
XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 1

© Copyright 2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

?

Summary This application note describes how the Vivado® High-Level Synthesis (HLS) tool enables
higher productivity in protocol processing designs by providing abstractions in critical areas.
This simplifies designs and makes them less error-prone. While the basics of implementing
protocol processing designs using Vivado HLS are fairly straightforward, there are some subtle
aspects that warrant a detailed explanation. This application note includes:

• Basic Concepts and Code Examples for building a packet processing system in Vivado
HLS.

• Advanced Concepts and Code Examples.

• Included with this application note is an example design that demonstrates how a protocol
processing sub system can be built using Vivado HLS. This document includes
information about how to use the example design, along with Example Design File
Location and Details and an Example Design Description. The example design
implements a basic set of networking modules that implement Address Resolution
Protocol (ARP) and ping functionality. The required Vivado HLS files are provided, as well
as a Vivado Design Suite project that you can use to implement the design on a Xilinx®
VC709 development board.

Introduction Protocol Processing

Protocol processing on different levels is present in any modern communication system
because any exchange of information requires the use of a communication protocol. The
protocol typically contains packets. The packets must be created by the sender and
reassembled at the receiver, while ensuring adherence to protocol specifications. This makes
protocol processing ubiquitous. Consequently, protocol processing, and implementing protocol
processing functionality efficiently, is important for FPGA design.

This application note explains how to address key challenges encountered when processing
protocols using Vivado HLS.

Raising the Level of Abstraction and Related Benefits

Vivado HLS raises the level of abstraction in system design by:

• Using C/C++ as a programming language and leveraging the high-level constructs it
offers.

• Providing additional data primitives that allow you to easily use basic hardware building
blocks (bit vectors, queues, etc.)

These characteristics allow you to use Vivado HLS to address common protocol system design
challenges more easily than when using RTL, with the following benefits:

System assembly

Vivado HLS modules are treated as functions, with the function definition being equivalent
to an RTL description of the module and a function call being equivalent to a module

Application Note: Vivado HLS

XAPP1209 (v1.0.1) August 8, 2014

Designing Protocol Processing Systems with
Vivado High-Level Synthesis
Author: Kimon Karras, James Hrica

http://www.xilinx.com

Introduction

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 2

instantiation. This simplifies the structural code describing the system by reducing the
amount of code that has to be written.

Simple FIFO/memory access

Accessing a memory or a FIFO in Vivado HLS is done in one of two ways: through methods
of an appropriate object (for example, the read and write methods of a stream object) or by
accessing a standard C array, which synthesis then implements as block RAM or
distributed RAM. Vivado HLS takes care of the additional signaling, synchronization,
and/or addressing as required.

Abstraction of control flow

Vivado HLS provides a set of flow-control aware interfaces ranging from simple FIFO
interfaces to AXI4-Stream. In all of these interfaces, you access the data without having to
check for back pressure or data availability. Vivado HLS schedules execution appropriately
to take care of all contingencies, while ensuring correct execution.

Word realignment

The abstraction of flow control enables you to use Vivado HLS to perform core protocol
processing tasks, such as word realignment easily. Data access aided by the abstraction of
flow control eliminates the need for error prone reading and writing from FIFO/memories,
and thus allows you to write simpler code.

Easy architecture exploration

In Vivado HLS, you can insert pragma directives in the code to communicate the features
of your design to Vivado HLS. These can range from fundamental issues, such as the
pipelining of a module, to more mundane ones, such as the depth of a FIFO queue. In any
case, pragma directives provide you with the ability to explore a wide range of architectural
alternatives without requiring changes to the implementation code itself.

C and C/RTL simulation

Vivado HLS designs can be verified using a two-step simulation process.

1. C simulation, in which the C/C++ is compiled and executed like a normal C/C++
program. While this simulation is not cycle-accurate, it mirrors the functionality of the
auto-generated RTL code very well. This enables functional verification of the design
by using C/C++ test benches at C/C++ execution speeds, thus enabling very long
simulations, which are not possible in RTL.

2. Verification with C/RTL co-simulation. Vivado HLS automatically generates an RTL test
bench from the C/C++ test bench, then implements and executes an RTL simulation
that can be used to check the accuracy of the implementation.

Understanding Directives

Because the C++ code used in Vivado HLS is compact in nature, you can leverage its features
to realize development time and productivity benefits as well as improvements in code
maintainability and readability. Furthermore, Vivado HLS allows you to maintain control over
the architecture and its features. To take full advantage of its capabilities, correct understanding
and use of Vivado HLS directives is fundamental.

http://www.xilinx.com

Basic Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 3

SDNet

HLS occupies an intermediate slot in the hierarchy of Xilinx-provided packet processing
solutions. It is complemented by Vivado Design Suite SDNet [Ref 1], which uses:

• A domain-specific language to offer a simpler, if more constrained, way of expressing
protocol processing systems

• RTL, which allows for the implementation of a considerably wider breadth of systems that
Vivado HLS is not able to express (for example, systems requiring detailed clock
management using DCMs or differential signaling).

You can, however, use HLS to implement the vast majority of protocol processing solutions
efficiently, without compromising the quality of results or design flexibility.

Basic Concepts
and Code
Examples

This section provides guidelines and code examples for building a simple protocol processing
system with Vivado HLS.

When starting a new design, the most basic tasks to be accomplished are:

• Determining the design structure. An example is provided in the section Setting Up a
Simple System.

• Implementing the design in Vivado HLS. An example is provided in the section
Implementing a State Machine with Vivado HLS.

Setting Up a Simple System

In Vivado HLS, the basic building block of a system is a C/C++ function. Building a system
consisting of modules and submodules essentially means that a top-level function calls lower
level functions. Figure 1 illustrates a simple three-stage pipeline example to introduce the basic
concepts for system building in Vivado HLS. Protocol processing is typically performed in
pipelined designs, with each stage addressing a specific part of the processing.

