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Summary
This application note describes the implementation of digital up-converter (DUC) design using 
the Vivado® High-Level Synthesis (HLS) tool, which produces synthesizable RTL from C++ 
source code. It details the methods used, such as HLS optimization techniques and coding 
styles/guidelines in constructing template classes and functions to build a hierarchical design. 

The automatic resource assignment, sharing and scheduling capability of the Vivado HLS tool is 
instrumental in mapping a complex algorithm into a solution optimized for both performance 
and resource usage. The proposed design methodology and recommendation can be applied in 
general to expedite the implementation of an algorithmically complex block such as a software 
defined radio. 

Introduction
The DUC design consists of multi-stage finite impulse rate (FIR) filters, a direct digital 
synthesizer (DDS) and a mixer. One important aspect of this design is that we want to make a 
parameterize-able design where filter parameters like coefficients, fixed point precision, and 
data sample rate can be easily changed, by utilizing template classes and functions. 
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Figure 1: DUC Block Diagram
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The DUC specification is as follows:

• The input is a complex data input (I/Q) sample, which can be a QAM symbol, and the 
output is a continuous stream of real sample.

• The output rate of the DUC (Fo) is set to the processing clock rate (Fclk). The relationship 
from the input symbol rate (Fb) to the output rate is: Fo = 16 * Fb = Fclk.

• 4 stages of FIR filter, with interpolation ratio of 2 in each stage and the overall interpolation 
ratio of 16.

• The first stage is a 64 tap square raised root cosine (SRRC) filter, and the next three stage 
filters are half-band (HB) interpolate by 2 FIR filter. The overall filter response is shown in 
Figure 2.

• The DDS has the frequency resolution of Fclk/2^32 (for example, 0.07Hz for 300 MHz Fclk), 
and spurious free dynamic range (SFDR) is greater than 120 dB.

X-Ref Target - Figure 2

Figure 2: Overall Filter Response
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Designing the FIR Block
Since the FIR block is one of the main building blocks in the DUC design, we need to make sure 
the HLS tool can produce an efficient implementation in terms of resource and throughput. 
Depending on the data sample rate and processing clock rate, a FIR can have a serial, parallel or 
semi-parallel structure. Some of the key important questions in designing an efficient FIR 
implementation are the following:

• Is the number of multiplier accumulators (MACs) used in the design optimum - that is, 
close to the theoretical number:

• There are several factors that can further reduce the number of MACs, such as: exploiting 
coefficient properties, such as even/odd symmetry, zero coefficients (in halfband filter), 
coefficient bit width and the target device timing.

• Is the processing clock rate close to reasonable FPGA clock rate - such as greater than 300 
MHz if you are targeting K7 device with -1 speed grade?

• Are there any particular C/C++ coding styles that produce efficient RTL?

• What is the optimization process in using HLS tool?

Coding the FIR Class
The C++ class is an object oriented programming (OOP) concept that encapsulates both 
program data and methods in the class definition. The encapsulation allows you to build a 
complex design using basic building blocks in a modular way. Once a base class is defined, you 
can easily extend or instantiate the base class in a new class and use it in the provided APIs 
without having to know the implementation details of the base class. 

In addition, C++ class and functions can be template-ized, which allows designers to pass the 
constants, variable types and HLS optimization parameters through template arguments - 
making customizable C++ class and functions without having create a whole new class.   

Below is an example of class definition for non-symmetric coefficient FIR filter:

template<int l_WHOLE, int l_SAMPLE, int II_GOAL>
class nosym_class {
    DATA_T sr[l_WHOLE];
    ACC_T  acc;
    COEF_T coeff[l_WHOLE];
public:
    // MAC engine
    ACC_T MAC( DATA_T din, COEF_T coef, ACC_T  acc );

MinimumnumberofMACs required OutputDataRate NumberOfTops NumberOfChannels××
ClockRate

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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    // filter
    void process ( DATA_T din, DATA_T* dout);
    void process_frame(DATA_T din[l_SAMPLE], DATA_T dout[l_SAMPLE]);
    void init(const COEF_T cin[l_WHOLE]);
}; // nosym_class

The FIR class definition includes the following three major parts:

• Data members

° coeff: Coefficient memory

° sr: Shift registers 

° acc: Accumulator storage

• Methods:

° MAC(): Multiply-and-accumulate function

° process(): Process data in series of MAC operation.

