
XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 1

Summary
This application note is intended to be a getting started guide for new users of ENEA OSE BSP
on the Zynq®-7000 AP SoC. The document contains the following sections:

• Building OSE for the Zynq-7000 AP SoC goes over the steps to download, configure and
build the OSE BSP, as well as how to boot the device and set up the remote debugging
capabilities using ENEA Optima tools.

• Building and Debugging an OSE Application for the Zynq-7000 AP SoC explains how to
create a simple application running within OSE, and then sets up the debugging feature of
the ENEA tools, and explains how to perform basic debugging of OSE running on a
Zynq-7000 AP SoC.

• Accessing a Peripheral in the Programmable Logic goes over the configuration needed to
access a peripheral in the programmable logic of the Zynq-7000 SoC, showing the ability
for ENEA Optima tools to develop applications and drivers targeting custom IP instantiated
within the Zynq-7000 AP SoC programmable logic.

You can download the reference design f iles for this application note from the Xilinx® website.
For detailed information about the design files, see Reference Design.

Hardware and Software Requirements

Software Requirements
• Vivado® Design Suite, 2014.2.

• Xilinx SDK 2014.2

• ENEA OSE5.7

• TFTP server application, such as tftpd64

Hardware Requirements
• Xilinx ZC702 Development Board

Application Note: Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015

Using ENEA OSE BSP for the
Zynq-7000 AP SoC
Author: Kester Aernoudt

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=379684

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 2

Building OSE for the Zynq-7000 AP SoC

Installing OSE
The installation of OSE for the Zynq-7000 AP SoC is split into different components which are
installed separately. The required components are:

• The OSE kernel

• The BSP for the Zynq-7000 AP SoC device

Optionally, but used for this application note, the ENEA development environment Optima can
be installed as well. Optima is an Eclipse based environment that allows you to create, build,
and debug the OSE kernel and modules, and also allows you monitor and analyze running
targets, all done over Ethernet.

OSE Kernel

This image is typically named something similar to
ose5_7_arm-BLXXXXXX_BLXXXXXX-image.zip, meaning a maintenance build of the OSE
5.7 version. The installation wizard walks you through a couple of steps in which you will be
asked to enter the license key and installation path. The suggestion is to use the default
installation path, and to select Typical installation when selecting the packages to install.

All documentation for this BSP can be found in the <OSE installation path>/doc folder.

BSP for the Zynq-7000 AP SoC Device

Similar to the OSE kernel itself, the Zynq-7000 BSP has to be installed using an installation
wizard. The image itself is provided as an archive, similar to
bsp_zynq7020_refsys_OSE5.7.1_BLXXXXXX_BLXXXXXX.zip. For this application note,
the version BL770298 is used.

The default folder for the installation of the Zynq-7000 BSP is
C:\Enea\BSP_Zynq7020_OSE5.7, and the Typical Installation can be used, which will install
all the necessary packages and documentation.

Optima

As a last step, ENEA Optima IDE is installed, which will allow you to debug a running kernel and
its modules. Again, the default location (C:\Enea\Optima2.8) and Typical Installation
provide you with all you need to target and debug a Zynq-7000 device.

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 3

Once installation is complete, a full Start Menu will be populated with the member elements, as
shown in Figure 1.

Configuring OSE Build Environment
After installation, the environment to build the kernel and run the tools has to be configured.
This is done by modifying some makefiles, and creating a script to modify the environment
before launching the tools.

Makefile Modifications

The OSE reference BSP comes with a makefile based build environment. It can also be
integrated in an existing build environment, but this application note will use the provided
system. To do so, some modifications have to be made for the exact environment and
installation parameters used.

The reference BSP is created for the ZC702 board, and can be found in the <Zynq BSP
install path>/refsys folder. Within this folder, the environment.mk f ile is the global
configuration f ile for building the project. This file contains settings such as, but not limited to,
Include Paths and Library Paths, along with Host and Target platform configuration details, etc.

