
XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 1

Summary
It is common for the architecture of a system to have a single interface for communication and
debug into the system. Often there is a processor with an Ethernet connection to communicate
with the rest of the system. Ethernet is generally chosen because it provides a common
interface that can be accessed from a network. Although the processor can communicate with
Ethernet, there is not a debug channel for the JTAG signals targeting an FPGA or SoC. To access
the JTAG signals of an FPGA or SoC, it normally requires a separate JTAG connector. Eliminating
the need for a dedicated JTAG connector satisfies the need of a system architect to require only
one interface for communication and debug while maintaining accessibility over a network.

The Vivado® design tools can communicate the same JTAG commands over a TCP/IP
connection to a microprocessor implementing the XVC v1.0 Protocol [Ref 1]. This
implementation supports all of the existing Vivado hardware debug features.

This application note shows how to get Xilinx Virtual Cable (XVC) running on a Zynq®-7000
device with a Linux operating system generated with the PetaLinux Tools. A reference design is
provided for the Avnet MicroZed board. The target FPGA in this application note is on an AC701
board and will be programmed and debugged by the MicroZed board running XVC on Linux.

Reference Design
Starting with Vivado design tools 2014.3.1, the Vivado hardware debug tools include support
for XVC. The XVC protocol allows the Vivado design tools to communicate JTAG commands over
Ethernet to an embedded system so that a target Xilinx FPGA can be programmed and/or
debugged. This enables a vendor agnostic solution for debugging and programming a Xilinx
FPGA or SoC. Programming capabilities include the same support as a traditional JTAG
connection provides. Debugging capabilities include operability with System Debugger (XSDB)
or with Vivado design tools hardware debug IP cores.

Although XVC can be implemented with several different processors, this application note
provides a reference design utilizing a Zynq-7000 device. The Zynq-7000 family provides a
compelling solution for XVC by accelerating the JTAG commands in the Programmable Logic
(PL). This improves system performance by off-loading the processor from bit-banging JTAG
commands.

The Zynq-7000 device embedded Cortex™ A9 processor parses the Ethernet packets with a
TCP/IP connection and converts the packets into JTAG commands.

Application Note: Vivado Hardware Debug

XAPP1251 (v1.0) April 30, 2015

Xilinx Virtual Cable Running on
Zynq-7000 Using the PetaLinux Tools
Authors: Alvin Clark (Avnet Inc.) and Luis Bielich

http://www.xilinx.com

Reference Design

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 2

The Zynq-7000 device ultimately acts as a bridge from Ethernet back to JTAG with a TCP/IP
server running on the embedded processor. Figure 1 illustrates the high-level block diagram of
a typical XVC topology.

Running Linux on Zynq-7000 devices enables a simple implementation of the XVC server
because the application layer can leverage the TCP/IP stack included in the Linux kernel. The
server application implements the XVC protocol and runs the application in the background as
a daemon. After the packets are processed, the Zynq-7000 device processing system (PS)
communicates with an AXI4-Lite to JTAG Controller in the PL to create the JTAG commands to
the target FPGA for programming or debug. The AXI4-Lite to JTAG Controller is packaged using
the Vivado design tools as a custom IP so that it can be natively used within IP integrator and
so that it can be easily leveraged in a custom design.

The JTAG commands to the FPGA are the same commands that would have been transferred to
the FPGA if it were natively communicating with a programming cable or using a Digilent
module. This ensures functionality between all the existing Vivado hardware debug design
tools.

Hardware
The Processing System and Programmable Logic of Zynq-7000 devices are both utilized in the
reference design. The Programmable Logic utilizes a custom AXI4-Lite to JTAG Controller to
help balance the load on the processor. All programmable logic components are provided as
part of the reference design f iles. The Processing System utilizes the Ethernet MAC and majority
of memory elements of the Processing System to help run Linux. Figure 2 shows a block
diagram of the relevant hardware components used in the application note.

.

