within a specified interval, it asserts the configuration error status signal.	0 or green
axi_c2c_link_error_out	Link Error Interrupt: Asserted when the AXI Chip2Chip Slave core is reset during normal operations. This signal is valid only in Master mode.	0 or green
axi4_error	Traffic checker error.	0 or green
lite_error	Traffic lite checker error.	0 or green
tx_lock	GTY cpll lock	1 or green

Figure 15 shows the VIO for the Slave design.

hw_vio_1			
Q ¥ ♦ + =			
Name	Value	Activity	Direction
🛥 aurora_partner_inst/sysreset_i	0		Output
🛥 aurora_partner_inst/gtreset_vio_i	0		Output
🖕 aurora_partner_inst/mmcm_not_locked	0		Input
> 🔚 aurora_partner_inst/loopback_vio_i[2:0]	[B] 000	•	Output
🖕 aurora_partner_inst/channel_up_i	•		Input
🕨 aurora_partner_inst/lane_up_i	٢		Input

Figure 15: Slave VIOs Setup

To run the test, use the VIO configuration listed in Table 10.

Table	10:	VIO Signals	
-------	-----	-------------	--

Signal	Description	Working Status Signal	
Inputs			
sysreset_i	Design reset (not the Transceiver).	Active-High	
gtreset_vio_i	Transceiver reset.	Active-High	
loopback_vio_i[2:0]	Transceiver loopback	"000" Normal operation	
		"001": Near-End PCS Loopback	
		"010": Near-End PMA Loopback	
Outputs			
mmcm_not_locked	Txpmaresetdone_out	0 or green	
channel_up_i	Asserted when Aurora 8B/10B channel initialization is complete and the channel is ready for data transfer.	1 or green	
lane_up_i	Asserted upon successful lane initialization.	1 or green	

Figure 16 shows the two boards used for the test validation.

Figure 16: ZCU1254 and AC701 Boards

Conclusion

The reference design has been developed with the following features:

- Interface
 - Master RFSoC: AXI Chip2Chip interface, Aurora 8B10B 1 lane @1.2288Gbit/s
 - Slave A7: AXI Chip2Chip interface, Aurora 8B10B 1 lane @1.2288Gbit/s
- Data connectivity to user application is through AXI Lite interfaces.
- The reference design includes the test logic to validate the new Aurora 8B10B IP.

Documentation Navigator and Design Hubs

Xilinx[®] Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado[®] IDE, select **Help > Documentation and Tutorials**.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnay.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

References

- 1. AXI Chip2Chip LogiCORE Product Guide (PG067)
- 2. Aurora 8B/10B LogiCORE Product Guide (PG046)
- 3. UltraScale Architecture GTY Transceivers User Guide (UG578)
- 4. 7 Series FPGAs GTP Transceivers User Guide (UG482)
- 5. KCU105 Evaluation Board User Guide (UG917)
- 6. AC701 Evaluation Board for the Artix-7 FPGA User Guide (UG952)

Revision History

The following table shows the revision history for this document.

Date	Version	Changes	
06/06/2018	1.0	Initial Xilinx release.	

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.