However, two items need to be changed. Therefore, open the environment.mk f ile from the
<Zynq BSP install path>/refsys folder and make the following modifications:

1. The OSEROOT variable needs to be set correctly. This is not needed when installing the
Zynq-7000 BSP within the OSE base directory, but when installing multiple platforms BSPs,
or when (as in this application note) installing the BSP outside of the OSE base folder, you
need to configure the correct path to the sources of the OSE kernel. Look for the OSEROOT
variable, and modify the path to reflect the installed environment:

OSEROOT ?= ../../../../OSE5.7.2_ARM

The OSEROOT variable has to point to the installation folder for the OSE kernel itself, relative
to the build folder of the current project, which for a default installation would be <Zynq
BSP Install Path>\refsys\rtose\zynq7020.

X-Ref Target - Figure 1

Figure 1: Start Menu

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 4

2. The correct platform needs to be selected. The default platform in the OSE 5.7.2 package
was PowerPC® processor, which you need to change to arm-gcc. Look for the lines which
contain the ARCH specif ication (see Figure 2), and modify or add an extra line underneath:

ARCH ?= arm-gcc

The ARCH variable configures the build system to use the correct cross compilation toolchain.
This modif ication is not strictly needed when using the command line make utility, but is
required when using the Optima Development Environment.

Environment Setup

The environment has to be configured for all tools to work correctly. The LM_LICENSE_FILE
environmental variable has to be set, and point to the correct license file. Also, if not configured
globally, the ENEA Cygwin path has to be added to the PATH environmental variable:

For convenience, create a batch f ile on your desktop with the following content:

set LM_LICENSE_FILE=C:\Enea\License_keys_SFK_TOOLSEVAL.TXT
set PATH=%PATH%;C:\Enea\OSE5.7.2_ARM\cygwin\bin\
C:\Enea\Optima2.8\optima_win32\eclipse.exe

This script will launch Optima with the correct path and license file in the environment.

Building the OSE Kernel for Zynq-7000 AP SoC Devices
The installation of ENEA OSE comes with a Cygwin environment which can be used to compile
the kernel and modules. Additionally, the Optima IDE can also be used. For this application
note, the Optima IDE based approach will be used.

X-Ref Target - Figure 2

Figure 2: environment.mk Modifications

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 5

1. As a first step, a new workspace should be created, as shown in Figure 3.

2. Now create a new Makefile based project in our Workspace, referencing the OSE kernel
sources:

a. Select File -> New -> Project

b. Select the Makefile Project with Existing Code template, as shown in Figure 4.

3. Set the Project Name to OSE_ZC702

4. Set the Existing Code Location to <Zynq BSP Install
Path>/refsys/rtose/zynq7020

X-Ref Target - Figure 3

Figure 3: Workspace Launcher

X-Ref Target - Figure 4

Figure 4: New Project Wizard

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 6

5. Select the OSE C/C++ Toolchain, as shown in Figure 5.
X-Ref Target - Figure 5

Figure 5: New Project Dialog Box

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 7

This will create the OSE_ZC702 project, which is visible in the Project Explorer tab, as shown
in Figure 6.

6. Build this project by right-clicking on the OSE_ZC702 project, and selecting Build Project,
as shown in Figure 7.

X-Ref Target - Figure 6

Figure 6: Project Explorer

X-Ref Target - Figure 7

Figure 7: Build Project

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 8

This will build both release and debug versions of the OSE kernel, which will be made visible in
the GUI under the Binaries section in the Project Explorer, and are located in the <Zynq BSP
Install Path>/refsys/rtose/zynq7020/obj/rtose_debug and <Zynq BSP
Install Path>/refsys/rtose/zynq7020/obj/rtose_release folders. See Figure 8.

Running OSE on Zynq-7000 AP SoC Devices
As described in the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
[Ref 1], Zynq-7000 AP SoC can use a selection of its hardened peripherals as a primary boot
interface under initial control of the Zynq-7000 AP SoC BootROM. However, the process
remains consistent in each and the need for a boot image containing a Boot header, First Stage
Bootloader, Bitstream (optional) and a second stage bootloader/application is required at all
times.

For the purpose of this application note, it is assumed that a prebuilt boot.bin image
containing FSBL and a precompiled u-boot.elf has been downloaded and is available to the
developer. The boot.bin image found on our Embedded Wiki [Ref 2] provides tftp boot
capability, and the Vivado Design Suite 2014.2 version has been shown to work with this
application note.

