
XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 1

Summary
This application note provides anti-tamper (AT) guidance and practical examples to help
protect the intellectual property (IP) and sensitive data that might exist within a system enabled
by UltraScale™ and UltraScale+™ FPGAs. This protection (in the form of tamper resistance)
needs to be effective before, during, and after the FPGA has been configured by a bitstream.
Sensitive data can include the configuration data that sets up the functionality of the FPGA
logic, critical data and/or parameters that might be included in the bitstream (e.g., initial
block RAM contents and initial state of flip-flops). It also includes external data that is
dynamically brought in and out of the FPGA during post-configuration normal operation.

This document summarizes the silicon AT features available in UltraScale and
UltraScale+ FPGAs, explains why these features exist, and provides use cases and
implementation details for each feature. This document also provides guidance on various
other methods that can be used to provide additional tamper resistance.

By following this application note, you can be assured that you are following the best AT
practices available with our UltraScale and UltraScale+ FPGAs. These best practices broadly
apply whether the goal is to simply prevent cloning/overbuilding of a commercial design,
prevent reverse engineering of a military system’s valuable critical technology (CT), or anything
in-between.

This application note assumes that you are somewhat knowledgeable and proficient in Xilinx
FPGA architecture [Ref 1] and design, as well as the Vivado® tools flow methodology [Ref 2]
and configuration [Ref 3]. Solving Today’s Design Security Concerns [Ref 4] and Developing
Tamper Resistant Designs with Xilinx Virtex-6 and 7 Series FPGAs [Ref 5] provide a good
background on the various security threats and solutions for FPGAs.

Introduction
Xilinx has been at the forefront of providing FPGA AT solutions to their customers for many
generations. UltraScale and UltraScale+ FPGAs continue this trend by including asymmetric
authentication, side channel attack protection, and other silicon AT features. Additionally, in
order to provide a number of tamper protections post configuration, Xilinx offers an IP core
known as Security Monitor [Ref 6]. Due to certain restrictions, Security Monitor’s availability is
limited. Contact your local Xilinx representative for details.

Keeping one step ahead of the adversary is a continuous process that involves understanding
the existing vulnerabilities and attacks and then developing new mitigation techniques

Application Note: UltraScale and UltraScale+ FPGAs

XAPP1098 (v1.4) March 25, 2021

Developing Tamper-Resistant Designs
with UltraScale and UltraScale+ FPGAs
Author: Ed Peterson

http://www.xilinx.com

Introduction

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 2

(countermeasures) to combat those attacks. Xilinx has a multi-generational commitment to
secure FPGA technology in a cost-sensitive manner for the AT-conscious communities which
include both commercial and defense markets.

By taking advantage of various Xilinx FPGA AT features, you can choose how much AT to include
with the FPGA design based on program and customer requirements. AT can be in the form of
enabling individual silicon AT features or a combination of these AT features (perhaps tied
together by the developer in the FPGA design and following best practice guidance).

The decision as to how much AT to include primarily depends on three factors:

• Value: The perceived value of the intellectual property and the damage it might cause
either financially or to national security if it were to become compromised. Certain AT
features can be expensive to implement and that cost must be weighed against the value of
the technology or data being protected.

• Adversary: Access to the system and the sophistication level and resources available to
carry out the attack. For example, can access to the system be prevented by “guns, gates,
and guards” or can it be easily obtained in the open market? Is the adversary a
garage-based hacker or a nation-state? The adversary’s capabilities could be at these
extremes or anywhere in-between.

• Design stage: The point in the system development cycle where the decision is made to
enable AT for the FPGA design. Xilinx highly recommends that the decision to utilize FPGA
AT features is made very early on (i.e., after CT is defined in a system) to help address both
schedule and cost concerns. It is always more costly, more time consuming, and often less
effective to insert AT features later on in the development process.

Another factor that needs to be considered is how much of the FPGA’s logic resources are
consumed by enabling certain active AT features. The overall resource penalty is usually rather
small. However, it does depend on how these features are implemented and the size of the
FPGA (i.e., the larger FPGAs experience less of an impact).

Xilinx classifies the silicon AT features as either passive or active security. In general, passive
security features are those that are either part of the tool flow or built into the FPGA and do not
require you to do anything extra in your FPGA logic design. Passive security features are also
temporal in nature—they come into effect at different times during the normal life cycle of the
FPGA:

• Pre-configuration (e.g., public key authentication of the configuration bitstream)
• During-configuration (e.g., resistance to side-channel attacks via differential power analysis

(DPA))
• Post-configuration (e.g., user data protection via disabling of readback)

In contrast, active security features are required to be included in the FPGA logic design. These
features only come into effect after the FPGA has been configured via the user bitstream and
the design becomes active. Examples are asserting KEYCLEARB to zeroize the battery-backed
advanced encryption standard (AES) key or handle a PROGRAM_B intercept.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=2

Introduction

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 3

At a bare minimum, you should always plan on including the appropriate passive security
features into your design (e.g., bitstream encryption and authentication). These features do not
affect the function of the design. However, they might create logistical challenges (e.g., key
management), system challenges (e.g., a battery is needed if using battery-backed RAM
(BBRAM) for key storage), and increase the configuration time (e.g., public key authentication
might increase configuration time). Otherwise, these features are freely available in terms of
impact to the design and can provide a fair amount of tamper protection. For an already fielded
system or a design late in the development stage, these AT features are great candidates for
enabling because they don’t affect the actual FPGA logic design.

