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Summary This application note describes how to quickly implement and optimize floating-point 
Proportional-Integral-Derivative (PID) control algorithms specified in C/C++ code into an RTL 
design using Vivado HLS. You can use System Generator for DSP to easily analyze and verifiy 
the design. This enables floating-point algorithm designers to take advantage of 
high-performance, low cost, and power efficient Xilinx® FPGA devices.

Introduction Floating-point algorithms are widely used in industries from analysis to control applications. 
Traditionally, such algorithms have been implemented on microprocessors. The primary reason 
for using microprocessors has been the ease with which floating-point algorithms can be 
captured, validated, and debugged in C/C++ code, therefore avoiding the complexity and skills 
required to implement them in hardware. However, implementing these algorithms on 
optimized and dedicated hardware provides lower cost, higher performance, and power 
benefits over a standard, or even optimized microprocessor.

This application note presents a new design flow enabled by the Xilinx Vivado™ Design Suite, 
which allows floating-point algorithms to be quickly specified in C/C++ code, optimized for 
performance, and implemented on Xilinx FPGA devices. This flow delivers on the cost, 
performance, and power benefits that have so far eluded designers who rely on traditional 
microprocessors for implementing floating-point algorithms.

Starting from the standard industrial application of a Proportional-Integral-Derivative (PID) 
control, as reported in "Vivado HLS Eases Design of Floating-Point PID Controller" [Ref 1], we 
will review and explain the following aspects of implementing floating-point algorithms in an 
FPGA:

1. Explain benefits and opportunities created by implementing floating-point designs in an 
FPGA device

2. Review an industry standard application, showing how the algorithm can be implemented 
in C/C++ code.

3. Show how the C/C++ design can transformed into a high-performance hardware 
implemented using Vivado high-level synthesis (HLS) and how the design can be further 
optimized.

4. Discuss how the performance of the RTL design can be analyzed and verified using 
System Generator for DSP.

The above topics 3 and 4 represent the newest contribution of this application note to the 
previous work already published in "VIVADO HLS Eases Design of Floating-Point PID 
Controller" [Ref 1], although also topic 2 has also been enhanced.

The Proportional-Integral-Derivative (PID) systems are used throughout industries, from 
factory control systems to car braking systems, robot controls, and medical devices. The 
implementation of a PID core very often requires the accuracy provided by floating-point 
calculations.
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Figure 1 shows the block diagram for a standard PID controller adopted in a discrete 
closed-loop control system: the PID accepts an input reference value w(n) and the plant 
system output value y(n) and processes their difference, the error e(n), to ensure that the 
output matches the desired input value. Every part of the PID contributes to a specific action:

• Proportional stage: Drives the controller output according to the size of the error.

• Integral stage: Eliminates the state-steady offset.

• Derivative stage: Evaluates the trend to correct the output and improve overall stability by 
limiting overshoot.

The result of each stage is combined to create a fast responding but stable system.

The entire application depends on the accuracy of calculations performed. For this reason, PID 
controllers have traditionally been implemented in microprocessors; they allow the algorithm 
designer to easily capture the algorithm and have historically had acceptable performance.

When the required performance of the system has exceeded the ability of standard 
microprocessors, dedicated Digital Signals Processors (DSPs) have been employed. These 
often require some modification to the original C algorithm but can perform floating-point 
calculations faster, allowing the performance requirements to be met.

However, in a lot of industrial applications, the PID is being used in more and more places and 
single PID loops are being replaced by cascaded loops. For instance:

• The torque is managed by the current loop PID.

• The motor speed is managed by the velocity PID cascaded with the current PID.

• The position is managed by the space PID cascaded with the velocity PID.

In these cases, the time taken for the sequential execution of the each new PID loop, which is 
inherent when using a microprocessor, contributes a substantial delay in the overall 
computation. Continuing to solve this problem using traditional micro or DSP processors simply 
adds more and more discrete parts to the system cost and power.

Additionally, in recent years, electrical drives and robots are placed into Networked Control 
Systems using the PID(s) in a loop with a communication channel, which in turn must interact 
with a software communication protocol stack. System architects and control engineers are 
often sacrificing performance to get an all-software implementation.

X-Ref Target - Figure 1

Figure 1: PID Block Within a Closed-Loop Control System
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FPGA technology provides a much more powerful and flexible response to these challenges. 
For example:

• Implementing the PID in an FPGA device allows multiple PID instances to operate 
concurrently, due to the massive parallel resource available on an FPGA.

• FPGAs offer flexibility in adding additional PID loops if the application needs more control 
loops, without affecting the performance of any existing PIDs in the system or typically 
adding any discrete parts to the system.

• With the introduction of the new Xilinx Zynq™-7000 All Programmable SoC, there are 
additional advantages because the power of the FPGA can be directly exploited by the 
powerful ARM Cortex A9 CPU processor. Any software stack can be implemented on the 
on-board CPU. Here the determinism and speed of FPGA implementation is a great 
advantage.

• In addition to exceeding the performance of serial execution micro-processors, FPGAs 
offer cost and power advantages.

• FPGAs are programmable and can be updated as easily as any CPU code. The solution 
they provide is not all-software, but it is all programmable.

However, FPGA devices require that the design is implemented using a Register Transfer Level 
(RTL) design language, such as VHDL or Verilog. This has been an insurmountable hurdle for 
many control engineers, with a no background in hardware design, and they have been 
discouraged from using FPGA technology. 

This application note shows how the Xilinx Vivado Design Suite, with the new Vivado 
High-Level Synthesis (HLS) design tool and System Generator for DSP, removes the burden of 
requiring the algorithm designer to also be a hardware design expert. By simply understanding 
the basic resources on an FPGA and standard hardware IO protocols, the designer can now 
implement, optimize, analyze, and verify designs on an FPGA.

The transformation from the C/C++ specification to the RTL required by an FPGA requires no 
more adaptations to regular C or C++ code than the implementation in a DSP, and does not 
represent any significant detailed knowledge of hardware design.