X-Ref Target - Figure 1

Figure 1: High Level Block Diagram of XVC Topology

http://www.xilinx.com

Reference Design

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 3

Gigabit Ethernet Controller

The reference design provided as part of this application note uses the Gigabit Ethernet
Controller within the Zynq-7000 device Processing System. It is also possible to use the soft
TriMode Ethernet Media Access Controller IP core in the Programmable Logic (PL). The Gigabit
Ethernet Controller is configured to work with Marvell 88E1512 PHY using an RGMII interface
and the MDIO interface. For more details on this configuration, refer to the MicroZed Hardware
User Guide [Ref 2].

X-Ref Target - Figure 2

Figure 2: Relevant Hardware Components

http://www.xilinx.com

Reference Design

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 4

Cortex A9 Processor APU

The ARM® Cortex A9 processor is running Linux and has a daemon TCP/IP Server Application
running that accepts the Ethernet packets and converts the commands to JTAG commands
using the XVC v1.0 protocol [Ref 1]. The processor is running at 666.67 MHz with the default
MMU and caching setup from the Vivado tools. To analyze the Processing System, Xilinx
recommends that you open the IP integrator design within the Vivado design tools and to look
within the Processing System IP options selected.

AXI4-Lite to JTAG Controller

A custom AXI4-Lite to JTAG Controller is provided with the application note design files. The
controller is packaged as a custom IP for the Vivado Integrated Design Environment (IDE) so
that it can be used within the IP integrator as shown in Figure 3. The custom controller is
designed to shift in up to 32-bit JTAG vectors to interact with the target FPGA. The controller is
implemented in the PL to offload the processor by avoiding the need to bit-bang the JTAG
signals.

The AXI4-Lite to JTAG Controller is an AXI4-Lite peripheral with a register set as shown in
Table 1.

X-Ref Target - Figure 3

Figure 3: IP Integrator Design

Table 1: Register Set for AXI4-Lite to JTAG Controller

Address
Offset Name Access Type Default Value Description

0x00 LENGTH R/W 0x00000000 Length of shift operation in bits

0x04 TMS_VECTOR R/W 0x00000000 Test Mode Select (TMS) Bit Vector

0x08 TDI_VECTOR R/W 0x00000000 Test Data In (TDI) Bit Vector

0x0C TDO_VECTOR R/W 0x00000000 Test Data Out (TDO) Capture Vector

0x10 CTRL R/W 0x00000000 Bit 0: Enable Shift Operation

http://www.xilinx.com

Reference Design

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 5

The operation of this module has a simple programming model. The ARM processor writes to
the LENGTH, TMS_VECTOR and TDI_VECTOR registers. The order of writing to the LENGTH,
TMS_VECTOR, and TDI_VECTOR registers does not matter. Afterward, the Enable Shift Operation
bit of the CTRL register must be set to start the transfer. The Enable Shift Operation register is
self-clearing, so the software can poll this register to f ind out when the operation has
completed. The TDO_VECTOR register captures TDO bits during a shift operation. The
programming sequence for these registers is controlled within the Linux application.

The AXI4-Lite to JTAG Controller contains one user-configurable option to scale down the
toggle rate of the JTAG signals. The TCK Clock Ratio option allows you to slow down the rate
of the JTAG signals to a ratio of the s_axi_aclk input clock signal. As an example, in the
reference design the s_axi clock signals are running at 100 MHz with a TCK Clock Ratio
option of 16. This yields a toggle rate of 6.25 MHz for Test Clock (TCK.)

IMPORTANT: You are responsible for calculating the valid rate that TCK should operate at. This depends on
the signal integrity of the JTAG signals. Xilinx recommends to start off at a slow toggle rate to verify
functionality. Figure 4 shows the TCK Clock Ratio option of the custom packaged IP.