Additionally, the AT features and guidance presented in this application note fall into three
main AT categories:

• Prevention (e.g., JTAG port blocking)
• Detection (e.g., voltage and temperature monitoring)
• Response (e.g., BBRAM key erasure penalty)

Table 1 summarizes and classifies the built-in silicon AT features of the UltraScale and
UltraScale+ FPGAs.

Table 1: AT Features Classification and Summary
UltraScale and UltraScale+ FPGAs Silicon AT Features Type Category Life Cycle(1)

Bitstream confidentiality and authentication (symmetric)(2) Passive Prevention Pre and During
Volatile 256-bit BBRAM key storage Passive Prevention Pre
Non-volatile 256-bit eFUSE key storage(3) Passive Prevention Pre
Write-only key load w/ integrity check (BBRAM and eFUSE)(2) Passive Prevention Pre
Obfuscated key loading and storage(2) Passive Prevention Pre
Bitstream authentication (asymmetric - RSA_AUTH eFUSE)(2)(3) Passive Prevention Pre
Non-volatile 384-bit eFUSE public key hash storage(2)(3) Passive Prevention Pre
DPA protections(2) Passive Prevention During
Hardened readback disabling circuitry Passive Prevention Post
Internal test scan permanent disable (SCAN_DIS eFUSE)(3) Passive Prevention Pre
JTAG port permanent disable (FUSE_SHAD_SEC[3] eFUSE)(2)(3) Passive or

Active
Prevention or

Response
Pre or Post

JTAG port temporary disable Passive or
Active

Prevention Post

JTAG port monitor Active Detection Post
Configuration memory integrity checking Active Detection Post
Unique identifiers (device DNA and user eFUSE) Active Detection Post
On-chip temperature and voltage monitors/alarms Active Detection and

Response
Post

Uninterruptible internal clock source Active Detection Post
External PROGRAM_B intercept Active Prevention

and Detection
Post

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=3

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 4

The following sections explore the above features in depth, providing detailed explanations on
what they are, why they exist, and give specific examples on how to properly use them (either
by themselves, in conjunction with other built-in features and user logic, or both). Additionally,
specific guidance is given on certain methods and techniques that can be employed to increase
the tamper resistance of the FPGA design and overall system.

Any AT features enabled at the FPGA level should always be part of an overall system-level AT
solution. The features and techniques outlined in this document provide for a very good AT
“umbrella” for the FPGA itself. However, AT is most effective when it is developed with a
multi-layer approach with the entire system always in mind.

Passive AT Silicon Features
Bitstream Confidentiality and Authentication (Symmetric)
Storing an encrypted bitstream in external flash (or other means) and then decrypting it during
FPGA configuration (via the FPGA’s internal decryption engine) provides for a very high level of
confidentiality. This ensures that information contained in the bitstream is only accessible to
those who share the same (symmetric) secret key. Bitstream encryption and decryption
provides confidentiality while the system is at rest and during configuration. It protects the
FPGA design contents, including block RAM and flip-flop initialization data. Xilinx highly
recommends that the externally stored bitstream always be in encrypted form.

Configuration memory clearing Active Response Post
Key agility (BBRAM only)(2) Active Response Post
BBRAM key zeroize (erase + verify)(2) Active Response Post
Non-volatile (eFUSE) tamper event logging(2) Active Response Post
Bitstream decryptor permanent (CRYPT_DISABLE eFUSE)
disable(2)(3)

Active Prevention or
Response

Post

Global 3-state (GTS) enable Active Response Post
Global set-reset (GSR) enable Active Response Post

Notes:
1. Describes when in the FPGA’s life cycle this feature is effective (pre-configuration, during configuration, or

post-configuration).
2. This feature is new or improved in UltraScale and UltraScale+ FPGAs.
3. Asserting some of these “permanent” tamper penalties (eFUSE-based) is irreversible and might affect whether or not the

device can be returned to Xilinx. Refer to the eFUSE Security Register (FUSE_SEC) table in the UltraScale Architecture
Configuration User Guide (UG570) [Ref 3] for details.

Table 1: AT Features Classification and Summary (Cont’d)

UltraScale and UltraScale+ FPGAs Silicon AT Features Type Category Life Cycle(1)

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=4

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 5

Note: UltraScale and UltraScale+ FPGAs use the National Institute of Standards and Technology
(NIST)-approved AES in Galois/Counter Mode (GCM) with a 256-bit key. The NIST CAVP certification for
Xilinx is available at https://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html as validation
number 2800.