From PID 
Theory to C++ 
Code

Before going into detail on the specifics of the design flow, it is worth examining how the 
algorithm is developed. This section covers the theoretical background of the PID algorithm.

A system without feedback control is defined as an open loop, and its transfer function (the way 
the system's input maps into its output) must exhibit a phase shift of less than 180° at unity 
gain. The difference between the phase shift of the open loop and 180° at unity gain is called 
the "phase margin."

System gain and phase shift are commonly expressed in the analog s domain of the Laplace 
transform or in the discrete z domain of the Z-transform. Assuming P(z) and H(z) to be, 
respectively, the discrete transfer functions of the plant and of the PID controller in the z 
domain, the effective transfer function T(z) of the whole closed-loop system can be expressed 
as:

The values in z of the numerator and denominator of T(z) are respectively called zeros and 
poles. The phase shift of the PID enters into the loop and sums to the total phase; thus, a fast 
PID is desirable to keep the phase lag at a minimum. Ideally, the PID's response time should be 
immediate, as with an analog controller. Therefore, the PID computational speed is paramount. 
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In a closed-loop system, stability is mandatory, especially for highly sophisticated applications 
like robotic systems or electrical motor drives. Without stability, the control loop might respond 
with undesired oscillations, or by generating a sluggish response. Stability can be achieved via 
compensation of the poles and zeros of the PID controller in order to get the best achievable 
performance from the closed loop system: the gain and phase characteristics.

Without entering into the details of the mathematical derivation of the DC motor and rotor 
transfer functions, it is possible to express the plant as in Equation 1, showing the analog 
open-loop transfer function in the Laplace domain:

Open Loop Transfer Function Equation 1

where a, b, c, and d are the plant numerical parameters.

As a numerical example throughout this application note, the following values are assumed: 
a=1, b=1, c=10, and d=20.

Equation 2 illustrates the PID controller transfer function:

PID Controller Transfer Function Equation 2

where U(s) and E(s) are the Laplace transforms of the PID output and input signals, 
respectively u(n) and e(n). The terms KP, KI, and KD are the gains of the Proportional, 
Integral, and Derivative stages, respectively.

One of the methods for transforming transfer functions from the Laplace domain to the z 
domain is the Tustin approximation with trapezoidal integration: the plant (Equation 1) and PID 
(Equation 2) transfer functions are shown respectively in Equation 3 and Equation 4 in their 
digital form:

Open Loop Transfer Function Equation 3

PID Controller Transfer Function Equation 4

where TF and TS are, respectively, the derivative filter time and the sampling time.
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Equation 3 and Equation 4 can be formally rewritten as shown, respectively, in Equation 5 and 
Equation 6:

Open Loop Transfer Function Equation 5

PID Controller Transfer Function Equation 6

with 

The MathWorks' Control System toolbox of MATLAB® and Simulink® is a powerful tool to 
design and simulate analog and digital PID control systems. The following MATLAB script 
illustrates some theory of PID controllers.

Note: When possible, the same symbols shown in Equation 1, Equation 2, Equation 3, and Equation 4 
are adopted in the code.

clear all;
close all;
clc
 
Ts = 1/100; % sampling period
t  = 0 : Ts : 2.56-Ts; % time basis

% (Laplace transform) transfer function of the continuous system to be 
controlled
a = 1; b = 1; c = 10; d = 20;
num = a; den = [b c d]; 
plant_s = tf(num, den); % Plant transfer function (Laplace transform)
 
% clipping values
min_val = -64;
max_val =  63;
 
%% DISCRETE PLANT system (P(z))
 
% (Z transform) transfer function of the discrete system to be controlled
P = c2d(plant_s,Ts,'tustin')  % discrete plant transfer function (Zeta 
transform)
figure; step(P,t); title 'Open-Loop answer to input step for a discrete 
plant'; grid
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The next commands specify a controller that will reduce the rise time, reduce the settling time 
and, eliminate the steady-state error.

%% DISCRETE PID system (H(z))
% dummy parameters to generate a PID 
Kp=1; Ki=1; Kd=1; Tf=1; 
HH = pid( Kp, Ki, Kd, Tf, Ts, 'IFormula','Trapezoidal', 
'DFormula','Trapezoidal');
H = pidtune(P, HH);
 
%% Proportional Discrete Controller
H.Kp = 300;
H.Ki = 0;
H.Kd = 0;
 
% closed loop system:  T(z) = P(z)H(z) / ( 1 + P(z)H(z) )
T = feedback(H * P,1);
figure; step(T,t); grid
title(['Closed-Loop answer to input step with Kp=',num2str(H.Kp)]);
axis([0    2.0  0 1.5]);

The output signal of the plant stand-alone (that is in open-loop) to a step input signal shows that 
the DC gain of the plant transfer function is 1/20, so 0.05 is the final value of the output to a unit 
step input. This corresponds to the large steady-state error of 0.95. Furthermore, the rise time 
is about one second and the settling time is about 1.5 seconds, as illustrated in Figure 2.

X-Ref Target - Figure 2

Figure 2: Discrete Open-Loop Plant Answer to a Step Input Signal
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Figure 3 shows that the proportional (P) controller has reduced both the rise time and the 
steady-state error, increased the overshoot, and decreased the settling time by a small amount. 

On the other hand, the plot in Figure 4, page 8 confirms that the PID controller reduces both the 
overshoot and the settling time and has a small effect on the rise time and the steady-state 
error.

Finally, Figure 5, page 9 illustrates the answer to the step input signal, once the PID controller 
has been tuned to the plant; the closed loop system exhibits now negligible overshoot and good 
rise time. The optimal settings of the PID parameters are: KP=35.36, KI=102.2, and KD=0.29. 

%% Proportional Derivative Discrete Controller
%
% The derivative controller (Kd) reduces both the overshoot and the 
settling time.
 