1. Download the boot.bin image and place it on a formatted SD Card.

2. Insert the SD card into the board.

3. Boot the platform with all appropriate cables connected.

4. Open a serial console on the correct COM port and configure the terminal settings:

a. Set the Baud rate to 115200.

X-Ref Target - Figure 8

Figure 8: Binaries

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 9

b. Set Data to 8-bit.

c. Set Parity to none.

d. Set Stop to 1 bit.

e. Set Flow control to none.

During boot, you should see the u-boot boot messages, which will show a download
counter to start autoboot.

f. Select any key to stop this autoboot, as the default configuration is to launch Linux. See
Figure 9.

Now that you are in the u-boot prompt, you can use different methods to load the actual
OSE kernel image. For this application note, you will use a TFTP server on the host machine,
and configure u-boot to fetch the kernel over TFTP.

5. Launch the tftp64 application, and store the rtose.bin (<Zynq BSP install
path>\refsys\rtose\zynq7020\obj\rtose_debug\rtose.bin) f ile in the root of
the tftp shared folder.

6. Configure the tftp host machine to have a f ixed IP address (192.168.1.1, for example), and
start the tftp server. Make sure that your local f irewall allows tftp to be used on your
machine (or disable the f irewall temporarily).

7. Now, from the u-boot prompt, issue the following commands to fetch the OSE kernel and
boot it on the Zynq-7000 AP SoC:

setenv ipaddr 192.168.1.111; setenv serverip 192.168.1.1; setenv tftpblocksize 512;
tftpboot 0x00050000 rtose.bin
go 0x00050000

X-Ref Target - Figure 9

Figure 9: U-boot Console

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 10

The OSE kernel boots and will, at the end of the boot process, show the OSE prompt, as
shown in Figure 10.

This indicates that the OSE kernel is up and running, and the OSE shell can be used to issue
commands.

X-Ref Target - Figure 10

Figure 10: OSE Prompt

http://www.xilinx.com

Building OSE for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 11

8. Type help for an overview (see Figure 11) of the available commands that are supported by
this kernel.

9. If there is a DHCP server in the network, no further configuration is needed. Otherwise, use
the following command to set the IP address of the target:

ifconfig eth0 192.168.1.111

X-Ref Target - Figure 11

Figure 11: OSE Help

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 12

The actual IP address can be shown by entering the following (see Figure 12):

ifconfig eth0

Building and Debugging an OSE Application for the
Zynq-7000 AP SoC

Building an OSE Module
The OSE BSP for Zynq-7000 AP SoC devices comes with several modules that can be added to
the OSE kernel image or loaded at run time. See the ENEA OSE Device Drivers User's Guide
[Ref 3] for more information. They can be used as is, or some are meant as an example of how
to create and use modules within OSE. Such modules are located in the BSP install folder at

X-Ref Target - Figure 12

Figure 12: Network Configuration when using DHCP

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 13

<Zynq BSP install path>/refsys/modules. See Figure 13.

The example module used in this application note is the pingpong module. This is a very
simple demonstration module, containing two processes sending signals to each other. A signal
in OSE is used to pass messages between processes. It contains an ID, and can optionally
contain other information as well. The pingpong module sends an integer value back and forth
using such a signal. See the ENEA OSE Device Drivers User's Guide [Ref 3] for more information
on signals and their use.

X-Ref Target - Figure 13

Figure 13: OSE BSP Modules

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 14

The ping process creates a signal and sends it to the pong process, and this pong process
receives the signal, increments a counter variable within this signal, and sends it back.

There are several mechanisms to use and launch modules, but for this example, you will compile
the module in the kernel so it is launched at startup. One way of accomplishing this is to modify
the kernel build system environment to add the module. See Enea OSE Refsys User's Guide
[Ref 4] for more information on the build system. The file you need to modify to include this
module is in the kernel source folder OSE_ZC702/rtose.mk . See Figure 14.

X-Ref Target - Figure 14

Figure 14: OSE_ZC702 > rtose.mk

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 15

1. To include the pingpong module, add the following string somewhere in the file (see
Figure 15):

override MODS += pingpong

2. Recompile the OSE kernel itself, which will compile the pingpong module.

3. Link the pingpong module in the OSE kernel. Right-click the OSE_ZC702 project and select
Build Project to do so, as shown in Figure 16.