X-Ref Target - Figure 4

Figure 4: AXI4-Lite to JTAG Configurable Options

http://www.xilinx.com

Reference Design

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 6

To use the AXI4-Lite to JTAG Controller in a custom design, add the hw/source/ip_repo/
directory to the Vivado design tools IP repository. Then the controller will appear as a custom
IP in the Vivado IP catalog as shown in Figure 5.

For details on adding a directory as an IP repository, refer to the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 3].

I/O Locations

The JTAG signals on the MicroZed I/O carrier card are pinned out according to Table 2. Also
refer to Figure 11 for a physical representation of the connections.

X-Ref Target - Figure 5

Figure 5: AXI4-Lite to JTAG within the IP Catalog

Table 2: JTAG Signal Pinouts

Signal Name Pin on I/O Carrier I/O Standard I/O Pin on FPGA

TCK Pmod JA, Pin 1 LVCMOS33 (PULLUP) T11

TDI Pmod JA, Pin 2 LVCMOS33 (PULLUP) T10

TMS Pmod JA, Pin 3 LVCMOS33 (PULLUP) T12

TDO Pmod JA, Pin 4 LVCMOS33 U12

GND Pmod JA, Pin 5 N/A N/A

http://www.xilinx.com

Reference Design

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 7

Software Application
The XVC server is implemented within a Linux application. The Linux application is provided in
the sw/source/app directory of the reference design. The application software handles the
following setup of the TCP/IP socket as well as communication with the AXI4-Lite to JTAG
Controller.

The Ethernet payload from the socket is accepted, parsed, and stored in buffers. The f irst bytes
out of the socket indicate the commands. The XVC v1.0 Protocol [Ref 1] only has three
commands. The following three XVC v1.0 commands are:

• getinfo:

• shift:[number of bits][TMS vector][TDI vector]

• settck:[period in nanoseconds]

The getinfo command retrieves the XVC service version and the maximum vector length of
the TMS and TDI bits to be shifted. The current XVC service version is v1.0. The maximum vector
length of the TMS and TDI depends on the buffer depths specified in the software application.
This application note sets the maximum length to 2,048. So the string returned for the getinfo
request will be xvcServer_v1.0:2048\n.

RECOMMENDED: Xilinx recommends to tune the buffer size for a custom implementation. Depending on
the networking bandwidth and latency, a different buffer length will improve the overall bandwidth of the
XVC connection.

The shift command is the primary command received for transmitting data. The shift
command has three arguments as shown in the packet format in Table 3. The first argument
indicates the 'number of bits' in the payload for the TMS and TDI vectors. The 'number of bits'
is designated by the following 4 bytes after the shift command out of the socket. The
maximum value for the 'number of bits' is determined from the response of the getinfo
command. Following the 'number of bits' is the TMS vector. The length of the TMS vector
depends on the 'number of bits' f ield. Following the TMS vector is the TDI vector which also
has a length dependent on the 'number of bits' f ield. Both the TMS and TDI Vectors are stored
in a buffer before being handed off to the AXI4-Lite to JTAG Controller.

The settck command attempts to set the tck period. The returned value is the actual
specif ied period. The period is a four-byte binary value in little-endian. For example, 100
decimal is 0x64 hex, which is 'D' in ASCII. Therefore 'D' will be the value for a 100 nanosecond
period for tck for either the request or the response. In the reference design, a constant value
of "D" is returned to indicate a 100 ns period for TCK. Table 4 shows the packet format for a
settck command.