H.Kp = 300;
H.Ki = 0;
H.Kd = 30;

T = feedback(H*P, 1);
figure; step(T, t);  grid;
title(['Closed-Loop step: Kp=',num2str(H.Kp), ' Kd=' num2str(H.Kd)])
axis([0    2.0  0 1.5]);

X-Ref Target - Figure 3

Figure 3: Closed-Loop Plant Answer to a Step Input Signal with a P Controller Having 
KP=300
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%% Proportional Integral Derivative Discrete Controller 
 
% tuning the PID
H  = pidtune(P, HH) 
Kp = H.Kp;
Ki = H.Ki;
Kd = H.Kd;
Tf = H.Tf;
 
% closed loop system:  T(z) = P(z)H(z) / ( 1 + P(z)H(z) )
T  = feedback(H*P, 1); 
figure; step(T, t); grid
title(['Closed-Loop answer to input step: Kp=',num2str(H.Kp), ' Ki=' 
num2str(H.Ki), ' Kd=' num2str(H.Kd)])
axis([0    2.0  0 1.5]);

X-Ref Target - Figure 4

Figure 4: Closed-Loop Plant Answer to a Step Input Signal with a Pd Having Kp=300 
and Kd=30
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The transfer function of the derivation stage D(z) from Equation 6 is shown here in Equation 7.

Derivation Stage Transfer Function Equation 7

By anti-transforming it, the discrete time equation can be obtained, with x1(n) = GD e(n) the 
effective signal input to the derivation stage:

Derivation Stage Discrete Time Equation Equation 8

X-Ref Target - Figure 5

Figure 5: Closed-Loop Plant Answer to a Step Input Signal with a PID Having Kp=35.36, 
Ki=102.2, and Kd=0.29
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Similarly, in Equation 6, the transfer function of the Integration stage I(z) is shown here as 
Equation 9:

Integration Stage Transfer Function Equation 9

which in the discrete time, with x2(n) = GI e(n) the effective signal input to the integration 
stage, becomes Equation 10:

Integration Stage Discrete Time Equation Equation 10

In conclusion, the effective time-discrete Equations modeling the PID controller and the plant 
are as shown in Equation 11:

PID Discrete Time Equations Equation 11

The C code implementation of the PID design and its functional test-bench are reported in 
Figure 6, page 15. The design assumes that  

• The PID input and output signals e(n) and U(n) are saturated by an amount that the 
user can control

• The PID coefficients (GI, GP, GD, and C of Equation 6) and the maximum and minimum 
value for e(n) and u(n) signals are to be loaded into the PID core at function call time, 
so that the PID controller can even be tuned at run time in more sophisticated applications.

• To avoid the possible overflow  of its accumulator, the Integrator's Equation 10 is changed 
into the following:

Discrete Integrator with Clipping Equation 12
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The data types in the source code shown in Figure 6 are defined in the header file reported in 
Figure 7, page 15 as float types (that is 32-bit floating point) when no C preprocessing symbol 
is defined, which is the default configuration. Note that other data types are allowed: double 
types (64-bit floating point) and fixed types (25-bit fixed fractional), depending respectively on 
the preprocessing symbol defined, PID_DOUBLEPREC and PID_FIXEDPOINT.

#include "pid.h"

void PID_Controller(bool InitN, data_type coeff[6], 
                    data_type din[2], data_type dout[2])
{

// previous PID states: Yd(n-1), X1(n-1), X2(n-1), Yi(n-1)
static data_type   prev_x1, prev_x2, prev_yd, prev_yi;
// current local states
data_type w, e, y, x1, x2, yd, yi;
// local variables
data_type max_lim, min_lim, Gi, Gd, C, Gp, tmp;
data_type pid_mult, pid_addsub, pid_mult2, pid_addsub2;

// get PID input coefficients
Gi = coeff[0];  Gd = coeff[1]; 
C = coeff[2]; Gp = coeff[3];
max_lim = coeff[4]; min_lim = coeff[5];

// get PID input signals
w = din[0]; // effective input signal
y = din[1]; // closed loop signal

if (InitN==0)
{
prev_yi = 0; // reset Integrator stage
prev_x1 = 0; // reset Derivative stage
prev_yd = 0; prev_x2 = 0;

}

// compute error signal E = W - Y
pid_addsub = w - y;
e = (pid_addsub > max_lim) ? max_lim : pid_addsub;
e = (pid_addsub < min_lim) ? min_lim : e;
pid_mult  = Gd * e;
pid_mult2 = Gi * e;
x1 = pid_mult;  // input signal of the derivative stage
x2 = pid_mult2; // input signal of the integration stage

// Derivation stage
// Yd(n) = -C*Yd(n-1)+X1(n)-X1(n-1) = X1 -(prev_X1 + C*prev_Yd)
pid_mult = C * prev_yd;
pid_addsub2= x1 - prev_x1;
pid_addsub = pre_addsub2 - pid_mult;
yd         = pid_addsub;

// Integrator  stage
// Ti = X2(n) + X2(n-1) 
// Yi(n) = CLIP( Yi(n-1) + Ti )    
pid_addsub = prev_x2 + x2;
pid_addsub2= prev_yi + pid_addsub;
yi = (pid_addsub2 > max_lim) ? max_lim : pid_addsub2;
yi = (pid_addsub2 < min_lim) ? min_lim : yi;

http://www.xilinx.com


From PID Theory to C++ Code

XAPP1163 (v1.0) January 23, 2013 www.xilinx.com  12

// output signal U(n)
pid_mult   = Gp * e;
pid_addsub = yi + yd;
pid_addsub2= pid_addsub + pid_mult;
tmp = (pid_addsub2 > max_lim) ? max_lim : pid_addsub2;
tmp = (pid_addsub2 < min_lim) ? min_lim : tmp;
dout[0] = tmp; // PID output
dout[1] = e; // error reported as output