° process_frame(): Process one frame of data

° init(): Initialize coefficient memory

• Template parameters:

° l_WHOLE: The number of taps or coefficients (= FIR order +1)

° l_SAMPLE: The number of data samples to process 

° II_GOAL: Target HLS initiation interval (= number of clock cycles between consecutive 
input samples, input sample rate = clock rate/II_GOAL)

It is worth noting that in HLS, you can use an arbitrary number of bits and fractional number of 
bits when you define variables, instead of typical int/short/char type of declaration. The 
convention is as follows:

ap_fixed<total number of bits, number of integer bits, truncation/rounding, 
wrap/saturate when overflow> 

There are several data types used throughout the FIR classes. They are, DATA_T (data type for 
FIR input and output), COEF_T (data type for coefficients), and ACC_T (data type for MAC 
accumulator). This allows you to easily do trade-offs among resource utilization, precision, and 
dynamic ranges. 

typedef ap_fixed<3+NFRAC,  3, AP_TRN, AP_WRAP> DATA_T;
typedef ap_fixed<10+NFRAC, 10, AP_TRN, AP_WRAP> ACC_T;
typedef ap_fixed<2+NFRAC,  2, AP_RND_CONV, AP_WRAP> COEF_T;
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Multi-Stage Filter Class
With C++ classes and OOP methodology, a multi-stage FIR filter can be constructed simply by 
instantiating objects from the base classes for each processing stage and then calling the 
processing methods associated with each object. 

Below is an abstracted definition of the multi-stage filter design which includes a Square-Root 
Raised Cosine (SRRC) filter stage and three stages of half-band filters. Each stage up-converts 
the data sample rate by 2. 

template<int l_INPUT>
class filterStageclass {

public:

interp2_class<Lsrrc_WHOLE,   l_INPUT,   II_SRRC> srrc;
interp2_hb_class<Lhb1_WHOLE, 2*l_INPUT, II_HB1>  hb1;
interp2_hb_class<Lhb2_WHOLE, 4*l_INPUT, II_HB2>  hb2;
interp2_hb_class<Lhb3_WHOLE, 8*l_INPUT, II_HB3>  hb3;

void process(DATA_T din[l_INPUT], DATA_T dout[16*l_INPUT] ) {
#pragma HLS INLINE
#pragma HLS dataflow
    DATA_T srrc_dout[2*l_INPUT];
    DATA_T hb1_dout[4*l_INPUT];
    DATA_T hb2_dout[8*l_INPUT];
        
    srrc.process_frame(din, srrc_dout);
    hb1.process_frame(srrc_dout, hb1_dout);
    hb2.process_frame(hb1_dout, hb2_dout);
    hb3.process_frame(hb2_dout, dout);
}
};  

Note: Each filter stage has a different value passed to II_GOAL template parameter as defined below. 
"II_GOAL" specifies the number of clock cycles between each input sample, such that the input sample 
rate of filter equals the processing clock rate / II_GOAL. Using this method, HLS produces an efficient HW 
structure that uses the resources that is equal or close to the theoretical minimum number of MAC 
resources.    