Table 3: Shift Command Format

Command Number of Bits TMS Vector TDI Vector

“shift:” 6 bytes 4 Bytes Dependent on ‘Number of Bits’ Dependent on ‘Number of Bits’

http://www.xilinx.com

Reference Design

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 8

After the Ethernet packets are parsed according to the XVC v1.0 protocol [Ref 1], the data is
passed along to the AXI4-Lite to JTAG controller in the PL through the uio driver frameworks.
The controller works in 4-byte boundaries, which depends on what was parsed from the
'number of bits' f ield. As each 4-byte boundary of TMS and TDI vectors are transmitted, the
TDO vectors are also sampled and stored in another buffer. The software loops until all the bits
are flushed through the AXI4-Lite to JTAG controller and all the TDO vectors are stored. When
the 'number of bits' f ield does not align with a 32-bit boundary, the f inal bits are transmitted
and the remaining bits are indicated on the LENGTH register of the AXI4-Lite to JTAG Controller.
For example, if the 'number of bits' f ield requests 73 bits, this is stored in 10 bytes of the buffer.
The first two 32-bit boundaries will have a full LENGTH of 32, and the last 32-bit boundary will
only have a LENGTH of 9. This is implemented in the example application within the
handle_data function.

After all the TDO vectors are stored, they are transmitted back to the XVC client and the
software listens for the next packet.

Tool Flow and Verification
The following checklist indicates the tool flow and verif ication procedures used for the
provided reference design.

Table 4: Set TCK Command Format

Command Period in Nanoseconds

“settck:” 7 Bytes “000D” 4 Bytes

Table 5: Reference Design Checklist

Parameter Description

General
Developer Name Alvin Clark and Luis Bielich

Target Devices MicroZed

Source code provided? Y

Source code format (if provided) RTL, Tcl, C

Implementation

Synthesis software tools/versions used Vivado synthesis

Implementation software tool(s) and version Vivado Implementation

Static timing analysis performed? Y

Hardware Verification
Hardware verif ied? Y

Platform used for verif ication MicroZed Board and AC701 (target)

http://www.xilinx.com

Requirements

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 9

Requirements
This section details any requirements for running the reference design.

Hardware
This application note requires the following hardware to implement the reference design:

• MicroZed Board

• MicroZed I/O Carrier Card

• Ethernet Cable

• Micro USB to USB cable

• Computer with Vivado design tools 2014.4 or newer installed

• IEEE 1149.1 JTAG-Compatible Device (AC701 is used)

• JTAG Flying Wire Adapter (HW-USB-FLYLEADS-G)

Software
• Linux Operating System

• PetaLinux tools

• Vivado Design Tools 2014.3.1 (also validated in 2015.1)

• Software Development Kit (SDK)

Reference Design Files
Figure 6 shows the file directory structure.
X-Ref Target - Figure 6

Figure 6: File Directory Structure

http://www.xilinx.com

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 10

Licensing
A FLEX license issued by Xilinx is required to run Vivado Design Edition and PetaLinux.

Reference Design Steps
Click here to download the reference design files implemented on the Avnet MicroZed board.
The MicroZed I/O carrier card is also needed.

Vivado IDE Steps
1. After downloading the design and unzipping the download, open Vivado IDE and change

the working directory to the hw/project directory within the Tcl Console. Then source the
xvc_build_project.tcl within the Tcl Console to build the project, as shown in
Figure 7.

2. After sourcing the xvc_build_project Tcl script, the project is built and you can examine
the project sources. Then build the bitstream for the PL by clicking on the Generate
Bitstream button within the Flow Navigator.

3. After the bitstream is generated, export the hardware design by selecting File >Export
>Export Hardware. A popup dialog box asks where to export the design. Select to include
the bitstream and export the f iles locally to the project, as shown in Figure 8.

X-Ref Target - Figure 7

Figure 7: Sourcing a Tcl Script to Build the Vivado Project

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=387581

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 11

PetaLinux Steps
The rest of the example design is implemented with the PetaLinux tools and requires a Linux
operating system. A virtual machine running Linux is acceptable if Windows is the native
operating system. Refer to the PetaLinux Tools Reference Guide (UG1144) [Ref 4] for help
installing the PetaLinux Tools. Xilinx also recommends that you become familiar with the
PetaLinux Tools. The PetaLinux tutorials, PetaLinux Tools Documentation Workflow Tutorial
(UG1156) [Ref 5], serve as a helpful reference to become familiar with the tools quickly.