// update internal PID states for the next iteration
prev_x1 = x1; prev_x2 = x2;
prev_yd = yd; prev_yi = yi;

return;
}

#define N       256 
#define MAX_VAL  64
const float C  = -0.7931; // derivation constant
const float Gd =  6.0324; // Derivation gain
const float Gp = 35.3675; // Proportional gain
const float Gi =  0.5112; // Integration gain
const float max_clip = MAX_VAL-1; 
const float min_clip = -MAX_VAL; 

int main(void)
{

int i, ret_val;
FILE *fp_e, *fp_i, *fp_d, *fp_p, *fp_u, *fp_u2, *fp_e2;
float diff_E, diff_U, tot_diff_E, tot_diff_U;

// PID input signals
bool ResetN =1;
data_type din[2], dout[2], coeff[6];

// CLOSED LOOP SYSTEM STATES
float yd_prev = 0; float x1_prev  = 0; // derivation  states
float yi_prev = 0; float x2_prev  = 0; // integration states
float y_z1 = 0; float y_z2 = 0; 
float u_z1 = 0; float u_z2 = 0; 

// closed loop system states
float ref_out_prev = 0; float out_prev = 0;

// PID AND PLANT SIGNALS
float w[N], u[N], y[N], e[N];
float ref_e[N], ref_u[N], ref_y[N], ref_yi[N], ref_yd[N];
float ref_y_z1 = 0; float ref_y_z2 = 0; 
float ref_u_z1 = 0; float ref_u_z2 = 0; 

tot_diff_E = 0; tot_diff_U = 0;

// STEP FUNCTION
w[0] = 0;  for (i=1; i<N; i++) w[i] = 1;

// file I/O
if ( ( fp_e = fopen ( (char *) "./test_data/e_res.txt", "w" ) ) == NULL )
{
fprintf (stderr, "Cannot open input file %s\n", (char *) "e_res.txt");
exit (-1 );
}
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if ( ( fp_i = fopen ( (char *) "./test_data/i_res.txt", "w" ) ) == NULL )
{
fprintf (stderr, "Cannot open input file %s\n", (char *) "i_res.txt");
exit (-1 );
}
if ( ( fp_d = fopen ( (char *) "./test_data/d_res.txt", "w" ) ) == NULL )
{
fprintf (stderr, "Cannot open input file %s\n", (char *) "d_res.txt");
exit (-1 );
}
if ( ( fp_p = fopen ( (char *) "./test_data/yp_res.txt", "w" ) ) == NULL )
{
fprintf (stderr, "Cannot open output file %s\n", (char *) "yp_res.txt");
exit (-1 );
}
if ( ( fp_u = fopen ( (char *) "./test_data/u_res.txt", "w" ) ) == NULL )
{
fprintf (stderr, "Cannot open output file %s\n", (char *) "u_res.txt");
exit (-1 );
}
if ( ( fp_u2 = fopen ( (char *) "./test_data/pid_u_res.txt", "w" ) ) == NULL 
)
{
fprintf (stderr, "Cannot open output file %s\n", (char *) "pid_u_res.txt");
exit (-1 );
}
if ( ( fp_e2 = fopen ( (char *) "./test_data/pid_e_res.txt", "w" ) ) == NULL 
)
{
fprintf (stderr, "Cannot open input file %s\n", (char *) "pid_e_res.txt");
exit (-1 );
}

coeff[0] = (data_type) Gi;       coeff[1] = (data_type) Gd;
coeff[2] = (data_type) C;        coeff[3] = (data_type) Gp;
coeff[4] = (data_type) max_clip; coeff[5] = (data_type) min_clip;

// TEST BENCH 
for (i = 0; i<N; i++)
{
// error between input and output signals
ref_e[i] = w[i] - ref_out_prev; // PID IN CLOSED LOOP
ref_e[i] = (ref_e[i] > max_clip) ? max_clip : ref_e[i];
ref_e[i] = (ref_e[i] < min_clip) ? min_clip : ref_e[i];

float x1 = Gd*ref_e[i];
float x2 = Gi*ref_e[i];

// derivation stage
// Yd(n-1) = -C * Yd(n-1) + X1(n) - X1(n-1)
ref_yd[i] = -C*yd_prev + x1 - x1_prev;
yd_prev = ref_yd[i];
x1_prev = x1;
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// integration
Ti(n) = X2(n) + X2(n-1);               
Yi(n) = CLIP( Yi(n-1) + Ti(n) )
float ti = x2_prev + x2; 
ti = yi_prev + ti; 
ti = (ti > max_clip) ? max_clip : ti;
ti = (ti < min_clip) ? min_clip : ti;
ref_yi[i] = ti;
yi_prev   = ti;
x2_prev   = x2;

// PID control output signal
ref_u[i] = ref_e[i] * Gp + ref_yd[i] + ref_yi[i];
ref_u[i] = (ref_u[i] > max_clip) ? max_clip : ref_u[i];
ref_u[i] = (ref_u[i] < min_clip) ? min_clip : ref_u[i];

// plant
ref_y[i] = 1.903*ref_y_z1 -0.9048*ref_y_z2 + 2.38e-005 *ref_u[i] 

 + 4.76e-005*ref_u_z1 + 2.38e-005*ref_u_z2;
ref_y_z2 = ref_y_z1;
ref_y_z1 = ref_y[i];
ref_u_z2 = ref_u_z1;
ref_u_z1 = ref_u[i];
ref_out_prev = ref_y[i];

fprintf(fp_u, "%f\n",  ref_u[i]);
fprintf(fp_e, "%f\n",  ref_e[i]);

// EFFECTIVE Design Under Test
din[0] = (data_type) w[i];
din[1] = (data_type) out_prev; 
PID_Controller(ResetN, coeff, din, dout); 
u[i] = (float) dout[0];
e[i] = (float) dout[1];

// plant
y[i] = 1.903*y_z1 -0.9048*y_z2 + 2.38e-005*u[i] 

