
XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 1

© Copyright 2013–2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S are trademarks of ARM in the EU and other countries. HDMI, HDMI logo, and
High-Definition Multimedia Interface are trademarks of HDMI Licensing LLC. All other trademarks are the property of their respective owners.

Summary The XADC to PS interface is a dedicated interface present in Zynq™-7000 family All
Programmable SoCs that enable connectivity between the PS and the XADC block without
requiring building of the HW bitstream. The interface can be used for system monitoring
applications where CPU needs to monitor the on chip voltage and temperature along with
external voltage or current channels.

The XADC provides alarm events which are set based on user pre-configured values. The
alarms can be used to trigger system level actions such as shutting down the system in case of
over temperature. This application note explores the system monitoring aspects of the
dedicated XADC to PS interface along with event programming and monitoring.

Introduction The Zynq-7000 family is based on the Xilinx® All Programmable SoC (AP SoC) architecture.
These products integrate a feature-rich dual-core ARM® Cortex™-A9 MPCore™ based
processing system (PS) and Xilinx programmable logic (PL) in a single device. The ARM
Cortex-A9 MPCore CPUs are the heart of the PS which also includes on-chip memory, external
memory interfaces, and a rich set of I/O peripherals.

The Zynq-7000 PS has a dedicated interface to the XADC, two 12-bit, 1 MSPS analog to digital
converters supporting on chip voltage and temperature measurements and 17 external
channels. The XADC is a hard block offered in all Zynq-7000 AP SoCs. The XADC to PS
interface enables a reliable system monitoring capability in the Zynq-7000 AP SoC, without
requiring the need to enable the Programmable Logic. This interface allows monitoring of both
internal (voltage sensors and temperature) and external signals such as on-board voltages,
currents or other environmental sensors. Alarms and warning signals can be set for conditions
such as over-temperature and over/under-voltage conditions, giving users a more complete
perspective of the conditions surrounding the Zynq-7000 AP SoC.

The communication between the PS and the XADC happens over a serial interface which is
similar to Joint Test Action Group (JTAG) interface. The command from the PS is stored in a
command FIFO using the APB interface and then serialized using a parallel-to-serial converter.
The serialized data is then sent over the TDO pin (port) of the JTAG interface. The JTAG clock
is generated in the Zynq-7000 PS subsystem. The incoming serial data from the XADC is
converted to parallel data using a serial-to-parallel converter. The parallel data is stored in a
data FIFO and then read out by the PS using the APB interface. For more information on the
Zynq-7000 XADC to PS interface, please refer to the Zynq-7000 All Programmable SoC
Technical Reference Manual (UG585).

Note that while the XADC to PS interface is in use, the user will not be able to use the external
JTAG interface to access the XADC registers.

For more details on XADC please see chapter 30 of UG585.

The focus of this application note is to showcase the system monitoring feature of Zynq-7000
AP SoC devices implemented using dedicated XADC to PS interface.

Application Note: Kintex-7 Family and Zynq-7000 AP SoC

XAPP1172 (v1.0.1) March 18, 2014

Using the Zynq-7000 Processing System (PS)
to Xilinx Analog to Digital Converter (XADC)
Dedicated Interface to Implement System
Monitoring and External Channel
Measurements
Authors: Pallav Joshi, Srinivasa Attili and Mrinal J. Sarmah

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

Design Overview

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 2

This application note:

1. Showcases how to quickly establish an interface between the Zynq-7000 PS and the
XADC

2. Presents an example code that covers the typical system monitoring use cases including
alarms

3. Publishes the performance metric of the XADC to PS interface

The application note targets the Xilinx Zynq-7000 ZC702 evaluation board.

The XADC to PS interface cannot read data at the speed of 1 MHz (please refer to
Experimental Results for more details on maximum signal bandwidth). For high speed signal
processing application it is encouraged to use the PL interface of XADC. However the PL
interface requires a bitstream to be created and the Linux driver interface to be modified. The
dedicated XADC to PS interface should be used primarily for system monitoring applications.