Code Example 1 - Creating a Simple System in Vivado HLS
1 void topLevelModule(stream<axiWord> &inData, stream<axiWord> &outData) {
2 #pragma VHLS dataflow interval=1
3
4 #pragma HLS INTERFACE port=inData axis
5 #pragma HLS INTERFACE port=outData axis
6
7 static stream<ap_uint<64> > modOne2modTwo
8 static stream<ap_uint<64> > modTwo2modThree;
9
10 #pragma HLS STREAM variable = modOne2modTwo depth = 4;
11 #pragma HLS STREAM variable = modTwo2modThree depth = 4;
12
13 moduleOne(inData, modOne2modTwo);
14 moduleTwo(modOne2modTwo, modTwo2modThree);
15 moduleThree(modTwo2modThree, outData);
16 }

http://www.xilinx.com

Basic Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 4

Code Example 1 - Creating a Simple System in Vivado HLS creates the top module function
that calls the other sub-functions. The top module function uses two parameters, both of which
are objects of class stream, which is one of the template classes provided by the Vivado HLS
libraries. A stream is a Vivado HLS modeling construct that represents an interface over which
data is to be exchanged in a streaming manner. A stream can be implemented as a FIFO
queue or shift register, as detailed in the Vivado Design Suite User Guide: High-Level
Synthesis (UG902) [Ref 2]. A stream is a template class that can be used with any C++
construct. In this case, a defined data structure (struct) called axiWord is used. This is
shown in Code Example 2 - Definition of a C++ struct for Use in a Stream Interface.

Code Example 2 - Definition of a C++ struct for Use in a Stream Interface
struct axiWord {
 ap_uint<64> data;
 ap_uint<8> strb;
 ap_uint<1> last;
};

This struct defines part of the fields for an AXI4-Stream interface. This kind of interface is
automatically supported in Vivado HLS and can be specified using a pragma statement.
Pragmas are directives to the Vivado synthesis tool that help guide the tool to reach the
required results. The pragmas in lines 4 and 5 of Code Example 1 - Creating a Simple System
in Vivado HLS tell Vivado HLS that both parameters (essentially the input and output ports of
the top module) are to use AXI4-Stream interfaces and provide a name for the resulting
interface. The AXI4-Stream interface includes two mandatory signals, the valid and ready
signals, which were not included in the declared struct. This is because the Vivado HLS AXI4
interface manages these signals internally, which means that they are transparent to user logic.
As mentioned earlier, Vivado HLS completely abstracts flow control when using AXI4-Stream
interfaces.

An interface does not have to use AXI4-Stream. Vivado HLS provides a rich set of bus
interfaces, which are listed in the Vivado Design Suite User Guide: High-Level Synthesis
(UG902) [Ref 2]. AXI4-Stream is used here as an example of a popular, standardized interface
that can be used for packet processing.

The next task in implementing your design is to ensure that our three modules are connected
to each other. This is also accomplished through streams, but in this case, the streams are
internal to the top module. Lines 7 and 8 of Code Example 1 - Creating a Simple System in
Vivado HLS declare two streams for this purpose.

These streams:

• Make use of another Vivado HLS construct, ap_uint.

• The ap_unit construct consists of bit-accurate unsigned integers and can be thought
of and manipulated as a bit.

X-Ref Target - Figure 1

Figure 1: Simple Three-Stage Pipeline

http://www.xilinx.com

Basic Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 5

• Because it is a template class, the width of this array must also be specified. In this
case, 64 bits are used, matching the width of the data members of the input and
output interfaces of the top module.

• Are declared as static variables. A static variable maintains its value over multiple function
calls. The top-level module (and thus all its submodules) is called once in every clock cycle
when executed as a sequential C/C++ program, so any variables that must maintain their
values from the one cycle to the next intact, must be declared as static.

As mentioned, a stream interface can be implemented as a FIFO queue or as a memory, which
means that it can also have a specific depth to act as a buffer for data traffic. The depth of the
FIFO queue can be set for each stream using the stream pragma, as shown in lines 10 and 11
of Code Example 1 - Creating a Simple System in Vivado HLS. For typical feed-forward
designs, buffering might not be required. Omitting the pragma causes Vivado HLS to
automatically use a FIFO with a depth of one, which allows Vivado HLS to efficiently implement
small FIFOs using flip-flops, and thus save block RAMs and LUTs.

Creating Pipelined Designs

The last pragma to discuss is perhaps the most important one. The dataflow pragma in line
2 of Code Example 1 - Creating a Simple System in Vivado HLS instructs Vivado HLS to
attempt to schedule the execution of all the sub-functions in this function in parallel. It is
important to note that the effect of the dataflow pragma does not propagate down the
hierarchy of the design. Thus, if a lower level function contains sub-functions whose execution
has to be scheduled in parallel, then the dataflow pragma must be specified in that function
separately. The parameter interval defines the Initiation Interval (II) for this module. II
defines the throughput of the design by telling Vivado HLS how often this module has to be able
to process a new input data word. This does not preclude the module being internally pipelined
and having a latency greater than 1. An II = 2 means that the module has 2 cycles to
complete the processing of a data word before having to read in a new one. This can allow
Vivado HLS to simplify the resulting RTL for a module. That being said, in a typical protocol
processing application the design has to be able to process one data word in each clock cycle,
thus from now on an II = 1 is used.

Note: The parameter interval is a deprecated feature and is subject to change.

Finally, you call the functions themselves. In Vivado HLS this also corresponds with the
instantiations of the modules. The parameters that are passed to each module essentially
define the module communication port. In this case, you create a chain of the three modules by
connecting the input to the first module, then the first module to the second over stream
modOne2modTwo, and so on.

Implementing a State Machine with Vivado HLS

Protocol processing is inherently stateful. You are required to read in successive packet words
arriving onto a bus over many clock cycles and decide on further operations according to some
field of the packet. The common way to handle this type of processing is by using a state
machine, which iterates over the packet and performs the necessary processing. Code
Example 3 - Finite State Machine using Vivado HLS shows a simple state machine, which
either drops or forwards a packet, depending on an input from a previous stage.

The function receives three arguments: the input packet data over the inData stream, a
one-bit flag that shows if a packet is valid or not over the validBuffer stream, and the output
packet data stream, called outData.

Note: Parameters in the Vivado HLS functions are passed by reference. This is necessary when using
Vivado HLS streams, which are complex classes. Simpler data types like the ap_uint can also be
passed by value.

The pipeline pragma in line 2 of Code Example 3 - Finite State Machine using Vivado HLS
instructs Vivado HLS to pipeline this function to achieve an initiation interval of 1 (II = 1),

http://www.xilinx.com

Basic Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 6

meaning that it is able to process one new input data word every clock cycle. Vivado HLS
examines the design and determines how many pipeline stages it needs to introduce to the
design to meet the required scheduling restrictions. To describe this pragma a bit further,
assume you are performing a read-modify-write operation. If it is not pipelined, an II=1 cannot
be met because scheduling dictates that the read occur in clock cycle T and the write in clock
cycle T+1. This is the default behavior in Vivado HLS without the pipeline pragma. Inserting the
pragma causes Vivado HLS to schedule the access in a way that the target II value can be
reached.

Caution: If accesses are interdependent, reaching the target II value might be impossible. Additional
explanation on this topic can be found in Advanced Concepts and Code Examples.