To take advantage of this security feature, the configuration bitstream must first be encrypted
by the Vivado software using the write_bitstream Tcl command and the appropriate properties
that must be defined in the XDC file [Ref 2] [Ref 3] [Ref 7]. The Vivado software uses a key
supplied by the user to perform the encryption. If an AES key is not supplied, the Vivado
software optionally generates one automatically. However, keys generated by the Vivado
software are pseudorandom. Truly random keys are more secure. The key is then loaded into the
FPGA via the JTAG port using the Vivado hardware manager.

IMPORTANT: If the UltraScale and UltraScale+ FPGA devices are packaged using stacked silicon
interconnect technology (SSIT), then do not use the same Key/Initialization Vector (IV) pair across all super
logic regions (SLRs). This can weaken the overall security. For further details, you may refer to this link,
Answer Record (AR) 71558.

When bitstream decryption is enabled on UltraScale and UltraScale+ FPGAs (and asymmetric
RSA-2048 authentication is not enabled via eFUSE), symmetric authentication is automatically
enabled because AES-GCM is an authenticated encryption and decryption algorithm. AES-GCM
combines the counter mode for confidentiality with an authentication mechanism that is based
on a universal hash (authentication tag) function. Therefore, AES-GCM provides not only
confidentiality but integrity and authentication at the same time. This cryptographically strong
authentication scheme ensures that any attempt at modifying the bitstream (even just a single
bit) drastically alters the bitstream’s signature, thus preventing the device from starting up.
Basically, symmetric authentication guarantees the source is genuine—only the person that was
authorized to configure the device can succeed in doing so.

If the authentication check passes, the device then begins normal operation (i.e., the startup
commands take place). Evidence of the authentication step failing is the absence of the DONE
output signal asserting High after the bitstream is loaded, the INIT_B signal asserting Low, and
the HMAC_ERROR bit in the STATUS configuration register asserting High. An authentication
failure might indicate that the bitstream has been tampered with. It could also indicate that the
channel used for bitstream loading is noisy and bit corruption(s) are taking place during the
configuration process.

Additionally, AES-GCM was designed to facilitate high-throughput hardware implementations.
The AES-GCM decryptor in UltraScale and UltraScale+ FPGAs can accept encrypted bitstreams
in 32-bit wide format (previous families were limited to 8-bit wide format). This allows for near
parity in the device configuration time between unencrypted and encrypted bitstreams.

Volatile and Non-Volatile Key Storage
The 256-bit symmetric AES-GCM key can be loaded into either volatile BBRAM or non-volatile
eFUSE one-time programmable (OTP) storage locations within the FPGA. To decide which
storage location to use for the key, an understanding of the advantages and disadvantages of
BBRAM (Table 2) and eFUSE (Table 3) storage is necessary.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/support/answers/71558.html
https://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=5

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 6

Additional details concerning bitstream encryption and key storage can be found in the
UltraScale Architecture Configuration User Guide (UG570) [Ref 3], Vivado Design Suite User
Guide: Programming and Debugging (UG908) [Ref 7], Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 9], and Using Encryption to Secure an UltraScale FPGA Bitstream
(XAPP1267) [Ref 10].

Write-only Key Load with Integrity Check
Both the BBRAM and eFUSE 256-bit symmetric keys are loaded via the external JTAG using the
Vivado hardware manager (see Key Agility (Response) on how the internal MASTER_JTAG port
can be used to update the BBRAM key). For UltraScale and UltraScale+ FPGAs, this key loading
path is write-only to the device. There is no physical datapath to read back either key. (In
previous families the key was protected by protocol during the loading process where upon
entering “key access mode” the existing key and configuration memory were immediately
cleared before a new key could be written and then read back to check integrity.) When a key is

Table 2: BBRAM Storage Location: Advantages and Disadvantages
Advantages Disadvantages

• Volatile and reprogrammable.
• Passive and active key clearing (i.e.,

the evidence can be removed).
• Tamper resistant.(1)

• Requires an external battery.
• Many battery vendors do not specify

operation at high temperature and/or
long lifetimes (although some vendors
are now starting to offer betavoltaic
type batteries to help address these
issues).

Notes:
1. There is no physical path to read the key out of BBRAM (write-only access).

Table 3: eFUSE Storage Location: Advantages and Disadvantages
Advantages Disadvantages

• No external battery required.
• Makes spoofing difficult (would

require the device on the board to be
replaced).
° Only a bitstream encrypted with the

eFUSE key can configure the FPGA.
All others are rejected if the
cfg_aes_only(1) eFUSE bit is also
blown.

• Permanent; the key cannot be cleared
or updated(2).

• Less secure than BBRAM solution (i.e.,
the device level evidence remains).

Notes:
When using the cfg_aes_only option (located in the eFUSE control register FUSE_SEC) there are
two important points to consider:
1. If using the indirect flash programming method [Ref 8] for the bitstream, ensure that this

option (cfg_aes_only) is enabled after the on-board flash has been loaded with the
encrypted bitstream. This is because the indirect programming core bitstream from Xilinx is
unencrypted. Otherwise, the FPGA attempts to decrypt the indirect programming bitstream
using the eFUSE key and fails configuration (and thus the update of the external flash fails
as well). This also has implications for subsequent field updates of flash-stored firmware.