1. The reference design files include a sw directory to include sources for the PetaLinux and
also a build area for the PetaLinux Project. Open a command line terminal and change to the
sw/build directory. Then create a PetaLinux project with the following command:

>> petalinux-create -t project -n xvc_linux

2. After the project is created, you must change into the xvc_linux directory created from
the petalinux-create command. Next a C template application is created and enabled
into the Linux build with the following command:

>> petalinux-create -t apps -n xvcServer --enable --template c

3. This creates a template application called xvcServer, which will replace the template
application with the application software located here: sw/source/app/xvcServer.c.
From the command prompt, enter the following:

>> cp ../../source/app/xvcServer.c ./components/apps/xvcServer/

4. The following step includes the user hardware selection from the Hardware Definition File
(HDF), which was created from the Vivado Project and located in the xvc_mz.sdk directory.
It might be necessary to copy the HDF f ile from the xvc_mz.sdk directory or use the
prebuilt HDF located in the sw/source/prebuilt_hdf directory.

Both HDFs should be identical. Following is the command used if the HDF is copied from the
xvc_mz.sdk directory to the sw/build/hdf_built_from_hw directory:

>> petalinux-config --get-hw-description=../hdf_built_from_hw/

X-Ref Target - Figure 8

Figure 8: Export Hardware

http://www.xilinx.com

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 12

5. The default device tree needs to be modif ied so that the xvcServer application can use the
uio drivers. It also includes modif ications for proper operation with the Ethernet PHY on the
MicroZed board. Copy the pl.dtsi and system-top.dts f ile from the
sw/source/device_tree directory to the
sw/build/xvc_linux/subsystems/linux/configs/device-tree directory.
Figure 9 and Figure 10 show the modif ied device tree f iles.

X-Ref Target - Figure 9

Figure 9: system-top.dts
X-Ref Target - Figure 10

Figure 10: pl.dtsi

http://www.xilinx.com

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 13

6. Build Linux with the following PetaLinux command:

>> petalinux-build

7. After Linux is built, package the Linux build to create the boot.bin and the image.ub
f iles. The command to package everything needs to have the Vivado design tools sourced.
The Vivado design tools need to be sourced because the Bootgen tool is needed. Following
is the command to package everything:

>> petalinux-package --boot --fsbl ./images/linux/zynq_fsbl.elf --fpga
./subsystems/linux/hw-description/xvc_system_wrapper.bit --uboot --force

8. The boot.bin f ile is located in the PetaLinux project directory, while the image.ub f ile is
in the ./images/linux directory. Copy both files on a Micro SD Card and plug it into the
MicroZed board.

Connect Hardware
The MicroZed board is connected to the MicroZed I/O carrier card so that programmable logic
I/Os can act as the JTAG signals. The I/O board is connected to an AC701 board by a JTAG flying
wire adapter as shown in Figure 11.

X-Ref Target - Figure 11

Figure 11: Hardware Setup

http://www.xilinx.com

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 14

1. To boot from the Micro SD Card, ensure the mode pins on the MicroZed board are
connected as shown in Figure 12.

2. Also ensure that the Vcco pins are operating at the correct voltage. For the MicroZed board,
the Vcco_34 and Vcco_35 voltages are user-controlled by jumpers on the I/O board. In this
reference design, the AC701 board is used and the JTAG interface operates at 3.3V. For this
reason, the Vcco on bank 34 will be set to 3.3V.

3. After the MicroZed is connected as shown in Figure 11, connect the Ethernet cable from the
MicroZed board to a host machine with Vivado design tools installed, or to a router with a
host machine connected to the router. Also connect the USB cable to the MicroZed board
and establish a serial connection with the same host machine. Power on the MicroZed board
and log into Linux with the user name and password both as 'root'.