Code Example 3 - Finite State Machine using Vivado HLS
1 void dropper(stream<axiWord>& inData, stream<ap_uint<1> >&

validBuffer, stream<axiWord>& outData) {
2 #pragma HLS pipeline II=1 enable_flush
3
4 static enum dState {D_IDLE = 0, D_STREAM, D_DROP} dropState;
5 axiWord currWord = {0, 0, 0, 0};
6
7 switch(dropState) {
8 case D_IDLE:
9 if (!validBuffer.empty() && !inData.empty()) {
10 ap_uint<1> valid = validBuffer.read();
11 inData.read(currWord);
12 if (valid) {
13 outData.write(currWord);
14 dropState = D_STREAM;
15 }
16}
17 else
18 dropState = D_DROP;
19 break;
20 case D_STREAM:
21 if (!inData.empty()) {
22 inData.read(currWord);
23 outData.write(currWord);
24 if (currWord.last)
25 dropState = D_IDLE;
26 }
27 break;
28 case D_DROP:
29 if (!inData.empty()) {
30 inData.read(currWord);
31 if (currWord.last)
32 dropState = D_IDLE;
33 break;
34 }
35 }
36 }

Line 4 declares a static enumeration variable that expresses state in this FSM. Using an
enumeration is optional but allows for more legible code because states can be given proper
names. However, any integer or ap_uint variable can also be used with similar results. Line 5
declares a variable of type axiWord, in which packet data to be read from the input is stored.

The switch statement in line 7 represents the actual state machine. Using a switch is
recommended but not mandatory. An if-else decision tree would also perform the same
functionality. The switch statement allows the tool to enumerate all the states and optimize the
resulting state machine RTL code efficiently.

http://www.xilinx.com

Basic Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 7

Execution starts at the D_IDLE state where the FSM reads from the two input streams in lines
10 and 11. These two lines demonstrate both uses of the read method of the stream object.
Both methods read from the specified stream and store the result into the given variable. This
method performs a blocking read, which means that if the method call is not successfully
executed, the execution of the remaining code in this function call is blocked. This happens
when trying to read from an empty stream.

You can use the method described above to describe an explicit state machine in HLS. In many
cases (such as when partially unrolling a loop) HLS also creates a state machine to orchestrate
the control flow required.

Stream Splitting and Merging

In the following code example, two pragmas are used at the top of the function to indicate how
Vivado HLS must handle this function. The inline pragma instructs Vivado HLS not to
dissolve and absorb this function into its top level. Using the dataflow pragma in a function
causes it to respect the boundaries of any functions called from it. In this case, therefore, the
inline pragma is not required.

However, this is only valid for the immediate lower level from the one in which dataflow was
used. If a sub-function contains more nested sub-functions itself, these have to be inlined (or
not) manually. If no inline directive is used, VHLS determines whether or not to inline, based on
the size and complexity of each function. For example, if you have a three layer design and
specify dataflow on layer 0 (the lowest one), the boundaries of the functions in layer 1 are
preserved automatically because of the dataflow pragma. This does not, however, apply to
the boundaries of the functions in layer 2.

The ability to forward packets to different modules according to some field in the protocol stack,
and then to recombine these streams before transmission, is a critical functionality in protocol
processing. Vivado HLS allows for the use of high-level constructs to facilitate this, as Code
Example 4 - Simple Stream Merge illustrates for the case of a stream merging.

Code Example 4 - Simple Stream Merge
1 void merge(stream<axiWord> inData[NUM_MERGE_STREAMS], stream<axiWord>

&outData) {
2 #pragma HLS INLINE off
3 #pragma HLS pipeline II=1 enable_flush
4
5 static enum mState{M_IDLE = 0, M_STREAM} mergeState;
6 static ap_uint<LOG2CEIL_NUM_MERGE_STREAMS> rrCtr = 0;
7 static ap_uint<LOG2CEIL_NUM_MERGE_STREAMS> streamSource = 0;
8 axiWord inputWord = {0, 0, 0, 0};
9
10 switch(mergeState) {
11 case M_IDLE:
12 bool streamEmpty[NUM_MERGE_STREAMS];
13 #pragma HLS ARRAY_PARTITION variable=streamEmpty complete
14 for (uint8_t i=0;i<NUM_MERGE_STREAMS;++i)
15 streamEmpty[i] = inData[i].empty();
16 for (uint8_t i=0;i<NUM_MERGE_STREAMS;++i) {
17 uint8_t tempCtr = streamSource + 1 + i;
18 if (tempCtr >= NUM_MERGE_STREAMS)
19 tempCtr -= NUM_MERGE_STREAMS;
20 if(!streamEmpty[tempCtr]) {
21 streamSource = tempCtr;
22 inputWord = inData[streamSource].read();
23 outData.write(inputWord);
24 if (inputWord.last == 0)
25 mergeState = M_STREAM;
26 break;

http://www.xilinx.com

Basic Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 8

27 }
28 }
29 break;
30 case M_STREAM:
31 if (!inData[streamSource].empty()) {
32 inData[streamSource].read(inputWord);
33 outData.write(inputWord);
34 if (inputWord.last == 1)
35 mergeState = M_IDLE;
36 }
37 break;
38 }
39 }

In this example, a module merge is used, which has a stream array as input (inData) and a
single stream (outData) as output. The purpose of this module is to read from the input
streams in a fair manner and output the read data to the output stream. The module is
implemented as a two-state FSM, which is described using the same constructs that were
previously introduced. The focus of the example is on how the merge functionality over the
multiple streams is implemented.

The first state in the FSM ensures fairness when choosing the input stream. This is done using
a round-robin algorithm to go over the queues. The algorithm starts looking for new data from
the queue after the one that was accessed previously. Thus, for example, if in a four queue
system, queue 2 was accessed in clock cycle T, in cycle T+1 the search for data to output starts
with queue 3 and then goes on to 0, 1, and, finally, 2. The code in lines 17-20 implements the
round-robin algorithm. The constant NUM_MERGE_STREAMS specifies the number of streams
that are to be merged. Subsequently, line 20 tests the current stream, which is identified by the
tempCntr variable for content. If it is not empty:

• The current stream identified by tempCntr is set to be the active stream (line 21).

• Data is read from that stream (line 22).

• If the data word currently read in the input is not the last (checked in line 24), the state
machine moves to the M_STREAM state, where it outputs the remaining data word from the
selected stream identified by tempCntr.

• When the last data word is processed, the FSM reverts to state M_IDLE, where it repeats
the previous process.

Splitting an incoming stream would be a similar process. Data words coming from one stream
would be routed appropriately to a stream array.