+ 4.76e-005 *u_z1 + 2.38e-005*u_z2;
y_z2 = y_z1; y_z1 = y[i];
u_z2 = u_z1; u_z1 = u[i];
out_prev = y[i];

fprintf(fp_u2, "%f\n",  (float) u[i]);
fprintf(fp_e2, "%f\n",  (float) e[i]);

// CHECK RESULTS

// ERROR SIGNAL
diff_E = (float) fabs( (float) e[i] - (float) ref_e[i]);
tot_diff_E += diff_E;
// PID OUTPUT 
diff_U = (float) fabs( (float) u[i] - (float) ref_u[i]);
tot_diff_U += diff_U;

}
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fclose(fp_e); fclose(fp_d); fclose(fp_i); fclose(fp_u); 
fclose(fp_p); fclose(fp_u2); fclose(fp_e2);

fprintf(stdout, "\n TEST RESULT U=%f \n", tot_diff_U);
fprintf(stdout, "\n TEST RESULT E=%f \n", tot_diff_E);
tot_diff_E += tot_diff_U; // total error during simulation
fprintf(stdout, "\n TEST RESULT TOTAL ERROR =%f \n", tot_diff_E);

if (tot_diff_E < PID_THRESHOLD) // MY THRESHOLD
{
ret_val = 0;
fprintf(stdout, "\n TEST PASSED! \n");

}
else
{
ret_val = 1;
fprintf(stdout, "\n TEST FAILED! \n");

}

return ret_val;

}
X-Ref Target - Figure 6 Figure 6: PID Controller C Code

#if defined(PID_FIXEDPOINT)

// Define AP_FIXED types
#include "ap_fixed.h"
// 25-bit bit signed date, with
typedef ap_fixed<25,10> data_type;
#define PID_THRESHOLD 0.2
#elif defined(PID_DOUBLEPREC)
typedef double data_type; // 64-bit floating point
#define PID_THRESHOLD 0.01

#else 

typedef float data_type; // 32-bit floating point
#define PID_THRESHOLD 0.01

#endif
X-Ref Target - Figure 7 Figure 7: PID Controller C Header File 
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C Specification 
to RTL Design

Once the algorithm has been captured in C++ code, the Xilinx Vivado HLS can be used to 
synthesize this in to an RTL implementation.

In addition to the C source code, Vivado HLS accepts as inputs a target clock frequency, a 
target device specification, and user directives (commands) which can be used to control and 
direct specific optimizations. The easiest way to understand the function and capabilities of 
Vivado HLS is to step through an example. For more information on Vivado HLS, refer to 
UG902, Vivado Design Suite User Guide: High-Level Synthesis [Ref 2].

Given the input source code shown in Figure 6, and specifying only the clock period and target 
device, as shown in Figure 8.

set_part  {xc7z010clg400-1}
create_clock -period 10 

X-Ref Target - Figure 8 Figure 8: Vivado HLS Device and Clock Targets

Vivado HLS:

• Transforms each of the operations in the C code into an equivalent hardware operation 
and schedules those operations into clock cycles. Using knowledge of the clock period 
and device delays, it will put as many operations as possible into a single clock cycle.

• Uses interface synthesis to automatically synchronize how the data can be brought into 
the hardware block and written out. For example, if data is supplied as an array it will 
automatically construct an interface to access a RAM block (Other IO interface options 
can be specified).

• Maps each of the hardware operations onto an equivalent hardware unit in the FPGA 
device.

• Performs any user-specified optimizations, such as pipeline or concurrent operations.

• Outputs the final design, with reports, in Verilog and VHDL for implementation in the 
FPGA.

The reports generated by synthesizing the code in Figure 9, page 17 can help explain its 
operation and capabilities and shows the initial performance characteristics (initial, because no 
user optimization directives have been specified: these are the default synthesis results).

Vivado HLS has analyzed all the operations in the C code and determined that it will take 40 
clocks cycle to calculate this result using the specified target technology and clock period. In 
fact, this design could execute with a maximum clock period of 8.63 ns.
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The area estimates in Figure 9 show how many resources on the FPGA the design is expected 
to use: 9 DSP48 resources, about 1380 Flip-Flops and 2530 LUTs (Look-Up-Tables).

The words "estimates" and "expected" are applied here because the RTL synthesis process 
has still to transform this RTL code into gate level components and place and route them in the 
FPGA: there may be other gate level optimizations which impact the final results.

X-Ref Target - Figure 9

Figure 9: Initial Performance Characteristics in 32-Bit Floating Point
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Further down the report, you can see how the design was implemented; as illustrated in 
Figure 10, the design uses the following floating-point components:

• Adder-subtractor

• Adder

• Multiplier

• Comparator 

The report also shows how many of the basic resources (DSP48, Flip-Flop, and LUT) each of 
these components uses.

Finally, Figure 11, page 19 reveals how the C function arguments where transformed by 
interface synthesis into IO ports which can connect to other blocks in the design.

In particular, it can be noted that:

• Clock and reset signals were added to the design (ap_clk, ap_rst).

• By default, a design-level protocol is added to the design (this is optional). This allows the 
design to be started (ap_start) and indicates when it is ready for new inputs, has 
complete (ap_done), or is idle.

• The input InitN has been implemented as an input port with no IO protocol (ap_none). 
When the read on this port occurs, the value is read. Because there are no handshake 
signals to indicate when this port is being read, it should be held stable after ap_start is 
asserted and until ap_ready is asserted.

• Each of the array arguments have been transformed into RAM interface with the 
appropriate address, enable, and write signals to access a Xilinx block RAM. Additionally, 
Vivado HLS has automatically determined that the performance can be improved if port 
din uses a dual-port block RAM; this can be configured to a single-port BRAM if desired.

X-Ref Target - Figure 10

Figure 10: Initial Design Details in 32-Bit Floating Point
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Vivado HLS has created an RTL implementation where the operations in the C code and the IO 
operations have been automatically implemented without any requirement to know an RTL 
design language, such as Verilog or VHDL, or without knowing anything about RTL design in 
general.