2. The permanent AES-GCM decryptor disable feature (via eFUSE) can be used in lieu of
erasing the eFUSE-based key which prevents a DPA attack but the eFUSE key still remains in
the device and is subject to a more sophisticated physical attack.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=6

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 7

written to the device via JTAG, a key integrity check is started by writing the expected CRC32
value via JTAG to the device. An actual CRC32 integrity check is calculated on the stored key by
the device (internally) and compared to the expected CRC32 that was just received via the JTAG
port. A pass/fail type of result is then written out by the device to the JTAG port instead of the
actual key data to signify integrity status. Removing the physical readback path for the key
increases the security of the stored key.

Note: For BBRAM-based keys, prior to writing the key, the existing key in BBRAM is zeroized (erased and
verified).

Obfuscated Key Loading and Storage
Optionally, key data written and stored into an UltraScale or UltraScale+ FPGA’s eFUSE array or
BBRAM (via JTAG) can be obfuscated. The key data is encrypted using a fixed family key that is
identical for all UltraScale FPGAs and all UltraScale+ FPGAs, and is known only to Xilinx. (The
UltraScale FPGA family key is different from the UltraScale+ FPGA family key). This provides for
an increased level of security in commercial production situations (e.g., secret red key
protection at a contract manufacturer). The internally stored obfuscated key is decrypted at the
beginning of an encrypted bitstream load and then used to decrypt the bitstream that follows
it. This feature is enabled by a control bit in the FUSE_SEC control register (eFUSE-based key) or
by control bits written into the BBRAM (BBRAM-based key). Figure 1 provides a high-level
summary of this operation.

Note: Xilinx does not provide the family key as part of the Vivado tools. Customers must send a request
for the family key to secure.solutions@xilinx.com. It will then be distributed to qualified customers
through the Product Licensing site on www.xilinx.com.
Note: The use of obfuscated key storage is not compatible with the configuration counting DPA
countermeasure for BBRAM key storage (see DPA Protections).
X-Ref Target - Figure 1

Figure 1: Summary of Obfuscated Key Loading and Storage

Secret “Red”
Key

Family Key

AES-GCM
Obfuscated

 Key

AES-GCM
Family Key

AES-GCM

Secret “Red”
Key

User
Design

Secret “Red” Key
During

Configuration
ONLY

Flash
Encrypted
Bitstream

Encrypted
Bitstream

FPGA

Unencrypted
Bitstream

Obfuscated Key
Load

X1098_01_082018

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/
mailto:secure.solutions@xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=7

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 8

Bitstream Authentication (Asymmetric)
UltraScale and UltraScale+ FPGAs have the capability of loading the entire encrypted bitstream
into the device and then authenticating it before sending it to the on-chip decryption engine
(i.e., “authenticate-then-decrypt”). If the bitstream has been modified in any way (including just
a single bit change), the device’s asymmetric authentication function detects these change(s)
and not only disables the decryption engine (if enabled for an encrypted bitstream) but also
prevents the startup of the device. In short, if this feature is enabled, only an authorized
bitstream can configure the UltraScale or UltraScale+ FPGA. When asymmetric authentication is
enabled, the symmetric authentication functions of the AES-GCM algorithm are not performed
(i.e., the periodic and complete symmetric authentication checks are not performed).

Because this method uses the RSA-2048 asymmetric digital signature (authentication)
algorithm, it does not require the device to contain a “secret” in order to accomplish this
authentication task. Instead, the asymmetric authentication function contains user-defined
public key information. Due to limited space, the feature uses a 384-bit SHA-3 hash of the
2048-bit public key and is programmed into the eFUSE bits of the UltraScale or
UltraScale+ FPGA. It is up to you to define the private and public key pairs for this operation.
There are a number of open source and commercial products that can be used to create these
key pairs (such as OpenSSL and SafeNet). Because this authentication scheme does not require
a secret to operate, adversarial attacks such as side channel analysis do not reveal any
information that is useful to an attacker.

There are several reasons to use the RSA asymmetric authentication:

1. Authenticate the entire bitstream before decrypting it. This method is part of a DPA attack
countermeasure described in DPA Protections.

2. Prevent unauthorized users from ever running their own (potentially malicious) designs on
the UltraScale or UltraScale+ FPGA. When an authorized user programs the public key hash
into the eFUSE bits and the RSA_AUTH eFUSE has been programmed (forcing RSA
authentication), only authorized bitstreams can be loaded.

3. Authentication of unencrypted bitstreams. An FPGA design might not contain CT but still
have requirements that it be authentic. Some example use cases are:
a. The design contains a publicly known function (such as the AES encryption algorithm).

You don’t need the design to be confidential but do need to ensure it hasn’t been
modified to output red keys or data on external pins, for example.

b. The FPGA design has different levels of functionality (e.g., basic to advanced features).
For instance, only premium-paying end customers have all the features—all others can
only access the basic features. The unencrypted bitstream cannot be modified by an
adversary to try and “turn on” any of the advanced features without being detected.