Extracting and Realigning Fields

Extracting and realigning fields is one of the most fundamental operations in packet processing.
Because packets typically arrive in a module through a bus over multiple clock cycles, it is
common that fields of interest are not aligned properly in the data word in which they arrive
and/or these fields spawn multiple data words.

To process the fields, they must be extricated from the data stream, buffered, and realigned for
processing.

Code Example 5 - Source MAC Address Extraction
1 if (!inData.empty()) {
2 inData.read(currWord);
3 switch(wordCount) {
4 case 0:
5 MAC_DST = currWord.data.range(47, 0);
6 MAC_SRC.range(15, 0) = currWord.data.range(63, 48);
7 break;
8 case 1:

http://www.xilinx.com

Advanced Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 9

9 MAC_SRC.range(47 ,16) = currWord.data.range(31, 0);
10 break;
11 case 2:
12 ……

Code Example 5 - Source MAC Address Extraction illustrates a simple field extraction and
realignment case, in which the source MAC address is extracted from an Ethernet header. The
data arrives over a 64-bit stream called inData. In each clock cycle the data is read in (line 2)
and, depending on the data word read, the appropriate statement is executed. Thus, in line 6
the first 16 bits of the source MAC address are extracted and shifted to the beginning of the
MAC_SRC variable. In the next clock cycle, the remaining 32 bits of the MAC address arrive on
the bus and are placed in the 32 higher bits of the MAC_SRC variable.

Advanced
Concepts and
Code Examples

In the previous section, the description of a simple three-stage pipeline using Vivado HLS was
introduced. However, typical packet processing systems might encompass many modules
distributed into several layers of hierarchy.

Creating Systems with Multiple Levels of Hierarchy

Figure 2 shows an example of such a system. The first level of hierarchy consists of two
modules, one of which includes three submodules of its own. The top level module looks like
the one described in the section above, Setting Up a Simple System. However, the lower level
module containing the three submodules uses the INLINE pragma to dissolve this function and
raise its submodules to the top level, as shown in Code Example 6 - Intermediate Module in
Vivado HLS.

Code Example 6 - Intermediate Module in Vivado HLS
1 void module2(stream<axiWord> &inData, stream<axiWord> &outData) {
2 #pragma HLS INLINE
3
4 ………

With the inlining of the function, the system resembles Figure 3 after Vivado HLS synthesis.
This allows Vivado HLS to create a data flow architecture out of the modules correctly,

X-Ref Target - Figure 2

Figure 2: Example Design with Two Levels of Hierarchy

http://www.xilinx.com

Advanced Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 10

pipelining and executing all of them concurrently. Module and signal names are maintained as
they were after the inlining of the function.

Using High-Level Language Constructs

One major advantage of Vivado HLS is that it allows you to use high-level language constructs
to express complex objects, thus raising the level of abstraction considerably over traditional
RTL design. One example of this is the description of a small look-up table.

Code Example 7 - CAM Class Declaration uses a class object to create a table that stores and
retrieves the ARP protocol data. The class has one private member, which is an array of
noOfArpTableEntries number of entries of arpTableEntry type. This type is a struct,
which consists of the MAC address, the corresponding IP address, and a bit that indicates
whether this entry contains valid data or not.

Code Example 7 - CAM Class Declaration
1 class cam {
2 private:
3 arpTableEntry filterEntries[noOfArpTableEntries];
4 public:
5 cam();
6 bool write(arpTableEntry writeEntry);
7 bool clear(ap_uint<32> clearAddress);
8 arpTableEntry compare(ap_uint<32> searchAddress);
9 };

The class also includes four methods that operate on this table:

• The Write Method

• The Clear Method

• The Compare Method

• The Constructor Method (shown in Code Example 12 - CAM Class Constructor with
Pragma Directive to Partition the Array)

The Write Method

The write method, illustrated in Code Example 8 - Write Method for the CAM Class, takes a new
entry as a parameter and stores it in an empty location in the table. Initially, it goes through all
the entries in the table and selects the first one that does not contain valid data. This process
involves a for loop that goes through all array elements.

For the design to reach the target II=1, the for loop must be unrolled completely. Vivado HLS
does this automatically if the loop is in a pipelined region (a part of the code in which the
pipeline pragma was applied). To unroll the for loops throughout an entire function, apply the
pipeline pragma to it.

Alternatively, if the function in which this method is used is pipelined, and the method is inlined
into that function upon Vivado synthesis, the method essentially inherits the pipeline property

X-Ref Target - Figure 3

Figure 3: Intermediate Hierarchy Level Dissolved in a Pipelined Vivado HLS Design

http://www.xilinx.com

Advanced Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 11

applied to the function through the pragma. This is the approach used in the example design
accompanying this application note. In other cases, the unrolling behavior is determined by
Vivado HLS, depending on various criteria (presence of variable bounds, number of iterations,
etc.). You can explicitly use a pragma unroll directive to instruct Vivado HLS on how to treat the
loop. This can be done with the loop unroll pragma. The method returns TRUE if the entry was
stored successfully and FALSE when no empty entry was found.

Code Example 8 - Write Method for the CAM Class
1 bool cam::write(arpTableEntry writeEntry) {
2 for (uint8_t i=0;i<noOfArpTableEntries;++i) {
3 if (this->filterEntries[i].valid == 0) {
4 this->filterEntries[i] = writeEntry;
5 return true;
6 }
7 }
8 return false;
9 }

The Clear Method

The clear method, shown in Code Example 9 - Clear Method for the CAM Class, allows for the
deletion of the entry, which contains the IP address provided as a parameter. The
implementation is similar to the write method, with a for loop going through all the entries and
comparing the IP addresses of the valid ones with the one provided, and then erasing the first
matching entry in the table. Again, TRUE is returned upon success and FALSE if no entry to
delete was found.

Code Example 9 - Clear Method for the CAM Class
1 bool cam::clear(ap_uint<32> clearAddress) {
2 for (uint8_t i=0;i<noOfArpTableEntries;++i){
3 if (this->filterEntries[i].valid == 1 && clearAddress ==

this->filterEntries[i].ipAddress) {
4 this->filterEntries[i].valid = 0;
5 return true;
6 }
7 }
8 return false;
9 }

The Compare Method

The final method is the compare method, shown in Code Example 10 - Compare Method for the
CAM Class. It implements the actual look-up functionality. In this case, an IP address is
provided, for which the corresponding MAC address has to be returned. This is accomplished
by going through all the entries in the table with a for loop and searching for a valid entry with
the same IP address. This entry is then returned in its entirety. An invalid entry is returned if
nothing is found.