• II_SRRC: 16

• II_HB1: 8

• II_HB2: 4

• II_HB3: 2
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The HLS synthesis results for each filter stage and the overall DUC design are shown in the 
following figures:

The synthesis report contains the following information:

• Estimated clock period

• Latency: The number of clock cycles to process and generate all the outputs

• Interval: The number of clock cycles before the function can accept new input data

• Estimated FPGA resources
X-Ref Target - Figure 3

Figure 3: Synthesis Report for SRRC Block
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X-Ref Target - Figure 4

Figure 4: Synthesis Report for the First Halfband Filter Block
X-Ref Target - Figure 5

Figure 5: Synthesis Report for the Second Halfband Filter Block

http://www.xilinx.com


Multi-Stage Filter Class

XAPP1299 (v1.0) December 10, 2016  8
www.xilinx.com

Note: The "Interval" is 3200 in the synthesis report. This is defined as a number of clock cycles to process 
one frame input samples, which is defined as 200 samples at the input of the DUC module. Since each I/Q 
input sample comes in at every 16 clock cycles; thus, the interval time is 3200. During the 3200 clock 
cycles, there are 3200 samples of output being generated out of the DUC module, for every 200 input 
sample pair, since the DUC interpolates the input sample by factor of 16.

X-Ref Target - Figure 6

Figure 6: Synthesis Report for the Third Halfband Filter Block
X-Ref Target - Figure 7

Figure 7: Synthesis Report for Two Channel Multi-Stage Filter Block
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DDS Class
The DDS block has two main components - phase accumulator and sine/cosine block, shown in 
Figure 8. The two most important specifications for DDS are:

• Frequency/phase Resolution: Determines how the fine adjustment frequency can be made. 
The higher the resolution the bigger the look up table would be.

• Spurious Free Dynamic Range (SFDR): Achieving the maximum SFDR with the least amount 
of resource (mostly the size of the lookup table), is probably the most important design 
goal.

One common technique in maximizing SFDR without having to increase the sine/cosine lookup 
table, is to use dithering of the output of the phase accumulator ("Q1" block in Figure 8). It is 
effective in suppressing the major spurs but the overall noise floor is raised (middle figure in 
Figure 9). 

A different method is used here, with the goal of lowering both major spurs and the noise floor. 
The sine/cosine lookup table is split into two tables - one coarse table and one fine table. The 
coarse table has the phase resolution of 2*pi/N, where N=4096, while the phase resolution for 
the fine table is 2*pi/(N*M), where M=512. The output of the both the tables are combined to 
produce sine and cosine output.   

X-Ref Target - Figure 8

Figure 8: DDS Block Diagram

X-Ref Target - Figure 9

Figure 9: PSD Plot for DDS
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A: Original - no method of maximize SFDR 

B: Using dithering 

C: Using split table

The phase output of the accumulator (32-bit) is truncated to 21-bit. The 12 MSBs looks up the 
coarse table, and the 9 LSBs looks up the fine table. By partitioning the 21 bits into two groups 
of address, a 2M word (221) lookup table is reduced to ~4.5K word table (212 + 29). The two 
outputs of the lookup table are combined using the following equation: 

e(j* θ )=ej*(φ+ε )=ej*φ ej*ε=(cos(φ )+j*sin(φ ) ) * (cos(ε )+j*sin(ε ))

= (cos(φ)cos(ε)-sin(φ)sin(ε )) + j(sin(φ )*cos(ε )+cos(φ )sin(ε ))

= (cos(φ )-sin(φ)sin(ε )) + j(sin(φ )+cos(φ ) sin(ε )),

Since, cos(ε ) is almost unity.

This solution is slightly more expensive (BRAM, 2 mults, 2 add/sub) than the dithering 
technique (LFSR, adder). But it does not suffer from the high noise floor as in the case of 
dithering.

The top level DDS code is shown in Figure 10. The two functions, init_cos_lut and init_fine_lut, 
initialize the two tables,  cos_lut (the coarse table) and fine_lut (the fine table) respectively. See 
Figure 11 for more details. It is important to note that the HLS tool recognizes that these two 
tables are read only and hence implements them into a ROM and does not build any logic to 
compute the table content. In the cos_lut table, in order to save the memory size, only the 
quarter quadrant of a circle is stored and the sign is changed as the angle goes around the unit 
circle.
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X-Ref Target - Figure 10

Figure 10: DDS Class (showing “dds::process”
X-Ref Target - Figure 11

Figure 11: DDS Class (showing “DDS::init_cos_lut”)
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Before the DDS block is integrated into the top level DUC, it is synthesized standalone by the 
HLS tool and checked against the following design goals:

• Both sine and cosine output are produced at every clock cycle. This is verified by checking 
the initiation interval is 1. The HLS synthesis directive used for this is “pipeline”.