Figure 2 illustrates (at a high-level) how the bitstream is constructed using RSA/SHA-3(1) and
how the entire bitstream is authenticated internally on-chip. The top portion of the figure is
performed by the software tools to create the RSA authenticated bitstream and the bottom

1. RSA-2048 and SHA-3 do not currently follow a NIST standard. Contact Xilinx for details.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=8

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 9

portion of the figure is done inside the UltraScale or UltraScale+ FPGA to authenticate the
bitstream.

Notes related to Figure 2:

1. Bitstream can be encrypted (ciphertext) or unencrypted (plaintext).
2. Private/public key pair generated by the user.
3. PKCS #1 v1.5 padding scheme.

Figure 3 provides details on the actual format of an encrypted and RSA authenticated bitstream
and further describes which parts are plaintext, authenticated plaintext, and authenticated
ciphertext.

X-Ref Target - Figure 2

Figure 2: Constructing the Bitstream with RSA Signature

Bitstream1

Generate RSA-2048
Digital Signature

(with SHA-3)

Public Key2 + Signature +

SHA-3

Private Key2Public Key2

Softw
are Tools

U
ltraScale D

evice

Yes Yes

No

Okay to
Decrypt/
Startup

RSA
Authenticated

Bitstream

ERROR

No

2048 2048

Verify RSA-2048
Digital Signature

20482048

n

n

2048

n

384

eFUSEs =
?384

SHA-3
(+ padding3)

2048

=
?

2048

Bitstream1

SHA-3

X1098_02_082018

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=9

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 10

Because the entire bitstream is loaded into the device and then authenticated prior to use, there
is a configuration time penalty when using the RSA asymmetric authentication scheme (with an
encrypted bitstream). However, depending on the configuration port used, the increase in
overall configuration time might not be very significant. This is due to the fact that after the
entire bitstream has been loaded and authenticated, the decryption process can take advantage
of a full 32-bit wide data bus. Consult the UltraScale Architecture Configuration User Guide
(UG570) [Ref 3] for precise configuration time details.

Due to certain silicon design constraints, there are some limitations when using the RSA
asymmetric authentication scheme on UltraScale and UltraScale+ FPGAs:

• RSA authenticated bitstreams cannot be compressed. For details on compression, see the
UltraScale Architecture Configuration User Guide (UG570).

• Partial reconfiguration (PR) bitstreams cannot be RSA authenticated with the built-in silicon
feature. (You can put your own authentication function in the FPGA logic.) For details on
PR, see Partial Reconfiguration in the Vivado Design Suite

X-Ref Target - Figure 3

Figure 3: Bitstream Format Using RSA

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=10

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 11

• Tandem bitstreams cannot be RSA authenticated. Tandem configuration is the Xilinx
solution for fast configuration of PCIe® designs to meet enumeration needs within open
PCIe systems.

• For UltraScale FPGAs only, there are limitations on bitstream configuration widths when
RSA is enabled. Some of the narrow configuration widths are not supported. See UltraScale
FPGA RSA Authentication and Supporting Configuration Modes (XCN15038) [Ref 11] for
additional details.

DPA Protections
Instead of trying to directly attack a security function (e.g., breaking FPGA bitstream AES-256
decryption using a non-feasible brute-force key attack), an attacker will often look for an easier
solution such as side-channel analysis. The side channel is an unintentional information leakage
path that might exist in an electronic device. If observed for a long enough period, it might be
possible to extract secret information from it (such as a cryptographic function’s red key data).

Differential power analysis (DPA) is a side-channel technique that observes and records samples
of the power supply fluctuations due to digital switching (by monitoring voltage across a low
resistance in series with the power line(s) or nearby electromagnetic probing) of a functioning
electronic device. Signal processing and statistical methods are then applied to the recorded
data to extract red key data. The number of data samples required has been consistently
reduced over time as the capabilities of the attackers have improved.

Xilinx provides DPA resistance by limiting the amount of side channel data that an adversary
can collect on any one key. This protocol-based data limiting technique is used on the
UltraScale and UltraScale+ FPGAs to mitigate against DPA attacks of the on-chip bitstream
decryptor. This technique offers the most long-term flexibility because the level of protection is
programmable and can be increased as the capabilities of the attacker improve.

There are two types of data that must be limited in this regard: invalid/random bitstream data
and valid bitstream data. To be effective, there must be countermeasures for both
invalid/random and valid bitstream data attacks.

Invalid/Random Bitstream Data

Traditionally, a DPA attacker would simply feed an unlimited amount of random data into the
decryptor’s ciphertext input port and then collect the side-channel information for analysis.
There are two methods by which UltraScale and UltraScale+ FPGAs can detect this random (or
invalid) bitstream. To accomplish this, the user selects only one of the following two methods:

1. Configuration counting quickly detects an invalid bitstream in real time during the
decryption process. UltraScale and UltraScale+ FPGAs add a 32-bit periodic symmetric
authentication check every eight words. Decryption is halted immediately if the periodic
authentication fails and the UltraScale or UltraScale+ FPGA marks it as an invalid
configuration attempt. This method should only be used with BBRAM-based AES-GCM keys
and incurs a tamper penalty if enough invalid configuration attempts are made (BBRAM key
zeroize). The number of allowable configuration attempts is programmable by the user.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=11

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 12

Note: The use of obfuscated key storage is not compatible with the configuration counting DPA
countermeasure for BBRAM key storage.