Code Example 10 - Compare Method for the CAM Class
1 arpTableEntry cam::compare(ap_uint<32> searchAddress) {
2 for (uint8_t i=0;i<noOfArpTableEntries;++i){
3 if (this->filterEntries[i].valid == 1 && searchAddress ==

this->filterEntries[i].ipAddress)
4 return this->filterEntries[i];
5 }
6 arpTableEntry temp = {0, 0, 0};
7 return temp;
8 }

http://www.xilinx.com

Advanced Concepts and Code Examples

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 12

This description demonstrates how Vivado HLS can be used to leverage high-level
programming constructs and describe packet processing systems in a software-like manner.
This is not possible in RTL.

Ensuring Design Throughput

The previous section introduced the use of a class to describe a self-contained look-up object,
which is subsequently synthesized and integrated into modules. While this solution is
functionally correct, it does not necessarily ensure that the design reaches the desired
throughput target. In a typical protocol processing design, packets arrive over a bus over
multiple clock cycles. A maximum of one new data word per clock cycle might have to be
processed. For example, in a 10 Gb/s design, processing packets at line rate requires that the
design can consume one 64-bit data word every clock cycle at 156 MHz. Widening the bus
results in a reduced frequency requirement or in increased headroom while processing the
data (thus an II = 2 might be possible). For the purposes of this discussion, assume that the
target II is always 1. Similar methodologies can be followed to design systems with different
II targets.

To attain the target II goal, it is important to ensure that Vivado HLS can access the required
streams and variables in a timely fashion. A straightforward example of a code snippet that
violates this principle is shown below in Code Example 11 - Where the II = 1 Constraint Cannot
be Met. This example modifies the code from Code Example 5 - Source MAC Address
Extraction and attempts to complete the realignment of the MAC source address in one state
(state 0).

Code Example 11 - Where the II = 1 Constraint Cannot be Met
1 switch(wordCount) {
2 case 0:
3 if (!inData.empty()) {
4 inData.read(currWord);
5 MAC_DST = currWord.data.range(47, 0);
6 MAC_SRC.range(15, 0) = currWord.data.range(63, 48);
7 outData.write(currWord);
8 }
9 if (!inData.empty()) {
10 inData.read(currWord);
11 MAC_SRC.range(47 ,16) = currWord.data.range(31, 0);
12 outData.write(currWord);
13 }
14 break;
15 default:
16 if (inData.read_nb(currWord))
17 outData.write(currWord);
18 break;
19 }

Synthesizing this code in Vivado HLS results in an II = 2. The Vivado synthesis output at the
console window contains the following message:

@W [SCHED-68] Unable to enforce a carried dependency constraint (II = 1,
distance = 1)
 between fifo read on port 'inData_V_data_V'
(hlsProtocolProcessing/sources/iiExample.cpp:8) and fifo read on port
'inData_V_data_V' (hlsProtocolProcessing/sources/iiExample.cpp:3).
@I [SCHED-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

This message informs you that a carried dependency between the two reads inhibits the
synthesis process from scheduling the accesses to achieve an II = 1. The issue: in the code
lines indicated, the module attempts to access the stream inData twice in the same clock
cycle. Because this is impossible in a stream (which represents a single port of a memory/FIFO
construct), synthesis fails to meet the set constraints. Similar limitations apply when accessing

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 13

static variables used to maintain information between states. You must therefore use caution
when scheduling accesses in states to reach the desired throughput goal.

More complex access issues can arise in complex designs, such the look-up table, which was
introduced in the previous section. If you synthesize the code provided there as-is, Vivado HLS
cannot meet a target II = 1. This is because of access congestion due to the limited number
of memory ports. By default, Vivado HLS uses a block RAM to store the table entries, and a
block RAM contains two access ports. To parse all the entries of an eight-entry table, the
module requires at least four clock cycles, which means it cannot attain the target II = 1. To
address this issue, you must instruct Vivado HLS to partition the array in which the table entries
are stored. Partitioning the array essentially breaks it down to multiple, smaller arrays and
allows the use of more memories and, therefore, more access ports. In the most extreme case,
which is the one used in Code Example 12 - CAM Class Constructor with Pragma Directive to
Partition the Array, you can partition an array completely, which essentially creates a register
array in which the individual elements are stored.

Code Example 12 - CAM Class Constructor with Pragma Directive to Partition
the Array

1 cam::cam(){
2 #pragma VHLS array_partition variable=filterEntries complete
3 for (uint8_t i=0;i<noOfArpTableEntries;++i)
4 this->filterEntries[i].valid = 0;
5 }

This code snippet shows the constructor for the table class described in the previous section.
The constructor sets all entries to invalid and also includes the pragma that partitions the array.
Alternatively, the pragma could be specified in the function in which the object of the class was
instantiated. In that case, the pragma would apply only to the specific object; used as shown in
the example, however, it applies to all objects of this class.

Example Design Example Design File Location and Details

You can download the design files for this application note from the following location:

https://secure.xilinx.com/webreg/clickthrough.do?cid=361691

The following table provides details about the example design.

Table 1: Example Design Details

Parameter Description

General

Developer Name Xilinx

Target Devices • HLS Design: All Xilinx devices
• Vivado Design Suite Design: Virtex®-7

XC7VX690T-2FFG1761C

Source code provided? Y

Source code format (if provided) C++, Verilog, VHDL

Design uses code or IP from existing reference
design, application note, 3rd party or Vivado
Design Suite software

• Ten Gigabit Ethernet PCS/PMA
(10GBASE-R/KR) v4.1

• Ten Gigabit Ethernet MAC v13.0
• FIFO Generator v11.0
• AXI4-Stream Register Slice v1.1

FIFO Generator v11.0

AXI4-Stream Register Slice v1.1

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=361691

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 14

Example Design Description

To better describe the concepts introduced in this application note, a simple system
implementing basic ping and ARP functionality is provided. In a typical network processing
subsystem, this system would:

• Reside between the Ethernet MAC and a user application.

• Respond to ping requests as well as provide support for MAC address resolution, while
looping back all other packets. (For use in a real system, the loopback module would have
to be replaced with your application.)

Figure 4 shows the structure of the example design system. It consists of a parser module that
identifies the packet type for incoming packets and forwards the packets to one of the following
modules:

• ARP Server: The ARP server responds to ARP requests directed at this system and
handles MAC address resolution requests instigated by your application.

• Internet Control Message Protocol (ICMP) Server: The ICMP server replies to ping
requests sent to this system.

• Loopback: The loopback sends packets back through the MAC and into the network
without change.

At the system output, the merge module recombines traffic streams from the three other
modules and produces one output stream to send to the network.

Simulation

Functional simulation performed Y

Timing simulation performed? Y

Testbench provided for functional and timing
simulation?