The next section shows how this implementation can be made more optimal, and how in this 
case, some basic understanding of RTL IO interfaces and Xilinx device resources is an 
advantage.

Optimized RTL The initial design created by Vivado HLS can be made more optimal. The optimizations shown 
here are only a few of the possible optimizations that can be made to the design. For more 
details on the optimizations provided by Vivado HLS, refer to UG902, Vivado Design Suite User 
Guide: High-Level Synthesis [Ref 2].

The first thing to be done is to decide that instead of using a RAM interface for the data signals 
din, coeff, and dout, a FIFO interface can be adopted. This is possible because the input 
data and output data are always read and written sequentially. A FIFO interface requires no 
address, so there is no need of logic required to calculate the address.

The directives to achieve these IO optimizations are shown in Figure 12.

set_directive_interface -mode ap_fifo "PID_Controller" din
set_directive_interface -mode ap_fifo "PID_Controller" dout
set_directive_interface -mode ap_fifo "PID_Controller" coeff

X-Ref Target - Figure 12 Figure 12: FIFO IO Protocols 

X-Ref Target - Figure 11

Figure 11: Initial RTL Ports
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Finally, in the initial performance results, we noticed that the design was using two floating-point 
multipliers and both a floating-point addsub unit and adder unit. Here, some knowledge of the 
Xilinx FPGA device is useful. Floating-point operations consume more resources than standard 
integer or bit operations. For example, these floating-point adders use two DSP48s and 
approximately 400 flip-flops and LUTs each: a standard integer adder only requires a few LUTs. 

Therefore, Vivado HLS is directed to limit these area-expensive resources, by adopting only a 
single addsub and multiplier component. These directives are shown in Figure 13.

set_directive_allocation -limit 1 -type core "PID_Controller" fAddSub
set_directive_allocation -limit 1 -type core "PID_Controller" fMul

X-Ref Target - Figure 13 Figure 13: Directive to Limit Floating Point Resources

You can re-synthesize the design with these optimization directives to create a new solution.

Figure 14 reports the comparison of the two solutions. As expected in the new solution2, there 
are fewer resources being used. However, the design now takes 41 clock cycles to complete 
instead of the 40 clock cycles of solution1. For a design that takes one clock cycle more, we 
have 44% less DSP48, 20% fewer flip-flops, and 30% less LUTs.

The estimated clock period of 8.63 ns means that we have an output data rate of 2.51 Millions 
of Samples Per Second (MSPS), corresponding to a signal period of 41x8.63 ns; that is, 
354 ns.

We can do a further architectural analysis: we can tell Vivado HLS to not implement any FIFO, 
by breaking each input signal into multiple discrete ports, through the directives shown in 
Figure 15, in order to generate the IO ports reported in Figure 16, page 21.

set_directive_array_partition -type complete -dim 1 "PID_Controller" coeff
set_directive_array_partition -type complete -dim 1 "PID_Controller" din
set_directive_array_partition -type complete -dim 1 "PID_Controller" dout
set_directive_interface -mode ap_ctrl_hs "PID_Controller"
set_directive_interface -mode ap_none "PID_Controller" dout

X-Ref Target - Figure 15 Figure 15: New IO Protocols

X-Ref Target - Figure 14

Figure 14: Design Comparison Between 32-Bit Floating Point Solutions 1 and 2
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As shown in Figure 17, this new solution3 takes even fewer clock cycles and Flip-Flop and LUT 
resources than the previous solutions, in detail: 37 clock cycles (corresponding to a data rate of 
3.1  MSPS), 5 DSP48, 870 FFs and 1770 LUTs. This is the best performance design we will 
export in System Generator for DSP, as described in the Section related to it.

The key point here is that with Vivado HLS, you can easily create a new more optimal RTL 
design. The knowledge required to make use of the optimization directives is an understanding 
of standard IO protocols and an appreciation of Xilinx FPGA resources.

Finally, just as a curiosity, if we enable the C preprocessing symbol PID_DOUBLEPREC, we 
get a 64-bit floating point design (C double data types). Adopting the same directives we used 
in the previous design (illustrated in Figure 12, page 19, Figure 13, page 20 and Figure 15, 
page 20), we obtain a performance of 39 clock cycles latency, 14 DSP48, 2052 FFs and 3505 
LUTs, which is 2-3 times more resources than the 32-bit floating point design, as shown in 
Figure 18, page 22.

X-Ref Target - Figure 16

Figure 16: Rtl Ports of the Best Performance 32-Bit Floating Point Solution

X-Ref Target - Figure 17

Figure 17: Best Performance Design in 32-Bit Floating Point

http://www.xilinx.com


Optimization for System Architects: 25 bits fixed-point

XAPP1163 (v1.0) January 23, 2013 www.xilinx.com  22

Optimization for 
System 
Architects: 25 
bits fixed-point

When code is written to execute on a CPU, coding optimizations are sometimes made in order 
to improve performance. As noted earlier, when code is written to for a DSP, coding 
optimizations are often required to meet performance. It's no different for a CPU target or for an 
FPGA.

As already seen in the previous section, 32- and 64-bit floating-point calculations can be 
performed on an FPGA with relative ease. However, floating-point operators require more 
FPGA hardware resources than those required for fixed-point data types. Vivado HLS provides 
a class library to model fixed-point numbers which in some cases can be used in place of 
floating-point types. Fixed-point types do not have the same dynamic range as float or double 
types but if the range of the application can be modeled with fixed-point types, they do provide 
much more optimal hardware.

The ap_fixed C++ class can be used to specify fixed-point numbers of any arbitrary bit-width: 
the number of integer bits, fractional bits, quantization and overflow modes are configurable by 
the user. A fixed-point data type is specified in the C++ code as:

ap_[u]fixed<W,I,Q,O,N> my_variable

Table 1 shows the type specifiers.