• Resource budgets are met. The both look up tables are implemented in BRAM and not LUT 
(using the “resource” HLS directive) and HLS does not build any logic to initialize those 
tables.

• Clock rate is reasonable - greater than 300 MHz.

The HLS synthesis report is shown in the figures below:

X-Ref Target - Figure 12

Figure 12: DDS HLS Synthesis Report (a)
X-Ref Target - Figure 13

Figure 13: DDS HLS Synthesis Report (b)
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Top Level Design
Once all the submodules have been synthesized and the design goals (desired initiation 
intervals and resource budgets) are met, they are integrated into the top module as shown in 
the code in Figure 14.

X-Ref Target - Figure 14

Figure 14: Top Level DUC Code
X-Ref Target - Figure 15

Figure 15: Top Level Block Diagram - Showing the Class Definitions
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It is important to note the following:

• The DUC design is a frame based, processing array of data inputs and outputs. 

• These arrays of inputs and outputs are synthesized into an AXI streaming interface, using 
the ‘interface’ HLS directive (line 8-10).

• The data rate of the inputs and the outputs are different. The output rate is 16 times the 
input data rate, therefore, L_OUTPUT = L_INPUT * 16.

• It is expected that the output of the DUC drives a DAC. Therefore, there should not be any 
gap or idle between the frames of the output data stream.

• In a pipelined system like DUC, where the data is processed by one block and passed to the 
next block, it is critical to process the data stream in a pipeline manner. This results in a 
higher throughput, less overall latency and use of minimal buffer storage. The "dataflow" 
directive enables this pipelining capability (line 14). 

• One benefit of using the “dataflow” directive is that all the output storage of each 
processing block can be optimized down to minimum size. For example, in this code, all the 
output storages are declared as "L_OUTPUT" samples (defined to 3200), but all those 
storages can be implemented as a fifo of depth = 8, since all the access is done in a stream 
fashion. This is enabled in the Tcl file ("run.tcl"): "config_dataflow -default_channel fifo 
-fifo_depth 8".

• In a typical HW processing block, there will be a programmable setting to control the 
behavior of the HW block. In the DUC design, it is the "incr" input, to control the 
modulating frequency of the DUC. To specify that this input is part of the control word and 
not the real time signal, the interface directive is set as "interface ap_stable" (line 12).

• Another option for handling programmable setting is by using the AXI4-Lite interface. All 
the control words can be lumped into the same bundle, and each word will be 
address-mapped. This is done by the interface directive - "interface s_axilite".

http://www.xilinx.com
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Top Level Synthesis / Implementation
The DUC synthesis report is shown in the below figures. It is important to note that both the 
performance goal of Initiation Interval of 3200 is met, along with a reasonable resource budget. 

X-Ref Target - Figure 16

Figure 16: DUC HLS Synthesis Report (a)
X-Ref Target - Figure 17

Figure 17: DUC HLS Synthesis Report (b)
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After the top level DUC design has gone through C-to-RTL synthesis successfully, Vivado 
implementation - FPGA synthesis and place and route, is performed. When Vivado 
implementation is invoked within the HLS tool, it uses a default implementation strategy and its 
main goal is to confirm that the estimated resources and the timing estimate from C-to-RTL 
synthesis are highly correlated to each other. In this DUC design, the clock is intentionally 
over-constrained to 2 ns (=500 MHz) to see how close implementation can meet that timing 
constraint. In this design, C-to-RTL synthesis estimated the clock period to be 2.39 ns while the 
implementation achieved the 2.171 ns, targeting KU040 -2 device. This timing can potentially 
improve by using a different strategy in Vivado Synthesis/Map/Place and Route. 