Y

Testbench format C++

Simulator software and version Any supported by HLS (the Vivado simulator is
the default)

SPICE/IBIS simulations N

Implementation software tool(s) and version Vivado HLS 2014.1 and later, Vivado 2013.4
and later

Hardware Verification

Hardware verified? Y

Platform used for verification Xilinx VC709 Development Board

Table 1: Example Design Details (Cont’d)

Parameter Description

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 15

The description of the system follows the same principles introduced in the first part of this
application note. The top level function VHLSExample consists of five sub-functions, each
corresponding to one of the submodules shown in Figure 4. All modules are connected using
streams. The external ports of the system are configured to use AXI4-Stream interfaces. The
typical set of pragmas is applied. In this case, the depth property of the STREAM pragma is set
to 1, but larger values might be necessary to address transient effects in the system. This is not
correct. The external port streams use AXI4S. The internal ones use the ap_fifo I/F, which is
what HLS streams typically use by default.

Increasing the value for the depth of a stream naturally increases resource usage as well. This
increase happens step-wise because the basic buildings blocks used for a stream (either LUTs
and flip-flops or block RAMs) can accommodate a specific number of entries before having to
add more resources to store additional entries. To illustrate this, Table 2 shows the resources
used for various stream depth values. For values 1 and 4, the amount of resources used is
identical because no additional resources had to be used to fit the extra entries; whereas, when
the number of entries is increased to 8, resource consumption also increases commensurately.

Moving down one hierarchy level, the Parser and the ICMP server consist of multiple
submodules joined together in a pipelined fashion. Figure 5 illustrates this for the Parser. There
are three submodules:

• Ethernet Detection: Checks the EtherType field in the Ethernet frame header and
determines the lower layer protocol. It then forwards the packet either to the ARP server or
to the Length Adjust module.

X-Ref Target - Figure 4

Figure 4: Structure of the Example Design System

Table 2: Resource Use for Different Stream Depth Values

Stream Depth LUTs Flip-Flops Block RAMs

1 2564 210 0

4 2564 210 0

8 2456 1592 40

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 16

• Length Adjust: Readjusts the packet by stripping away any padding added by the Ethernet
layer to meet the minimum packet size requirements, making the packet length in the IP
header equal to the actual packet length.

• ICMP Detection: Uses the protocol field in the IPv4 header to detect any ICMP packet
and forward it to the ICMP server or Loopback module.

All the submodules are state machines that adhere to the FSM description methodology
(introduced in the section Implementing a State Machine with Vivado HLS, page 5).

The ICMP server receives ICMP packets from the parser, processes them, and creates ping
replies for valid packets. Its structure is shown in Figure 6. It consists of three stages arranged
in a pipeline manner with an additional signal that jumps over the dropper and forwards the IP
checksum directly to the IP checksum module. The three modules are:

• Create Reply: Parses the ICMP header, determines if the packet is a valid ICMP packet,
creates a reply, and calculates the IP checksum for the newly created reply packet. This
checksum is then forwarded to the Insert Checksum module. The packet status (valid or
invalid) is signaled to the Dropper over the validBuffer.

• The Dropper allows valid packets to stream through it, while filtering invalid packets and
removing them from the packet stream.

• The Insert Checksum module receives the checksum for the newly created ICMP reply
packet over the cr2checksum stream and reinserts it into valid packets, which it receives
from the Dropper.

Both the Parser and the ICMP server are inlined into the top level functions and are dissolved
upon Vivado synthesis. This allows HLS to better optimize the scheduling of the design in the
top level. This results in a final system architecture that resembles Figure 7. The dashed lines
demarcate the location of the parser and ICMP modules in the source code. In the synthesized

X-Ref Target - Figure 5

Figure 5: Parser Block Diagram

X-Ref Target - Figure 6

Figure 6: ICMP Server Block Diagram

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 17

system the mid-level modules have been removed and their submodules brought to the top
level. Stream names have been omitted for the sake of clarity.

Table 3 and Table 4 contain excerpts from an expanded Vivado synthesis report that shows the
submodules of the VHLSExample module. The complete Vivado HLS report is explained in
more detail in the subsequent sections.

X-Ref Target - Figure 7

Figure 7: System Resulting from the Vivado Synthesis

Table 3: Post Vivado Synthesis Sub-module List

Instance Module
Latency Interval

Type
Minimum Maximum Minimum Maximum

grp_detect_mac_protocol_fu_
799

detect_mac_protocol 1 1 1 1 Function

grp_cut_length_fu_839 cut_length 1 1 1 1 Function

grp_detect_ip_protocol_fu_7
31

detect_ip_protocol 1 1 1 1 Function

grp_arp_server_fu_547 arp_server 2 2 1 1 Function

grp_createReply_fu_689 createReply 1 1 1 1 Function

grp_dropper_fu_863 dropper 1 1 1 1 Function

grp_insertChecksum_fu_775 insertChecksum 1 1 1 1 Function

grp_loopback_fu_887 loopback 1 1 1 1 Function

grp_merge_fu_649 merge 1 1 1 1 Function

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 18

The final module of interest in the design is the ARP server, which implements two functions:

• Receives ARP requests over the network, determines whether or not these requests are
destined for this node, and if so, sends a reply to the requesting node containing the MAC
address of this node. The MAC address is hard coded in the source code.

• Receives external requests to resolve the MAC of an IP address. This is received over the
queryIP stream shown in Figure 8. The ARP server then looks up the IP address in an
internal table, which it maintains. If a match is found, the ARP server reads the entry from
the table and returns the value for the MAC address over the returnMAC stream. If no
match is found, the module sends an ARP Request for this IP address to the network
broadcast address and waits for a reply. If nothing is received, the operation times out and
the module returns to its idle state. If a reply is received, the MAC address corresponding
to the requested IP address is stored in the internal table for future use and then sent back
over the returnMAC stream.

The queryIP and returnMAC streams use the normal ap_fifo interface, which is the native
interface of an Vivado HLS stream. It resembles a typical FIFO interface, with read, write, full
and empty signals.

Table 4: Post Vivado Synthesis Sub-Module Resource Utilization List

Instance Module BRAM_18K DSP48E Flip-Flops LUTs

arp_server_U0 arp_server 0 0 1355 1718

createReply_U0 createReply 0 0 553 555

dropper_U0 dropper 0 0 213 12

ethernetDetection_U0 ethernetDetection 0 0 433 95

icmpDetection_U0 icmpDetection 0 0 225 841

insertChecksum_U0 insertChecksum 0 0 369 120

lengthAdjust_U0 lengthAdjust 0 0 236 67

loopback_U0 loopback 0 0 205 4

merge_U0 merge 0 0 414 673

Total 9 0 0 4003 4085

X-Ref Target - Figure 8

Figure 8: ARP Server Block Diagram

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 19

Example Design Contents and Descriptions

The example design accompanying this application note consists of:

• A Vivado HLS project, that contains all the modules described previously. This is
described in the section Protocol Processing Example: Vivado HLS Project, below.