X-Ref Target - Figure 18

Figure 18: Best Performance Design in 64-Bit Floating Point
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To move from the existing 32-bit floating-point example to a fixed-point one, the data_type 
specified in the header file can be updated to a 25-bit type with 10 integer bits if we enable the 
C preprocessing symbol PID_FIXEDPOINT, previously shown in Figure 7, page 15.

If the synthesis is done with this new ap_fixed type, the result is a design which takes fewer 
clock cycles to complete and with much less resources, as illustrated in Figure 19, page 24. In 
particular:

• There are only 7 clock cycles of latency; therefore the output data rate is 16.6 MSPS.

• The estimated resources are 2 DSP48 units, 380 FFs, and 720 LUTs, which is almost 50% 
the 32-bit floating-point resources utilization.

Table  1:  Fixed-Point Types

Type Specifier Description

W Total Bit-width==7

I Number of integers bits (number of fractional bits is W-I)

Q Quantization mode:
AP_RND                  Rounding to plus infinity
AP_RND_ZERO      Rounding to zero 
AP_RND_MIN_INF  Rounding to minus infinity
AP_RND_INF           Rounding to infinity
AP_RND_CONV     Convergent rounding
AP_TRN                  Truncation to minus infinity
AP_TRN_ZERO      Truncation to zero (default)

O Overflow mode: 
AP_SAT                 Saturation
AP_SAT_ZERO     Saturation to zero
AP_SAT_SYM       Symmetrical saturation
AP_WRAP             Wrap around (default)
AP_WRAP_SM      Sign magnitude wrap around

N Selects the number of bits to use in overflow modes AP_WRAP and 
AP_WRAP_SM
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The optimization directives suitable for this fixed point version of the design are shown in 
Figure 20.

set_directive_allocation -limit 1 -type operation "PID_Controller" mul
set_directive_array_partition -type complete -dim 1 "PID_Controller" coeff
set_directive_array_partition -type complete -dim 1 "PID_Controller" din
set_directive_array_partition -type complete -dim 1 "PID_Controller" dout
set_directive_interface -mode ap_ctrl_hs "PID_Controller"
set_directive_interface -mode ap_none "PID_Controller" dout

X-Ref Target - Figure 20 Figure 20: Fixed-Point Optimization Directives

Whether or not this is a better design depends on whether the fixed-point types can satisfy the 
accuracy the application requires. With the input stimuli applied in the current testbench, the 
effective accuracy is very close to the 32-bit floating point one, but it would be safer to do a 
more exhaustive numerical analysis.

X-Ref Target - Figure 19

Figure 19: 25-bit Fixed-Point Results
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Analysis with 
System 
Generator for 
DSP

System Generator is a DSP design tool from Xilinx that enables the use of the MathWorks 
model-based Simulink design environment for FPGA design. Similar to Vivado HLS, previous 
experience with Xilinx FPGAs or RTL design methodologies are not required when using 
System Generator. Designs are captured in the DSP friendly Simulink modeling environment 
using a Xilinx specific block set. All of the downstream FPGA implementation steps, including 
synthesis and place and route, are automatically performed to generate an FPGA programming 
file. More details on this design tool are provided in UG640, System Generator for DSP User 
Guide [Ref 3].

Using System Generator for DSP (Sysgen) is so easy and intuitive that you can design and 
validate the PID controller in just few hours, with the 32-bit floating-point basic blocks. The 
Derivative and Integrator stages of Equation 8 and Equation 12, respectively, are mapped 
straightforwardly in Simulink and Sysgen, as illustrated in Figure 21 and Figure 22, page 26. 
The PID controller top level is shown in Figure 23, page 26.

X-Ref Target - Figure 21

Figure 21: Simulink (top) and Sysgen (bottom) Derivation Stage of the PID Controller
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X-Ref Target - Figure 22

Figure 22: Simulink (top) and Sysgen (bottom) Integrator Stage of the PID Controller

X-Ref Target - Figure 23

Figure 23: Simulink (top) and Sysgen (bottom) Top Level of the PID Controller
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The numerical accuracy of the Sysgen model is excellent: the Integrator and Derivation results 
match perfectly the ones of the Simulink ideal subsystems, while the whole PID result is 
accurate within a very small error in the order of 6e-5.

Note that in floating point arithmetic, numbers expected to be equal (for example when 
calculating the same result through different correct methods) often differ slightly, but as long as 
this difference remains small, it can usually be ignored, as in our effective case. For more 
details about floating point arithmetic features and caveats, refer to “Floating-Point Design with 
Xilinx's Vivado HLS," [Ref 4].

From an FPGA performance point of view, the PID controller you implemented in Sysgen is not 
optimized at all in terms of area occupation, because we have applied all parallel resources. In 
fact, after place and route, the resources utilization is: 263 FFs, 2231 LUTs, 22 DSP48 slices, 
and 15 MSPS data rate (equal to the FPGA clock frequency of 15 MHz), as reported in the 
Timing Analysis report (see Figure 24). However, sharing in time-division the same 
multiplication block or the same addition/subtraction block to reduce both LUT and DSP48 units 
in the design would have required much longer development time (estimated in 2-4 days), 
because of no automation (that is, the designer must do such optimization by hand). On the 
other hand, as explained in the previous section, Vivado HLS dramatically shortens the 
development time and makes architectural exploration very easy and effective. Furthermore, 
we have implemented such a PID controller in Sysgen only to validate the design that was done 
with Vivado HLS and to show a different alternative design.

You can export the RTL design created by Vivado HLS to System Generator for DSP. From the 
Vivado HLS interface menu, click the Export RTL toolbar button, select System Generator for 
DSP, and export the IP (see Figure 25). For information about integrating HLS subsystems into 
Sysgen designs, refer to UG871, Vivado Design Suite Tutorial: High-Level Synthesis [Ref 5].