Design
Overview

This section details the design used in this application note. The block diagram of the design is
shown in Figure 1.

The XADC to PS interface is normally controlled by software executing in the Application
Processing Unit (APU). The software writes 32-bit commands followed by No-Operation
(NOOP) commands to the command FIFO. The command FIFO output is serialized and sent to
the XADC using the JTAG interface. There is a programmable idle gap time between packets to
enable the XADC to load data read in response to the previous command. For every word
shifted out of the command FIFO, a corresponding word is shifted in to the data FIFO. In the
case of a DRP read command, as data is shifted out of the command FIFO, the old content of
the XADC_DRP's DR register is shifted out. After IGAP time, the result of the current DRP read
is available in the XADC DRP's DR register. When the next command from TXFIFO is shifted
out, the result of the current read which is in the DR register is shifted into the RDFIFO.

Note: The NOOP command is required to read out the result from the Data FIFO present in the
Zynq-7000 PS. For a series of read commands, the user can write the commands back to back in the
command FIFO and read out the results with a single NOOP command (call this as bursty read mode).

X-Ref Target - Figure 1

Figure 1: Design Block Diagram

XAPP1172_01_042513

http://www.xilinx.com

Software Architecture

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 3

The Experimental Results section provides a comparative data of single read mode vs the bursty read
mode.

Software
Architecture

The software application used in the application note is based on the Industrial Input/Output
(IIO) framework driver which is part of Linux git tree.

The Linux IIO subsystem is the standard framework used for providing support for devices into
which falls ADC/DAC categories.

The subsystem provides the following facilities to the user space:

• Sysfs interface for communicating with the devices from user space.

• Character driver interface for receiving the event information

The software application used in this application note can be divided in four logical sections:

1. XADC core

This is a static library which is solely responsible for communicating with the IIO system for
hardware configuration, retrieving sensor values, and event handling.

2. Webserver

The Webserver listens to the connection request from the remote web clients. The web
clients running on remote computer system can acquire sensor data and event notifications
through the web server interface. The server gets sensor data and event notifications
through the XADC core.

It also acquires threshold values from web client and passes it over to the XADC core; so
as to configure the hardware for event/alarm generation.

3. Web interface

This section is responsible to stitch the Webserver with the XADC core. It uses the API
exposed by the XADC core to get the sensor and alarm values, and to set the thresholds.
It passes these values to and from the Webserver.

4. Web Client

The web client runs on the remote system in the web browser. The client communicates
with the web server on http port 9090.

The client runs a GUI application used as front end by the user. The GUI displays the
captured sensor data along with graphs. It also provides an interface for the user to
program threshold values for the sensor events.

The application normally runs as a demon process in the background on the Zynq-7000
system. Figure 2 shows the top level view of the application and IIO framework.

http://www.xilinx.com

XADC Core APIs Used in this Application

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 4

XADC Core
APIs Used in
this Application

The XADC core section of the application is responsible for all communication with the XADC
device through the IIO subsystem.

The implementation for this section is available in the xadc_core.h and xadc_core.c files.

Other applications can call the APIs provided by this section in the xadc_core_if.h file.

Descriptions for the enums, structures and APIs declared in the xadc_core_if.h file follows.

Enumerations
• XADC_Parm

• This enum defines the available parameters that can be queried for the statistic.

• XADC_Alarm

• This enum defines the available Alarms on the system, which can be programmed and
queried for the status.

• XADC_Init_Type

• This enum defines the type of initialization for the xadc core. The valid values are
READ_ONLY and FULL, where later allows to initialize the event handling thread.

Structures
• Xadc_callback

• This structure contains the call back information for the alarm. It has function pointer
and argument pointer that should be passed for the function.