• A Vivado Design Suite project that integrates the Vivado HLS modules with the necessary
companion modules (for example, an Ethernet MAC core) to produce a functional example
design targeting the VC709 evaluation board. This is described in the sections Using
Vivado Design Suite to Implement the Design, page 21 and Testing the Example Design
on the VC709 Evaluation Board, page 22

Protocol Processing Example: Vivado HLS Project

The example design provided contains six C++ source code files, one for each module and one
accompanying header file for each. An additional header file (globals.hpp) contains
declarations pertinent to the entire project. Finally, a test bench file (VHLSExample_tb.cpp) is
provided to facilitate simulation and verification of the design from within the Vivado HLS
environment. All the files are located in the sources subfolder in the project directory.

The project is pre-configured to be built for a clock period of 6.66 ns and targets an XCVX690T
device by default. You can change these settings through the solution and project settings.

Building the project generates a detailed report, an example of which is shown in Figure 9. This
report contains critical information about the generated design.

Important: Examine the report to determine whether or not Vivado HLS can produce a design that
meets all the set constraints.

Performance Reporting

The first part of the report provides performance estimates. This includes information on the
throughput and frequency of the design. In this case, the design meets timing (achieved clock
period 6.38 ns).

Important: Keep in mind that timing value is a Vivado HLS estimate and might vary from the post
synthesis or post place and route value. This is because Vivado HLS estimates timing by using fixed
timing values for different operation types and devices. This results in two sources of discrepancy:

• Vivado HLS does not perform full logic synthesis, thus cannot take advantage of simplifications
of logic that might result from it.

• Vivado HLS does not take into account detailed placement and routing information, which
cannot be available at the time.

A more precise estimate can be obtained by evaluating the design through the export menu
(click the Solution menu, then choose Export RTL, and on the pop-up window check the
Evaluate check box. Click OK to run the evaluation). This runs logic synthesis, place, and then
route on the design. Again, the resulting timing might vary from what is achieved in the final
design, in which placement and routing is changed to accommodate any additional logic any
additional logic found in the non-HLS portion of your design, though this estimation is inherently
more precise than the one generated by Vivado HLS synthesis. Typically, state machine-based
designs exhibit better timing after place and route compared to Vivado HLS synthesis reports,
so utilizing this additional step occasionally to glimpse the post synthesis design performance
is recommended.

Other performance information that can be obtained from the report is the final latency and II
value for this design. The example design used in this application note has a total latency of 13
clock cycles and an II = 1, as requested. If any of the constraints are not met, you can find
more information about the issue in the console window. You can analyze latency further using
the Analysis view. This can provide a detailed overview of the scheduling of the module and be
used to account for each cycle of latency reported by Vivado synthesis. Clicking on each
module name opens a detailed view specific to that module.

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 20

Going back to the main report, you can click Instance under Detail to obtain a breakdown of the
latency and II information per module. Clicking on each module name opens a separate
report for that particular module. These reports match the main report in format and content
type. You can use this part of the report to identify which module in the design fails the II
target, or to determine the latency incurred by each module.

Example of Auto-generated Synthesis Report

As mentioned earlier, the Vivado Design Suite automatically generates a report after you build
and synthesize your project. An example report is shown in the figure below.

X-Ref Target - Figure 9

Figure 9: Example Synthesis Report for the Example Design

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 21

Resource Utilization Reporting

The second part of the report contains resource utilization estimates. These estimates might
(and usually do) differ from the final values that result after running logic synthesis on the
design for reasons similar to those of the performance estimation. Furthermore, the breakdown
in the utilization might vary because logic synthesis might decide to use LUTs to implement
something for which Vivado HLS estimated that a DSP48 slice will be used, or logic synthesis
might use distributed RAM instead of block RAM for the implementation of a queue. Expanding
the Instance menu lists the resource use for each submodule, as it does in the Peformance
section. Expanding the FIFO menu provides detailed information on all internal streams in the
design and the resources they use.

The final part of the report (not shown here) lists the module interfaces. In this case, there are
two AXI4-Stream interfaces, inData and outData, two ap_fifo interfaces, queryIP and
returnMAC, along with a host of control signals used to drive the generated Vivado HLS core.

To facilitate C and C/RTL verification, the example design includes a test scenario that
exercises all the four paths present in the design. In this scenario, packets are read from the
input file (called in.dat) and are injected in the systems input queue. These packets include
ARP requests, ICMP requests, and Transmission Control Protocol (TCP) packets. The ARP
and ICMP requests are answered by the system, while the TCP packet is not recognized and
looped back. At the end of the test an IP address is written into the queryIP queue and the
ARP server produces and sends an ARP request corresponding to that address. The output
from the simulation is compared with a golden output file called gold.dat. Thus, running the
C simulation involves (after successfully building the project, of course) navigating to the
/project_dir/solution1/csim/build folder and typing the following commands (when
using any Linux system):

./vhlsExample
/project_dir/sources/csim/in.dat
/project_dir/sources/csim/queryReply.dat
/project_dir/sources/csim/gold.dat
/project_dir/sources/csim/out.dat

The next step following successful C verification is to use the C/RTL co-simulation to ensure
correct functionality of the generated RTL. Vivado HLS allows seamless transition from the C to
the C/RTL co-simulation. The tool automatically generates an appropriate RTL test bench from
the provided C one, executes the RTL simulation, and then compares the output to the golden
one, just like in the C simulation.

The final step before integrating the example design in the Vivado Design Suite for logic
synthesis is exporting the core. To do this, select Export RTL on the Solution menu. From the
various format options select IP Catalog. Click OK and Vivado HLS generates the IP core in
the standard IP-XACT format. The generated files are located in the
/project_dir/solution1/impl/ip folder.

To facilitate execution of all the design steps described above, the example design includes a
Tcl script that you can use to perform all the above steps in sequence. The script is called
run_hls.tcl. To execute the script, type vivado_hls -f run_hls.tcl in the console.

Using Vivado Design Suite to Implement the Design

After generating the core in Vivado HLS, the core needs to be imported into the provided
Vivado Design Suite project. This project was generated using Vivado Design Suite 2014.1,
although it should be possible to use newer versions. It targets the Xilinx VC709 development
board [Ref 3].