X-Ref Target - Figure 24

Figure 24: Timing Analysis and ISE Report for the Sysgen PID Controller Standalone
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Figure 26 illustrates the top-level model containing the 3 PID subsystems at open-loop: from 
the top to the bottom there are the Simulink, Sysgen, and HLS PID subsystems; their output 
signals are respectively named ref_u, sg_u, and hls_u.  Similarly, the partial results of the 
derivative and integrator stages are named ref_yd, sg_yd, hls_yd, and ref_yi, sg_yi, 
and hls_yi. The Sysgen cycle accurate simulation generates signals that can be viewed 
either as waveforms (see Figure 27), or as vectors to be analyzed with a MATLAB script (see 
Figure 28, page 29). 

X-Ref Target - Figure 25

Figure 25: Export the RTL as IP

X-Ref Target - Figure 26

Figure 26: Open-Loop PID Subsystems in Simulink (top), Sysgen (centre) and HLS 
(bottom)

http://www.xilinx.com


Analysis with System Generator for DSP

XAPP1163 (v1.0) January 23, 2013 www.xilinx.com  29

X-Ref Target - Figure 27

Figure 27: Sysgen Partial Simulation Results Analyzed with WaveScope Tool

X-Ref Target - Figure 28

Figure 28: MATLAB Script Check-Up on Sysgen Simulation Results Accuracy
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Source Files 
and Project 
Directories

The Xilinx design tools here adopted are Vivado HLS release 2012.3 and System Generator for 
DSP and ISE releases 14.3.

The source code of this Application Note is organized as illustrated in Figure 29, page 30. 
There are three main folders:

./xapp_pid/M

./xapp_pid/hls

./xapp_pid/sysgen

The folder ./xapp_pid/M contains the MATLAB script xapp_pid_script.m to generate the 
reference results for the C program and to design the PID controller parameters. The reference 
results are text files placed in ./xapp_pid/hls/test_data. The script validate_pid.m 
can be applied to further check that the MATLAB and C generated results are matching within 
a certain threshold.

The folder ./xapp_pid/hls contains the C code and Tcl script for Vivado HLS. There are 
three included folders containing the optimizations and synthesis results: doublep (64-bit 
floating point design), float (32-bit floating point design), and fixp (25-bit fixed point design).

The folder ./xapp_pid/sysgen contains the Sysgen schemes:

• simulink_ClosedLoopPID.mdl, a purely ideal Simulink model of the PID and the 
plant subsystems in a closed loop, adopted in the next Sysgen schemes as the reference 
PID subsystem.

• sg_PID_float.mdl to test that PID (Simulink, Sysgen, and HLS) designs at open loop, 
with random input signals. It has two function callbacks: at the opening of the model in 
Simulink, sg_PID_float_PreLoadFcn.m is launched to initialize the MATLAB 
workspace, while sg_PID_float_StopFcn.m is called at the end of the Simulink 
simulation, to check the numerical accuracy and validity of the results.

• sg_ClosedLoop_PID_float, to test PID HLS design at closed-loop with the plant 
subsystem in Simulink. It has two function callbacks: 
sg_ClosedLoop_PID_float_PreLoadFcn.m and 
sg_ClosedLoop_PID_float_StopFcn.m.

The procedure to build the HLS project is as follows:

1. You launch the script xapp_pid_script.m from the MATLAB command shell to create 
the input stimuli and the reference results in ./xapp_pid/M.

2. In ./xapp_pid/hls/floatp, you execute the following Tcl command: vivado_hls -f 
run_floatp_script.tcl from the Vivado HLS Command prompt. The Vivado HLS 
design tool opens; you can see the results of the various solutions in the 32-bit floating 
point project. The results of the Design Under Test are validated by the C++ testbench but 
can also be verified by running the MATLAB script ./xapp_pid/M/validate_pid.m.

X-Ref Target - Figure 29

Figure 29: Source Code Project Folders
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3. In ./xapp_pid/hls/double, you execute the following Tcl command: vivado_hls -f 
run_double_script.tcl from the Vivado HLS command prompt. The Vivado HLS 
design tool opens; and you can see the results of the various solutions in the 64-bit floating 
point project.

4. In ./xapp_pid/hls/fixp, you execute the following Tcl command: vivado_hls -f 
run_pid_fixp_script.tcl from the Vivado HLS command prompt. The Vivado HLS 
design tool opens; you can see the results of the various solutions in the 25-bit fixed point 
project.

5. The following settings are needed to run the simulations in Simulink: Sample Time = II for 
all the source blocks (either the two From Workspace blocks, the various Step blocks, or 
the Xilinx Gateway In blocks). II is the Initialization interval value declared by the Vivado 
HLS synthesis report of Figure 17, page 21, incremented by 1, that is 38; in fact, the input 
signal has a data rate that is 38 times slower than the FPGA clock period. The From 
WorkSpace blocks also need the following settings: Interpolate data = off and Form 
output after final data value by Holding Final Value. Figure 30 illustrates those settings.

6. Note that all of the above mentioned Tcl scripts contain the command 
config_interface -clock_enable to generate clock enables needed by Sysgen. 
This is a mandatory step and must be done before exporting the VIVADO HLS design to 
System Generator for DSP.

Conclusion Floating-point designs written in C or C++ can now be quickly and easily implemented on 
FPGA devices, taking advantage of their massively parallel performance, low power, and low 
cost. As with other C/C++ flows, a full and complete tool chain allows performance trade-offs to 
be made throughout the flow and the results to be comprehensively analyzed. As a driver 
application, we took a PID controller that we optimized for either 32- or 64-bit floating point 
accuracy (we have even implemented it in 25-bit fixed point) using a Vivado HLS design. The 
design effort was really negligible. We have also adopted System Generator for DSP to validate 
the design in a MATLAB/Simulink testbench, due to the highly sophisticated synergy and 
interoperability between these two tools.

X-Ref Target - Figure 30

Figure 30: Simulink Simulation Settings
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