4. Following the guidelines for running OSE on Zynq-7000 devices will boot this new kernel
containing the pingpong module. After booting, you can show the blocks loaded by the

X-Ref Target - Figure 15

Figure 15: Adding Pingpong Module to rtose.mk

X-Ref Target - Figure 16

Figure 16: CDT Build Console

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 16

kernel by issuing the bl command, as shown in Figure 17.

5. Similarly, use the ps command to show the running processes, which include our ping and
pong processes, as shown in Figure 18.

Debugging an Application using Optima
To set up the connection between the ZC702 board running the OSE kernel and the Optima IDE,
a new hardware target should be configured in Optima.

X-Ref Target - Figure 17

Figure 17: Blocks Loaded

X-Ref Target - Figure 18

Figure 18: Running Processes

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 17

1. To add such a target, click the Add new Gate in the System Browser tab of the System
Browsing perspective, as shown in Figure 19.

2. Enter the IP address of the Zynq-7000 AP SoC target running OSE, which will be
192.168.1.111 if the illustrated defaults were used. See Figure 20.

X-Ref Target - Figure 19

Figure 19: System Browser

X-Ref Target - Figure 20

Figure 20: Gate Configuration

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 18

Upon successful connection to the target running the OSE kernel, you will be able to interact
with it using the System Browser tab, as shown in Figure 21.

Further information on what can be done with the System Browser tab in Optima can be
found in ENEA Optima documentation. In this section, the debugging capabilities will be
demonstrated.

3. Before debugging an application using Optima, add the application to the current
Workspace. Follow the same steps as when you created the kernel project to add the
pingpong project (<Zynq BSP Install Path>\refsys\modules\pingpong) to the
workspace. This will then also show up in the Project Explorer, as shown in Figure 22.

X-Ref Target - Figure 21

Figure 21: System Browser

X-Ref Target - Figure 22

Figure 22: Project Explorer

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 19

Both the OSE kernel and the pingpong module projects can be built from within the
Optima environment as well. For example, Project > Build All will build the current project
debug and release versions.

4. The next step is to create the debug configuration. Select Run > Debug Configurations…,
as shown in Figure 23.

X-Ref Target - Figure 23

Figure 23: Debug Configurations...

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 20

5. In the wizard that appears, double-click the OSE C/C++ Core Module entry, which will
create a new debug configuration (see Figure 24).

6. Fill in the C/C++ Application by clicking Search Project… and selecting the .elf that was
used to create the U-Boot image (rtose.bin) of the OSE kernel: <Zynq BSP install

X-Ref Target - Figure 24

Figure 24: New Debug Configuration

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 21

path>\refsys\rtose\zynq7020\obj\rtose_debug\rtose.elf. See Figure 25.

7. In the Connection tab, set the IP address of the target and leave the Gate Port number to
the default (21768).

8. In the Debugger tab, set the GDB debugger by clicking Find (next to the GDB debugger).
See Figure 26.

X-Ref Target - Figure 25

Figure 25: Select ELF File

X-Ref Target - Figure 26

Figure 26: GDB Debugger Configuration

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 22

9. And finally, in the Debug tab, change the scope of the Debug scope to Block , and set the
Block name to pingpong, and the Process to ping, as shown in Figure 27.

10. To start the debug session, close the wizard by clicking on Debug. Eclipse will prompt to
change the perspective from the System Browsing to the Debug perspective. This should be
accepted.

Once the debug connection has been made, the two threads of the pingpong process will be
stopped, which can be seen in the Debug tab. See Figure 28.

For example, clicking the ping process will attempt to open the ping.c source f ile, but
since you are actually debugging the complete OSE kernel project, these sources cannot be
found automatically. This can be resolved by clicking Edit Source Lookup Path… and
selecting the correct source path for these files.

X-Ref Target - Figure 27

Figure 27: Debug Tab

X-Ref Target - Figure 28

Figure 28: pingpong Process

http://www.xilinx.com

Building and Debugging an OSE Application for the Zynq-7000 AP SoC

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 23

11. Select the Add Source, then Project. See Figure 29.

12. Finally, select the pingpong project. See Figure 30.

This will allow Optima to f ind the source f iles used by this module.