X-Ref Target - Figure 2

Figure 2: Software Block Diagram

XAPP1172_02_042513

http://www.xilinx.com

XADC Core APIs Used in this Application

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 5

Function APIs

int xadc_core_init(enum XADC_Init_Type type);;

This function should be called once in the beginning of the program. It is responsible for finding the
XADC device nodes and to initialized global variables. If called with init type FULL, it also spawn
the event handling thread which monitors the alarms and handle the particular event.

Argument: type: enum value for the type of initialization. READ_ONLY type,
if event handling is not needed. FULL type, if event handling is
also required.

Return Value: [Integer] 0: For success, -1: Device node not found

int xadc_core_deinit(void);

This function should be called at the end of program. It is responsible for release the resources.

Argument: N/A

Return Value: [Integer] 0: Success

void xadc_update_stat(void);

This function just updates the global caches for all the statistic parameters. This should be called
before xadc_get_value() fucntion, which reads the statistic from the cache.

Argument: N/A

Return Value: N/A

float xadc_get_value(enum XADC_Param parameter);

This function returns the cached statistics value of the given parameter. For voltage, the return
value is in mV and for temperature in degree Celsius.

Argument: Parameter: enum value for the parameter for which value is
needed.

Return Value: [float] cached statistic of the given parameter [mV/degree C].

float xadc_touch(enum XADC_Param parameter);

This function updates the global cache statistic for the given parameter. It returns the realtime
value of the given parameter unlike xadc_get_value.

Argument: Parameter: enum value for the parameter for which value is
needed.

Return Value: [float] realtime value of the given parameter [mV/degree C].

int xadc_set_threshold(enum XADC_Alarm alarm,
float threshold_low,
float threshold_high,
struct Xadc_callback *callback);

This function sets the threshold values for the given alarm.

http://www.xilinx.com

Linux Driver

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 6

Linux Driver The IIO framework (subsystem) is implemented in kernel space. It provides IIO device driver
registration for the Low level device drivers. The device drivers have to implement the required
functions as specified by the IIO framework and register them as part the framework. These
functions get called for all hardware-specific operations.

This driver replaces the functionality for the hwmon based ADC driver. To use this subsystem
for the XADC, hwmon xadc should be disabled in the kernel build.

Sysfs Interface If there is an XADC entry in the dts file, the IIO subsystem populates the sysfs interface for the
XADC. The sysfs entries can be found in the
/sys/bus/iio/devices/<populated-device>.

The correct drive can be confirmed by reading
/sys/bus/iio/devices/<populated-device>/name file (it is read as xadc in this
case).

This path (/sys/bus/iio/devices/<populated-device>) contains the file nodes for
different values of various parameters.

For example, to get the sensor raw code value of vccint, (the user can use the “cat” command
to read different values from sysfs interface):

/sys/bus/iio/devices/<populated-device>/in_voltage0_vccint_raw.

Argument: • alarm: enum value for the alarm for which threshold are set.
• threshold_low: Low threshold value for the alarm [mV

/degreeC]
• threshold_high: High threshold value for the alarm [mV

/degreeC]
• callback: callback information for the event on the given alarm.

If NULL is passed in this arg, no call back will be registered
otherwise on event occurrence callback→ func(arg) will be
called.

Return Value: [Integer] 0: Success, Non-zero: Error

bool xadc_get_alarm_status(enum XADC_Alarm alarm);

This function returns the current status of the event for the given alarm. Valid only after setting the
threshold. It is useful in case, one don't need callback but just get status of the event at some stage.

Argument: Alarm: enum value for the alarm for which event status is needed.

Return Value: [bool] 1 - Event Active, 0 - Event Inactive

http://www.xilinx.com

Command Line Execution

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 7

Command Line
Execution

The application note provides command line interface for monitoring the internal VCCINT,
VCCAUX and VCCBRAM channels. The commands can be executed from the command line shell
of the Linux OS. These commands are installed in the system while the Linux OS boots up.

The following commands are available:

• Command: xadc_get_value_vccint

• Explanation: This command returns the monitored VCCINT value.