4. After you are logged into Linux, launch the xvcServer in the background by typing the
following in the console.

>> xvcServer &

X-Ref Target - Figure 12

Figure 12: Boot Mode Jumper Settings for SD Card Boot

X-Ref Target - Figure 13

Figure 13: Running xvcServer as Daemon

http://www.xilinx.com

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 15

5. Within the Linux console, f ind the IP address of the eth0 device by typing the following in
the console:

>> ifconfig

The IP address assigned will display as shown in Figure 14. Remember this IP Address as it
will be used later.

6. If an inet addr is not assigned, you can set the address manually with the following
command:

>> ifconfig eth0 192.168.0.115 netmask 255.255.255.0

X-Ref Target - Figure 14

Figure 14: eth0 Device Showing an Address of 192.168.0.115

http://www.xilinx.com

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 16

Vivado Design Tool Flow
After the hardware is correctly connected and XVC is running on the MicroZed board, open a
Vivado Hardware Manager session as shown in Figure 15.

1. Start a Hardware Server session within Vivado IDE or with the following command in the Tcl
Console:

>> connect_hw_server

2. Open a hardware target with the following command in the Tcl Console. The IP address is
based on what was found from Connect Hardware.

>> open_hw_target -xvc_url 192.168.0.115:2542

The -xvc_url switch allows the hardware server to know the Ethernet address and port to
communicate with.

In this particular setup, the MicroZed board is connected to an AC701 board; however, you
can connect to any device. Because the AC701 board is used, the Artix®-7 200T device
displays in the Hardware Manager tab as shown in Figure 16.

X-Ref Target - Figure 15

Figure 15: Opening the Hardware Manager

http://www.xilinx.com

Reference Design Steps

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 17

You can program the Artix-7 200T device with the provided bit f ile in the
target_artix_files directory from the reference design. If a different board is used, you
can program the design with a bitstream for that device. For designs with Vivado Hardware
Debug IP cores, they will show up after being programmed. The ltx f ile must be associated with
the bit f ile targeting the FPGA. For information on using bit f iles and ltx f iles within the
Hardware Manager, refer to the Vivado Design Suite User Guide: Programming and Debugging
(UG908) [Ref 6].

Using XVC with XSDB
1. XVC also allows you to remotely debug a Xilinx microprocessor with Xilinx System Debugger

(XSDB.) XSDB can be used when hw_server is up and running with an XVC connection. Use
the two previously mentioned commands to get the hw_server running:

>> connect_hw_server

>> open_hw_target -xvc_url 192.168.0.115:2542

2. After hw_server is running, open an XSDB console within SDK or through the command line.
Figure 17 shows an example of stopping and starting a MicroBlaze processor connected to
the AC701 board.

X-Ref Target - Figure 16

Figure 16: Connecting to an Artix-7 Device

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf

Performance Considerations

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 18

Performance Considerations
The reference design was measured to have a performance of approximately 3.2 Mb/s while
programming the AC701. This measurement was made with a TCK frequency of 6.25 MHz and
the ARM processor running at 667 MHz.

XVC performance can be optimized by taking the following considerations:

• Reduce TCK ratio.

The faster the TCK clock operates, the faster XVC operates. As the speed of TCK increases, it
is important to ensure that the signal integrity of the JTAG signals will tolerate the
increased speed.

• Ensure a 1 Gigabit Ethernet connection.

The Ethernet controller can operate at 10 Mb/s, 100 Mb/s, and 1 Gb/s. The faster the
connection speed, the faster XVC will perform.

• Create a larger software buffer size.
The larger the buffer size, the faster XVC will operate. The sensitivity of performance
improvement depends on the latency on the network. The larger the latency on the
network, the more effect a larger software buffer improves performance.

X-Ref Target - Figure 17

Figure 17: Stopping and Starting a MicroBlaze Processor Connected to the AC701 Board

http://www.xilinx.com

Other Considerations

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 19

• Increase vector length -- AXI4-Lite to JTAG controller.

The AXI4-Lite to JTAG Controller can be modif ied to improve performance. The controller
can be modified to accept larger than 32-bit vectors. The larger the vector length, the
faster XVC can operate.