With the debugger connected now, the standard eclipse features can be used to debug, break,
view variables, etc.

X-Ref Target - Figure 29

Figure 29: Add Source > Project

X-Ref Target - Figure 30

Figure 30: Select Project

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 24

Accessing a Peripheral in the Programmable Logic
Inclusion of two general purpose AXI Master interfaces between the PS and the programmable
logic ensures that user IP cores within the programmable logic are memory mapped in the
same way that each of the peripherals within the PS are memory mapped. See the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 1] for details. This common
memory mapped approach ensures that access to peripherals, whether they are within the
processing system or programmable logic, is an act of accessing a device-specif ic memory
region.

In this section, you will modify the pingpong example application to show how to access a
peripheral in the Programmable Logic.

Vivado IP Integrator Hardware Design
The hardware design used for this section is created using the Vivado IP Integrator tools. The
details of how to create such a design is out of scope for this application note, but can be found
in Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898) [Ref 5] and
Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) [Ref 6]. The project
you will use is the Zynq example design, available in the 2014.2 Vivado release, which contains
only the processing system, a block RAM controller, and an AXI GPIO peripheral in the
programmable logic, driving four LEDs on the board. See Figure 31.

X-Ref Target - Figure 31

Figure 31: Block Diagram of Example Design

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 25

The memory map of this design is also configured in the IP Integrator environment, as shown
in Figure 32.

For your convenience, the implemented bitstream is available for download (see Reference
Design) with this application note.

After the implementation of this design, you also need to generate a First Stage Bootloader to
configure the Processing Subsystem as defined by the IP Integrator project. There are multiple
methods to create this First Stage bootloader, for example using XSDK (see [Ref 7]). A
precompiled FSBL is also included in the attached reference design.

Example Application Modification
For the simple example hardware design, you will modify the pingpong example to access our
GPIO peripheral in the programmable logic. The modifications are done in the pong.c f ile,
which will take the counter value in the signal that is sent between the ping and pong process,
and drive the LEDs with this value. The only modification needed for this purpose is to
configure the AXI GPIO peripheral to make all GPIO outputs:

Xil_Out32(GPIO_TRI_ADDR, 0x0);

And then, when a signal is received, you need to drive the LEDs with this value:

Xil_Out32(GPIO_DATA_ADDR, new_value);

The I/O functions by reading and writing from the correct memory location, and are defined as
follows:

void Xil_Out32(u32 OutAddress, u32 Value)
{
*(volatile u32 *) OutAddress = Value;

}

u32 Xil_In32(u32 Addr)
{
return *(volatile u32 *) Addr;

}

The complete source code for the pong.c process can also be found in the attached reference
design (see Reference Design).

X-Ref Target - Figure 32

Figure 32: Address Map

http://www.xilinx.com

Accessing a Peripheral in the Programmable Logic

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 26

OSE Kernel Modifications
Because OSE uses the MMU to access and protect memory regions, you also need to modify its
configuration to be able to access our peripheral in the Programmable Logic. By default, the
MMU is not configured to allow access to the memory regions used by the two Master AXI
interfaces. OSE has multiple methods to modify this MMU configuration, both dynamically and
statically. See the ENEA OSE Architecture User's Guide [Ref 8] for more information. For this
example, a static configuration was selected.

The static configuration of the MMU is done in the f ile <Zynq BSP install
path>/refsys/rtose/zynq7020/rtose5.conf. To add a memory region to the MMU,
add the following line to the file, as shown in Figure 33:

krn/region/axi_gpio=base:0x41200000 size:64M perm:su_rw_usr_rw cache:inhibited
mem:ordered_access

This will allow OSE to access the memory region of our AXI GPIO peripheral located in the
programmable logic, without using caches.

Now you can rebuild the OSE kernel, following the steps of Building the OSE Kernel for
Zynq-7000 AP SoC Devices.

Booting Zynq-7000 AP SoC Devices using a Bitfile and Updated
Kernel
Before you can run the updated kernel image on our ZC702 board, you have to make sure that
the programmable logic is configured with our custom hardware design. One method to
accomplish this is to update the boot image to include this bitf ile, which will then during the
boot process be used by the First Stage Bootloader to configure the programmable logic,
before U-boot will get loaded and executed. To create a new boot image, use the tool bootgen,
which is configured by a .bif f ile (ose.bif) containing the different partitions in the boot
image. For more information on creating a boot image and using the bootgen application, see
UG821, Appendix A: Using Bootgen [Ref 9].