• Example: $ xadc_get_value_vccint, which returns the VCCINT value in mV

• Command: xadc_get_value_vccaux

• Explanation: This command returns the monitored VCCAUX value.

• Example: $ xadc_get_value_vccaux, which returns the VCCAUX value in mV

• Command: xadc_get_value_vccbram

• Explanation: This command returns the monitored VCCBRAM value.

• Example: $ xadc_get_value_vccbram, which returns the VCCBRAM value in mV

• Command: xadc_get_value_temp

• Explanation: This command returns the monitored temperature value.

• Example: $ xadc_get_value_temp, which returns the temperature value in °C.

Event
Notification

The event notification can be enabled by writing to the files under the
/sys/bus/iio/devices/<populated-device>/events/ directory.

For example, to set the high and low threshold of vccint, write the raw code of the value to the
following files respectively (the user can set a value in the sysfs interface using the “echo”
command):

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thr
esh_rising_value

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thr
esh_falling_value

X-Ref Target - Figure 3

Figure 3: Command Line Example
XAPP1172_03_042913

http://www.xilinx.com

GUI Interface

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 8

To enable the vccint event for both high and low, write 1 to following files:

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thr
esh_rising_en

/sys/bus/iio/devices/<populated-device>/events/in_voltage0_vccint_thr
esh_falling_en

After setting the threshold, there is char driver interface to get an event:

Proceed as follows (after setting the threshold) to receive the event:

1. Include <linux/iio/events.h> for the events and ioctl definitions.

• #include <linux/iio/events.h>

2. Use the <populate-device> directory name and open the device file
/dev/<populate-device>

3. Use the file descriptor (fd) retrieved by opening device file (in step 2) to get the event file
descriptor:

• ioctl(fd, IIO_GET_EVENT_FD_IOCTL, &event_fd)

4. Call read on the event_fd (from step 3):

a. read(event_fd, &event, sizeof(event));

b. Here event is of type struct iio_event_data.

c. Decipher this event as described in the events.h file to know the exact event.

5. This read is a blocking call, which is released when any event has occurred.

GUI Interface The GUI for PS-XADC is based on Webserver. This is done using HTML, Javascript and
TCP-HTTP protocol handlers.

The GUI screen is shown in Figure 4.

The GUI screen is divided into two panes:

• Control Pane

• Monitor Pane

Control Pane

This is pane is located on the left side of the screen (Figure 4, no.1). The user can use this pane
to modify the minimum and maximum threshold values for Vccint, Vccbram, Vccaux, and
Temperature. When the user clicks the Apply button, these values are programmed in
appropriate Zynq-7000 AP SoC register. This causes the PS-XADC alarm system to get
adjusted to the new threshold values specified by the user.

Monitor Pane

The Web-client collects readings from XADC to PS periodically (once every second) and
populates the readings on the Monitor Pane (Figure 4, no.2).

The Monitor pane has four parts, showing various readings and graphs.

http://www.xilinx.com

GUI Interface

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 9

Graphs

There are four linear graphs (Figure 4, no.3) plotted by the Web page:

• Vccint graph is plotted with a scale of 0–1,200 mV

• Vccbram graph is plotted with a scale of 0–1,200 mV

• Vccaux graph is plotted with a scale of 0–2,000 mV

• External voltage graph is plotted with a scale of 0–1,200 mV

Each of these graphs is plotted with readings collected every second. The graphs maintain a
history of the last 10 readings. As the time moves, the graphs scroll from right-to-left and plot
the latest values on the right side.

Readings

The latest readings (Figure 4, no.4) from XADC to PS interface are displayed on the web page.
Web-client probes the Zynq-7000 AP SoC XADC to PS every second and gets the latest
readings. These values are plotted on the graphs.

X-Ref Target - Figure 4

Figure 4: Web Server Based GUI Application
XAPP1172_04_042913

http://www.xilinx.com

GUI Interface

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 10

Alarms

The Zynq-7000 XADC to PS interface has the capability to monitor whether the current value of
a parameter is out of bounds (minimum, maximum threshold values). If so, a corresponding
alarm is raised (Figure 4, no.5).