Opening the Vivado Design Suite project accompanying the Vivado HLS project brings up a
screen containing the design sources for the project. These include the network interface and
its accompanying clock generation signals, the Vivado HLS module, and two modules that
facilitate testing of the design.

http://www.xilinx.com

Example Design

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 22

The Vivado HLS-generated IP core appears in the sources pane marked with a red
exclamation mark, which denotes that the IP core cannot be found in any of the IP repositories
currently in use with this Vivado Design Suite installation. This can be resolved by adding the IP
core generated from Vivado HLS in the previous steps in an existing or new repository. It is not,
however, necessary for synthesizing and implementing the design because the design files for
the core are already included in the example design project.

The two additional test bench modules used are the debouncer, which eliminates voltage level
oscillations from pressing the push buttons on the board, and the queryGenerator, which
produces an IP address, the MAC address of which is being requested from the ARP server,
and reads the reply from the Vivado HLS module. See Figure 10.

The example design is readily implemented using Vivado tools. Generating a bitstream and
downloading it to a VC709 evaluation board immediately starts the system.

Testing the Example Design on the VC709 Evaluation Board

To test the design on the VC709 evaluation board, you must connect the board to a PC, which
serves as the counterpart and produces the test stimuli. This can be done either directly if the
PC has an SFP port, or over a switch which contains both SFP and standard Ethernet ports.
You can use an open-source program, such as Wireshark, to monitor traffic on any network
interface. This allows you to monitor the packets that are exchanged between the PC and the
VC709 evaluation board to verify that the correct information exchange takes place.

The simplest scenario that can be used to test the system is to send it a simple ping request by
typing:

ping 1.1.1.1

at a Linux or Windows terminal. This initially sends an ARP request to determine the MAC
address belonging to this IP address. The Vivado HLS module responds with an ARP reply
containing the MAC corresponding to the VC709 evaluation board. The PC then sends a ping
request to the VC709 evaluation board, which produces a ping reply to each ping request until
you interrupt the process on the PC side. Note that only the first ping request triggers an ARP
request. In all subsequent ping requests, the MAC address for the VC709 evaluation board is
found on the PCs ARP table, and thus no additional ARP requests are triggered. Testing
isolated ARP requests is possible by using the arping command in Linux:

arping -I ethInterfaceName 1.1.1.1

X-Ref Target - Figure 10

Figure 10: Overview of the Example Design in the Vivado Design Suite Project

http://www.xilinx.com

Conclusions

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 23

Testing the ARP request functionality is done by using the south push button on the right side
of the VC709 evaluation board. Every time the button is pressed, a query for the IP address
1.1.1.2 is generated. If no additional configuration is performed at the PC, these requests
time out and fail because the PC ARP table does not contain a MAC address corresponding to
this IP address. The arp command has to be used to add this IP address to the PC ARP table:

arp -s 1.1.1.2 AB:90:78:56:34:12

Alternatively, the PC IP address on that interface can be set to 1.1.1.10. All other intermittent
traffic sent from the PC to the VC709 evaluation board is looped back to the PC without
changes.

Conclusions Vivado HLS allows quick and easy implementation of protocol processing designs on FPGAs
using C/C++ and leveraging the productivity increases offered by higher level languages as
opposed to traditional RTL. You can take advantage of additional features offered by Vivado
HLS to target the desired architecture and to quickly explore design trade-offs without rewriting
the source code. Such features include:

• Straightforward system assembly using C functions

• Data exchange over streams (which offer standardized FIFO-like interfaces and free-flow
control)

• Vivado HLS pragmas

As a vehicle for explaining the basic concepts of such designs, this application note uses a
simple ARP/ICMP server that replies to ping and ARP requests and resolves IP address
queries. You can synthesize the example design with Vivado HLS and integrate the design into
the accompanying infrastructure, which allows it to be tested using a Xilinx VC709 evaluation
board. This demonstrates that Vivado HLS designed modules can perform protocol processing
at line rates of 10 Gb/s and higher.

References The following references are used in this application note:

1. Software Defined Specification Environment for Networking (SDNet)

2. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

3. VC709 Evaluation Board for the Virtex-7 FPGA: User Guide (UG887)

Revision
History

The following table shows the revision history for this document.

Date Version Description of Revisions

08/08/2014 1.0.1 Corrected design files link.

05/30/2014 1.0 Initial Xilinx release.

http://www.xilinx.com/publications/prod_mktg/sdnet/backgrounder.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/boards_and_kits/vc709/ug887-vc709-eval-board-v7-fpga.pdf
http://www.xilinx.com/publications/prod_mktg/sdnet/backgrounder.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.2;d=ug902-vivado-high-level-synthesis.pdf

Notice of Disclaimer

XAPP1209 (v1.0.1) August 8, 2014 www.xilinx.com 24

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS
IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Designing Protocol Processing Systems with Vivado High-Level Synthesis
	Summary
	Introduction
	Protocol Processing
	Raising the Level of Abstraction and Related Benefits
	System assembly
	Simple FIFO/memory access
	Abstraction of control flow
	Word realignment
	Easy architecture exploration
	C and C/RTL simulation

	Understanding Directives
	SDNet

	Basic Concepts and Code Examples
	Setting Up a Simple System
	Code Example 1 - Creating a Simple System in Vivado HLS
	Code Example 2 - Definition of a C++ struct for Use in a Stream Interface
	Creating Pipelined Designs

	Implementing a State Machine with Vivado HLS
	Code Example 3 - Finite State Machine using Vivado HLS

	Stream Splitting and Merging
	Code Example 4 - Simple Stream Merge

	Extracting and Realigning Fields
	Code Example 5 - Source MAC Address Extraction

	Advanced Concepts and Code Examples
	Creating Systems with Multiple Levels of Hierarchy
	Code Example 6 - Intermediate Module in Vivado HLS

	Using High-Level Language Constructs
	Code Example 7 - CAM Class Declaration
	The Write Method
	Code Example 8 - Write Method for the CAM Class
	The Clear Method
	Code Example 9 - Clear Method for the CAM Class
	The Compare Method
	Code Example 10 - Compare Method for the CAM Class

	Ensuring Design Throughput
	Code Example 11 - Where the II = 1 Constraint Cannot be Met
	Code Example 12 - CAM Class Constructor with Pragma Directive to Partition the Array

	Example Design
	Example Design File Location and Details
	Example Design Description
	Example Design Contents and Descriptions
	Protocol Processing Example: Vivado HLS Project
	Performance Reporting
	Example of Auto-generated Synthesis Report
	Resource Utilization Reporting

	Using Vivado Design Suite to Implement the Design
	Testing the Example Design on the VC709 Evaluation Board

	Conclusions
	References
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