2. The encrypted bitstream is authenticated-then-decrypted using asymmetric authentication
(RSA) before being fed to the decryptor. Side-channel attacks on the signature verification
process are useless because there are no secrets to discover (the public key and public key
hash can be known by anyone). This method can be used for eFUSE or BBRAM-based
AES-GCM keys and does not incur a tamper penalty. When using this method, symmetric
authentication checks are not performed.

For the configuration counting solution (solution 1), there is an associated down counter
located in the BBRAM that tracks configuration attempts (the maximum initial count value is
255 and is set by the user at the same time the key is loaded). The counter can be configured
to count either invalid configuration attempts or all configuration attempts (whether valid or
invalid). The counter is decremented prior to every configuration attempt. If configured to
count only invalid configurations, the counter increments after successful configurations. If
configured to count all configurations, the counter remains decremented at the end of every
configuration.

The BBRAM key is zeroized (tamper penalty) after the counter reaches its terminal count of zero.
A smaller initial count value corresponds to a higher level of protection because it reduces the
amount of side-channel data that can be collected. Additionally, security checks are also
performed to verify counter operation and BBRAM integrity.

For solution 1, there is no way to distinguish between an intentionally random (invalid)
bitstream and invalid data that is due to signal integrity issues. This eventually causes the
BBRAM key to be zeroized if the FPGA is configured enough times. If using this solution, it is
critical that the datapath from the memory device to the FPGA’s configuration port be robustly
designed to guarantee there are no signal integrity problems.

For the random data solution (solution 2), Figure 4 illustrates at a high-level how
authenticate-before-decrypt prevents the decryption of random data.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=12

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 13

The temporary buffer shown in Figure 4 is actually the configuration memory normally used to
hold the data that defines the user logic. However, in this case it is used to securely hold the
encrypted bitstream until after the RSA authentication step is completed. If authentication
passes, each frame of encrypted bitstream data is decrypted and then placed back into the
same location in configuration memory (this is the read-decrypt-write (RDW) phase). As
mentioned in Bitstream Authentication (Asymmetric), this RDW phase operates at the rate of
the specified CCLK frequency used for configuration (either the internally specified CCLK
frequency or the CCLK frequency that is derived from the EMCCLK).

Configuration Counting Trade-off

Because there is a fixed amount of overhead associated with each of the individual encrypted
blocks, the bitstream size grows larger as the blocks are made increasingly smaller when using
the configuration counting random data attack solution. This creates a trade-off that must be
considered (configuration storage and time vs. security level). When using key rolling with
configuration counting, there is always at least an approximate 14% increase in bitstream size.
As the block size decreases (becomes more secure), the bitstream size increases and causes a
longer configuration time. Figure 5 illustrates how bitstream size grows (y-axis) as the as the
number of blocks per key are made smaller (x-axis).

X-Ref Target - Figure 4

Figure 4: Authenticate-then-Decrypt to Prevent Random Data Attack

Software FPGA

Secret Key
(symmetric)

1. Encrypt*
2. Sign**

Private Key
(asymmetric)

* AES-GCM
** RSA-2048

Signature
Authenticate

Public Key
(eFUSE)*

Secret Key
(eFUSE or BBRAM)

* Hash of Public Key

Bitstream
(Encrypted)

Side-channel attack
is useless here

Temporary
Buffer

AES-256
Decryptor

Bitstream
(Encrypted)

Bitstream
(U

nencrypted)

To Configuration Memory

Never decrypts
random (invalid)

data!

Bitstream
(Encrypted/

Signed)

O
kay to

D
ecrypt

EN

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=13

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 14

Authenticate-then-Decrypt Trade-off

Because the entire encrypted bitstream is loaded into the FPGA’s configuration memory prior to
decryption, the bitstream size is limited by the amount of memory in the device. In this case,
what must be considered is the percent impact to overall configuration time. This impact
depends on which external port is used for configuration. As mentioned previously, the internal
RDW phase is always performed at 32 bits wide and at the rate of the specified clock frequency
used for configuration. Therefore, if the external port is slower (i.e., the “bottleneck”), the
overall configuration time might not be affected that much. Conversely, if a fast external port is
used, there will be a larger overall percent increase in configuration time. Some examples are:

• JTAG and Master SPI (x1):
Overall configuration time increased by ~8%
Serial load phase followed by 32-bit parallel RDW phase

• Master SPI Quad (x4):
Overall configuration time increased by 32%
Quad SPI load phase followed by 32-bit parallel RDW phase

• Master SPI Dual Quad (x8):
Overall configuration time increased by 63%
Dual Quad SPI load phase followed by 32-bit parallel RDW phase

• Master (CCLK) asynchronous BPI (x16):
Configuration time increased by ~125%
16-bit parallel load phase followed by a 32-bit parallel RDW phase