The web page tracks and update the alarm status for four parameters (Vccint, Vccaux,
Vccbram, and Temperature). The color of each alarm is turned to green (within bounds) or red
(out of bounds) in real time.

A user can program the MIN, MAX threshold values of a parameter and test working of alarms.
The alarm turns red as soon as the values go beyond the programmed threshold.

Remote Command Line

The remote command window (Figure 4, no.6) is an extended Linux prompt onto the Web
page. This control acts as shell prompt for the Zynq-7000 AP SoC board. The user can treat it
as a Zynq shell, and enter any valid Linux command. The text is carried to Zynq-7000 AP SoC
board and attempts to execute as a Linux command. After executing the command, the
Zynq-7000 AP SoC board sends the results to the Web page and is displayed on the console.

Note that, the command entered here is executed in a temporary process and the process gets
killed after completing the execution. That means, the results of a command are not persistent.

For example, if the command executed is cd /usr, the shell returns to the home folder (it does
not stay in the new changed folder).

External Channel Measurement

For measuring the voltage level in the external channel, the IIO framework provides external
channel measurement option. The user must enable the external channel intended to be
monitored in the device tree source (dts) file. In the ZC702 evaluation kit, an AMS101 daughter
card is included which inserts into the XADC header pin. For more details on connecting an
external signal source to the AMS101 card, refer to the AMS101 Evaluation user Guide,
(UG886).

Note: While using the external channel in the XADC, the user does not have to create a bitstream with
the appropriate user constraint directive applied for external channels.

Hardware Requirement

The design can be tested using the ZC702 evaluation platform. To collect the external data
using the AMS101 evaluation card, the user needs to follow the instructions in UG886 to
connect the AMS101 card to the ZC702 evaluation board. An external signal can be applied to
the auxiliary channel of the AMS101 card and the collected samples can be read through the
XADC to PS interface.

Experimental Results

The data from the 32-bit command FIFO is serialized using the clock generated by dividing the
PCAP clock by the TCLK_RATE parameter (see Zynq-7000 All Programmable SoC Technical
Reference Manual (UG585) for further details). With TCLK_RATE = 4 and PCAP clock set to
200 MHz, the frequency of the generated clock is 200 MHz /4 = 50 MHz. Serializing 32-bit
command takes 32x20 ns=0.64 µs time.

IGAP value of 20 imparts a delay of 20x20 ns = 0.4 µs between two commands. When a NOOP
command is written after writing an XADC read command, the serialization of the command
takes 0.64 us. Thus, one write command takes 0.64 + 0.4 + 0.64 = 1.68 µs theoretically.

Linux OS causes additional delay in the data acquisition from the XADC using the XADC to PS
interface.

http://www.xilinx.com/support/documentation/boards_and_kits/ams101/ug886-ams101-eval-card.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

Conclusion

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 11

The maximum external signal bandwidth that can be supported with the XADC to PS interface
in Zynq-7000 family has been measured and found to be 100 kHz. The measurement is taken
in ideal conditions with the CPU running only the XADC to PS application. No other applications
are run. The measurement is taken with alarm events enabled in the driver. The limitation on
the maximum signal bandwidth is due to the serial nature of the XADC to PS interface. The full
XADC bandwidth of 1 MSPS can be explored by using the DRP interface of the XADC.

The latency numbers for single and bursty read commands have been experimentally found.
Table 1 summarizes these values.

Conclusion This design provides the platform required to use the dedicated XADC to PS interface for
system monitoring. The design also explores the possibility of using an external auxiliary
channel through the XADC to PS interface and characterizes the maximum signal frequency
which can be monitored using the interface. The external auxiliary channel can be used to
monitor external voltage and current which is not captured by internal sensor.

The latency number provided in this application note is the best that can be achieved through
this interface. It might vary depending on CPU load conditions.