• Add interrupts -- AXI4-Lite to JTAG Controller.

Adding interrupt support helps offload the processor during shift XVC commands.
Currently the controller needs the CTRL register to poll to see when the Enable Shift
Operation bit is cleared. This can improve performance if the processor is already heavily
utilized. Adding interrupt support requires a change to the AXI4-Lite to JTAG Controller as
well as the application software.

Other Considerations
Following are some other considerations.

• Bit Bang JTAG

Instead of using the AXI4-Lite to JTAG controller, it is possible to bit bang the JTAG
commands over the general purpose I/O. This operation slows down the speed of JTAG, but
removes the necessity of programmable logic. This use case is more common for
implementations not having programmable logic, like a general purpose processor.

• Use lightweight IP (LwIP) for TCP/IP Stack

Although this application note uses Linux for the TCP/IP stack, you can also run XVC with
LwIP on a bare metal system or on an Real Time Operating System (RTOS.)

• Run XVC on the MicroBlaze™ processor.

You can run XVC on a MicroBlaze processor. The MicroBlaze processor is supported within
the PetaLinux tools, so it is possible to run Linux using this processor. Although
implementing the MicroBlaze processor with Linux is a viable option, it is more common to
use the MicroBlaze processor with LwIP.

• Security

XVC does not have built in security levels; it is a simple communication protocol. For
example, the following security measures can be implemented to protect access.

° Secure Socket Shell (SSH) Encrypted Ports

° Virtual Private Network (VPN)

° Simple Object Access Protocol (SOAP)

It is up to you to determine the appropriate levels of security. Implementing security is
outside the scope of this document.

http://www.xilinx.com

Conclusion

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 20

Conclusion
The reference design provided as part of this application note has shown how to implement the
XVC protocol. XVC allows you to use an existing Ethernet connection to remotely or locally
debug a Xilinx FPGA while leveraging all of the existing Vivado Hardware Debug Tools. A
product architecture can benefit from using XVC to remove the need for an additional JTAG
cable.

References
1. XVC v1.0 Protocol

2. MicroZed Hardware User Guide v1.6

3. Vivado Design Suite User Guide: Designing with IP (UG896)

4. PetaLinux Tools Reference Guide (UG1144)

5. PetaLinux Tools Documentation Workflow Tutorial (UG1156)

6. Vivado Design Suite User Guide: Programming and Debugging (UG908)

Revision History
The following table shows the revision history for this document.

Date Version Changes

04/30/2015 1.0 Initial Xilinx release.

http://www.xilinx.com
http://microzed.org/sites/default/files/documentations/MicroZed_HW_UG_v1_6.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/support/documentation/sw_manuals/petalinux2014_4/ug1144-petalinux-tools-reference-guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/petalinux2014_4/ug1156-petalinux-tools-workflow-tutorial.pdf
https://github.com/Xilinx/XilinxVirtualCable/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf

Please Read: Important Legal Notices

XAPP1251 (v1.0) April 30, 2015 www.xilinx.com 21

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE
IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE
REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR
PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.
© Copyright 2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. ARM is a registered trademark of ARM in the EU and
other countries. Cortex is a trademark of ARM in the EU and other countries. All other trademarks are the property of their respective
owners.

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com

	Xilinx Virtual Cable Running on Zynq-7000 Using the PetaLinux Tools
	Summary
	Reference Design
	Hardware
	Gigabit Ethernet Controller
	Cortex A9 Processor APU
	AXI4-Lite to JTAG Controller

	Software Application
	Tool Flow and Verification

	Requirements
	Hardware
	Software
	Reference Design Files
	Licensing

	Reference Design Steps
	Vivado IDE Steps
	PetaLinux Steps
	Connect Hardware
	Vivado Design Tool Flow
	Using XVC with XSDB

	Performance Considerations
	Other Considerations
	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