X-Ref Target - Figure 18

Figure 18: DUC HLS Synthesis Report (c)

X-Ref Target - Figure 19

Figure 19: DUC FPGA Implementation Report
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Verification
The HLS tool allows you to verify your design in the following two stages:

1. csim compile/link/simulate your C/C++ design code and testbench code, 

2. RTL csim invokes the RTL simulator to verify the HLS generated RTL using the same 
testbench used in csim. 

Figure 20 shows the output of RTL co-simulation.

After the verification is complete, the HLS produces the RTL that is exported as a Sysgen block. 
Sysgen is based on Matlab Simulink tool which is a model based design environment. Once 
exported as a Sysgen block from the HLS tool, it can be represented as a block within the 
Sysgen environment and the HLS block is simulated and verified with the rest of the 
Sysgen/Simulink blocks, thus, making an ideal verification environment for the signal 
processing block/algorithm. Refer to Figure 20 for more details. 

X-Ref Target - Figure 20

Figure 20: RTL Cosimulation Output
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In this Sysgen design environment, a white random signal is used as an input to both I/Q 
symbol input sources - these can be white random QAM symbols as well. The modulating 
frequency is chosen to be Fs/8, where Fs is the sampling frequency of the output data stream, 
and the DUC output stream is captured and its frequency spectrum plot is shown in Figure 19. 

X-Ref Target - Figure 21

Figure 21: Sysgen Verification of the DUC Block (a)
X-Ref Target - Figure 22

Figure 22: Sysgen Verification of the DUC Block (b)
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Reference Design
Vivado System Edition version 2016.2 is used in this application note design. For Sysgen 
verification, Matlab/Simulink version 2015b is used. 

Download the reference design files for this application note from the Xilinx website.

Here are the steps to produce the HLS project:

1. Open Vivado HLS command line window.

2. Cd to the design directory.

3. Type "vivado_hls -f run.tcl". This will go through all the process - C-simulation, C to 
RTL synthesis, export to Sysgen, invoke Vivado implementation and RTL cosimulation.

4. Open Vivado HLS GUI and open the HLS project. Or open the GUI by typing "vivado_hls 
-p proj" in the command line window.

5. Check out the synthesis report and implementation report - highlighted in yellow in Figure 
20.

X-Ref Target - Figure 23

Figure 23: PSD Plot of the DUC Output
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Table 1 shows the reference design matrix.

X-Ref Target - Figure 24

Figure 24: HLS GUI Showing Project Directories

Table  1:  Reference Design Matrix

Parameter Description

General

Developer name Alex Paek, Jim Wu

Target devices KCKU040 -2 -e

Source code provided Yes

Source code format C++, HLS script

Design uses code and IP from existing Xilinx 
application note and reference designs or 
third party

No

Simulation

Functional simulation performed Yes

Timing simulation performed No

Test bench used for functional and timing 
simulations

Yes

Test bench format C++

Simulator software/version used Vivado simulator
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Conclusion
This application note walks through the process of designing a digital up-converter (DUC) using 
the Vivado HLS tool. The process starts with writing C++ code, verifying the design in C 
simulation, synthesizing C code to produce synthesizable RTL code, verifying the RTL code 
using RTL/C cosimulation, exporting the RTL to Sysgen environment, verifying the RTL in Sysgen 
environment, and implemented into FPGA using Vivado implementation tool. 

This application note describes in detail how the DUC design is constructed using template 
classes, and optimization techniques to produce a portable/generic solution where you can 
easily change the parameters for the design and establishing a basis for building a library of 
components and for constructing a design with a more complex hierarchy.
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SPICE/IBIS simulations N/A

Implementation

Synthesis software tools/versions used Vivado HLS 2016.2

Implementation software tools/versions 
used

Vivado Design Suite 2016.2

Static timing analysis performed Yes

Hardware Verification

Hardware verified No

Hardware platform used for verification N/A

Table  1:  Reference Design Matrix (Cont’d)
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