Reference
Design

The reference design ZIP file can be downloaded from the following URL:

http://secure.xilinx.com/webreg/clickthrough.do?cid=343190

Follow the instructions provided in the readme file to build hardware and software code. Refer
to the following wiki page for the application note build and run instructions:

http://www.wiki.xilinx.com/zynq-xadc-ps-xapp

Table 1: Latency Numbers for Single and Bursty Read Commands

Command Type IGAP TCLK_RATE
PCAP Clock
Frequency

(MHz)

Worst Case
Latency (µs)

Average
Latency

(µs)

Single Command 20 4 200 8.78 3.92

Bursty Read
(for 15 read commands) 20 4 200 24.96 13.15

Table 2: Reference Design Matrix

Parameter Description

General

Developer Name Xilinx

Target Devices Zynq-7000 AP SOC

Source Code Provided Yes

Source Code Format C

Design uses code and IP from existing
Xilinx application note and reference
designs, CORE Generator software, or third
part

Yes

Simulation

Functional Simulation Performed No

Timing Simulation Performed No

Test bench used for functional and timing
Simulations

No

http://www.xilinx.com
http://www.wiki.xilinx.com/zynq-xadc-ps-xapp
http://secure.xilinx.com/webreg/clickthrough.do?cid=343190

Appendix A: Device Tree

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 12

Appendix A:
Device Tree

The following is the snippet of XADC entry in the Xilinx Linux device tree:

xadc@f8007100 {
compatible = "xlnx,ps7-xadc-1.00.a";

reg = <0xf8007100 0x20>;
interrupts = <0 7 4>;
interrupt-parent = <&gic>;
clocks = <&ps_clk>;
xlnx,channels {
#address-cells = <1>;
#size-cells = <0>;
channel@0 {
reg = <0>;

};
};

};

For more info on possible XADC entries please see the Linux kernel documentation:

Documentation/devicetree/bindings/iio/xilinx-xadc.txt

References 1. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

2. 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS
Analog-to-Digital Converter User Guide (UG480)

3. IIO framework: https://wiki.analog.com/software/linux/docs/iio/iio

4. AMS101 Evaluation Card User Guide (UG886)

Revision
History

The following table shows the revision history for this document.

Test bench format N/A

Simulator software/version used N/A

SPICE/IBIS simulation N/A

Implementation

Synthesis software tools/version used N/A

Implementation software tools/versions
used

N/A

Static timing analysis performed No

Hardware Verification

Hardware verified Yes

Hardware platform used for verification ZC702

Table 2: Reference Design Matrix (Cont’d)

Parameter Description

Date Version Description of Revisions

07/03/2013 1.0 Initial Xilinx release.

03/18/2014 1.0.1 Corrected “comments” to “commands” in Table 1 and “Statistic” to
“Static” in Table 2.

https://wiki.analog.com/software/linux/docs/iio/iio
http://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ams101/ug886-ams101-eval-card.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ams101/ug886-ams101-eval-card.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
http://www.xilinx.com

Notice of Disclaimer

XAPP1172 (v1.0.1) March 18, 2014 www.xilinx.com 13

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials
are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED
TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind
or nature related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or
damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms
and conditions of the Limited Warranties which can be viewed at
http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms
contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Using the Zynq-7000 Processing System (PS) to Xilinx Analog to Digital Converter (XADC) Dedicated Interface to Implement System Monitoring and External Channel Measurements
	Summary
	Introduction
	Design Overview
	Software Architecture
	XADC Core APIs Used in this Application
	Enumerations
	Structures
	Function APIs

	Linux Driver
	Sysfs Interface
	Command Line Execution
	Event Notification
	GUI Interface
	Control Pane
	Monitor Pane
	Graphs
	External Channel Measurement
	Hardware Requirement
	Experimental Results

	Conclusion
	Reference Design
	Appendix A: Device Tree
	References
	Revision History
	Notice of Disclaimer