X-Ref Target - Figure 5

Figure 5: Key Rolling With Configuration Counting Trade-off

X1098_05_082018AES Blocks per Key (128 Bits in Each Block)

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
1

1.522.53

Bitstream Size/Time Increase
 Fixed 14% Overhead

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=14

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 15

• Master (EMCCLK) synchronous BPI (x16):
Configuration time increased by ~125%
16-bit parallel load phase followed by a 32-bit parallel RDW phase

Note: All of the above SPI modes (with RSA enabled) are supported in UltraScale+ FPGAs. Consult
UltraScale FPGA RSA Authentication and Supporting Configuration Modes (XCN15038) [Ref 11] for which
SPI modes (with RSA enabled) are supported on UltraScale FPGAs.

IMPORTANT: Even though the examples towards the bottom of the list above have the greatest overall
percent increase in configuration time, they are still a much less overall configuration time than the
examples at the top of the list.

IMPORTANT: Because the entire encrypted bitstream must fit inside the FPGA’s configuration memory prior
to decryption, there is a limit as to how small the key rolling blocks are made. In the case of
authenticate-then-decrypt, the size of the key rolling block cannot be smaller than 246 AES decryption
blocks for UltraScale FPGAs and 186 AES decryption blocks for UltraScale+ FPGAs (each AES decryption
block is 128 bits).

Valid Bitstream Data

Bitstream lengths on modern FPGAs are now large enough that a DPA attack can be attempted
on a single valid bitstream load (the valid bitstream data appears random enough with many
input changes). To protect against this, bitstreams in UltraScale and UltraScale+ FPGAs can be
broken up into multiple smaller blocks, and each block is encrypted using its own unique
user-defined key. The size of each block is programmable and depends on your security
requirements. Smaller blocks are more secure because less side-channel data can be collected
that corresponds to any one key.

To avoid having to store all the decryption keys in on-chip memory (BBRAM or eFUSE),
UltraScale and UltraScale+ FPGAs use a key rolling technique where only the initial key (key 0)
is stored on-chip, while keys for each successive block are encrypted (wrapped) in the previous
block. Figure 6 illustrates this concept.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=15

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 16

Although it is possible to load a valid bitstream an unlimited number of times, additional
configurations do not reveal any new side channel information to the adversary. They can only
reduce the signal-to-noise ratio of the side channel data contained in the first configuration.
The key rolling method (along with either configuration counting or authenticate-then-decrypt)
prevent the adversary from having enough changing values applied into the ciphertext port.

IMPORTANT: You must use key rolling (valid data attack countermeasure) with either of the random data
attack countermeasures (configuration counting or authenticate-then-decrypt).

There are trade-offs to consider when combining the key rolling techniques with either
configuration counting or authenticate-then-decrypt.

DPA Solution Comparison

Only one of the two random data countermeasures (configuration counting or
authenticate-then-decrypt) can be enabled on an UltraScale or UltraScale+ FPGA at any one
time, so you should understand the trade-offs with each method. Key rolling must always be
used with either one of these methods to ensure that a complete set of DPA countermeasures
are being used. Table 4 summarizes the trade-offs.

X-Ref Target - Figure 6

Figure 6: Key Rolling

Software

FPGA

Original
 Bitstream

Block 0

Block 1

Block 2
.
.

.

.
Block n

Break
into n
Blocks

Block 0
+ Key 1

Block 1
+ Key 2

Block 2
+ Key 3

.

.

.

.
Block n

Encrypt
with n
Unique
Keys

Flash

= Plaintext

= Ciphertext

AES

Block 0

Key 1

BBRAM or
eFUSE

Key 0

X1098_06_082018

Block 1

Block 2
.
.

.

.
Block n

Key 2

Key 3

AES

AES

AES

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=16

Passive AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 17

Hardened Readback Disabling Circuitry
Whenever an encrypted or authenticated bitstream has been loaded into the FPGA, readback of
the internal configuration memory cannot be performed by any of the external interfaces
(including JTAG). All external readback is automatically blocked (disabled) by hardened
triple-redundant logic. The only readback access to the configuration memory after an
encrypted bitstream load is via the internal configuration access port (ICAPE3). Because the
bitstream is authenticated during the loading process, the ICAPE3 is considered a trusted
channel. The ICAPE3 is also considered a trusted channel because it can only be used via a
direct connection to the design within the FPGA logic. If the design does not instantiate the
ICAPE3, it cannot be used at all.

Note: A Vivado tools security option via a particular control bit in the bitstream provides a soft means of
enabling and disabling readback. This bit can be changed during configuration. Therefore, readback
disable is easy to defeat for devices that are not using an encrypted or authenticated bitstream.
Hardened readback disabling has no such weakness and always overrides the security option when using
an encrypted or authenticated bitstream. Xilinx recommends using both the hard and soft methods of
disabling readback.

Internal Test Scan Disable (Passive)
Internal for-test-only scan functionality (used only by Xilinx) is always disabled if RSA
authentication or AES decryption is enabled. Additionally, the SCAN_DIS eFUSE can be
programmed to permanently disable internal test scan capability.