In summary, you need a .bif f ile like this:

//ZC702_bif_for_OSE:
{
[bootloader]fsbl.elf
zynq_1_wrapper.bit
u-boot.elf

}

X-Ref Target - Figure 33

Figure 33: rtose.conf

http://www.xilinx.com

Conclusion

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 27

Where:

• fsbl.elf is the fsbl created in the previous section, Vivado IP Integrator Hardware
Design.

• zynq_1_wrapper.bit is the bitfile created in the same section.

• u-boot.elf is the same U-Boot used in Running OSE on the Zynq-7000 AP SoC.

To generate the new boot image, open an SDK command prompt, and execute the following:

bootgen -image ose.bif -o boot.bin

This will create a new boot.bin f ile, which needs to be copied on the SD card used to boot the
board. For your convenience, the attached reference f iles contain all sources, as well as
generated boot.bin f ile which can be used to boot the board.

Following the instructions from this document in Running OSE on Zynq-7000 AP SoC Devices,
you now boot the ZC702 board using this updated image, which configures the programmable
logic during the FSBL stage. After the OSE kernel is executed, the updated pingpong module
will run, which will toggle the LEDs on the board. When connecting using Ethernet, and using
Optima to debug the kernel, as explained in Debugging an Application using Optima, the pong
process can be debugged.

Conclusion
This application note provides step-by-step instructions for running the OSE BSP on the
Zynq-7000 SoC All Programmable device platform, and shows how to build and debug example
applications accessing peripherals in the Processing System and Programmable Logic.

Reference Design
Download the reference design files for this application note from the Xilinx website.

Table 1 shows the reference design matrix.

Table 1: Reference Design Matrix

Parameter Description

General

Developer Name Kester Aernoudt

Target Devices Zynq-7000 AP SoC

Source code provided? Y

Source code format (if provided) Block diagram/C

Design uses code or IP from existing reference
design, application note, third-party or Vivado
software? If yes, list.

IP cores from Vivado IP Catalog

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=379684

References

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 28

References
1. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

2. Embedded Wiki http://www.wiki.xilinx.com/Zynq+Releases

3. Enea OSE Device Drivers User's Guide (installed with BSP)

4. Enea OSE Refsys User's Guide (installed with BSP)

5. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)

6. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)

7. Chapter 3: Boot and Configuration (UG821)

8. Enea OSE Architecture User's Guide (Installed with OSE)

9. Appendix A: Using Bootgen (UG821)

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

Hardware Verification

Hardware verif ied? Y

Platform used for verif ication ZC702 Development Board

Table 1: Reference Design Matrix (Cont’d)

Parameter Description

Date Version Revision

01/12/2015 1.0 Xilinx initial release

http://www.wiki.xilinx.com/Zynq+Releases
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug898-vivado-embedded-design.pdf
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

Please Read: Important Legal Notices

XAPP1221 (v1.0) January 12, 2015 www.xilinx.com 29

Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE
IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE
REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR
PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.
© Copyright 2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

http://www.xilinx.com

	Using ENEA OSE BSP for the Zynq-7000 AP SoC
	Summary
	Hardware and Software Requirements
	Software Requirements
	Hardware Requirements

	Building OSE for the Zynq-7000 AP SoC
	Installing OSE
	OSE Kernel
	BSP for the Zynq-7000 AP SoC Device
	Optima

	Configuring OSE Build Environment
	Makefile Modifications
	Environment Setup

	Building the OSE Kernel for Zynq-7000 AP SoC Devices
	Running OSE on Zynq-7000 AP SoC Devices

	Building and Debugging an OSE Application for the Zynq-7000 AP SoC
	Building an OSE Module
	Debugging an Application using Optima

	Accessing a Peripheral in the Programmable Logic
	Vivado IP Integrator Hardware Design
	Example Application Modification
	OSE Kernel Modifications
	Booting Zynq-7000 AP SoC Devices using a Bitfile and Updated Kernel

	Conclusion
	Reference Design
	References
	Revision History
	Please Read: Important Legal Notices