JTAG Port Disable (Passive)
There are two passive ways of disabling the external JTAG port: one is temporary and the other
is permanent. The temporary method is to add the set_property
BITSTREAM.GENERAL.DISABLE_JTAG YES [current_design] option when using the
write_bitstream Tcl command in the Vivado tools. In this case, the external JTAG port becomes

Table 4: Comparison of Trade-offs in Configuration Counting and Authenticate-then-Decrypt

Metric Configuration
Counting Authenticate-then-Decrypt

Supported key storage BBRAM BBRAM and eFUSE
Minimum data exposed per key(1) 4 blocks 246 blocks (UltraScale FPGAs)/

186 blocks (UltraScale+ FPGAs)
Increases bitstream size Yes No
Increases configuration time Based on key life Based on configuration mode
Requires eFUSE programming No Yes(2)

Supports all bitstream features (compression, PR, tandem) Yes No
Field key maintenance Yes No

Notes:
1. Refer to www.dpacontest.org/home for the current state of the art in open-literature DPA attacks.
2. Required for the hash of the RSA public key.

Send Feedback

http://www.xilinx.com
www.dpacontest.org/home
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=17

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 18

disabled after the configuration bitstream is loaded. This method also disables the internal
MASTER_JTAG port.

Note: If the Vivado tool option is used and an attacker tries to turn off this option later on, this bit-flip
attack is detected by the authentication and the device does not start up. This modification is either
detected by the RSA (asymmetric) or AES-GCM (symmetric) algorithms, depending on which
authentication methods are enabled.

The Vivado hardware manager can program an eFUSE bit (namely, the FUSE_SHAD_SEC[3] bit in
the FUSE_SEC register) to permanently disable the external JTAG port. This method effectively
disables the external pins and turns them inside to the FPGA logic. This is effective as an
external JTAG disable if authentication is required or if the only time the JTAG disable is required
is while the user design is loaded. This would most likely be done as one of the last steps in a
production facility so that JTAG-based boundary scan could still be used on the circuit board for
testing prior to the programming of this eFUSE.

Active AT Silicon Features
As mentioned in Introduction, the active AT features require you to do something in your FPGA
logic design to take advantage of the particular features. For example, you must instantiate the
STARTUP primitive in your design to drive the KEYCLEARB input in response to some tamper
event. Table 5 summarizes each of these active features, their use cases, and how you can
implement the feature.

Table 5: Active Security Features Use Cases Summary
Feature Use Case User How-to

JTAG port permanent disable
(eFUSE)(1)

Permanently prevent unauthorized
JTAG access in response to a
tamper event.

Instantiate the MASTER_JTAG
primitive or internally program the
DISABLE_JTAG eFUSE (permanent
disable). This also requires forcing
authentication (symmetric with
aes_efuse_only or symmetric with
rsa_auth_all).

JTAG port temporary disable Prevent an unauthorized JTAG
access.

Instantiate the MASTER_JTAG
primitive or instantiate the
BSCANE2 primitive with the
DISABLE_JTAG attribute set to
TRUE, or use the
BITSTREAM.GENERAL.DISABLE_
JTAG option.

JTAG port monitor Detect unauthorized JTAG access. Instantiate the BSCANE2 primitive
and add a monitoring/response
function in the FPGA logic. If
MASTER_JTAG is used, you will be
detecting activity on the internal
JTAG port.

Configuration memory integrity
checking

In-the-background check of
configuration memory integrity
(non-interfering run-time check).

Instantiate the soft error
mitigation (SEM) IP core [Ref 12].

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=18

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 19

Unique identifiers (device DNA
and user eFUSE)

Prevent the design from operating
(or operate in a limited manner) if
unique identifier is not
recognized.

Develop FPGA logic to be able to
read and process the unique
identifier(s) and determine if they
are valid.

On-chip temperature and voltage
monitor/alarms

Ensure device is operating within
normal environmental limits.

Instantiate the system monitor
(SYSMONE1) primitive and
develop FPGA logic to check and
respond to environment status.

Uninterruptible internal clock
source

Ensure active AT functions cannot
be disabled by simply removing an
external clock source.

Instantiate STARTUPE3 primitive,
connect to the CFGMCLK output,
and use that as the clock source
for user-defined AT functions.
Bitstream encryption must also be
used to prevent the clock from
being turned off.

External PROGRAM_B intercept Hold off device configuration to
allow data elements that cannot be
reset to be cleared (e.g., elements
that are not automatically cleared
by house-cleaning prior to
configuration such as transceiver
FIFOs).

Instantiate STARTUPE3 primitive
and develop FPGA logic to
determine the proper conditions
for PROG_ACK assertion after
receiving a PROG_REQ.

Configuration memory clearing Erase the configuration memory in
response to a tamper event.

Instantiate ICAPE3 primitive and
develop FPGA logic to determine
the proper conditions for sending
an IPROG command.

Key agility (BBRAM only)(1) Update the BBRAM key securely in
the field without having to return
the board or module to a secure
facility.

Instantiate the MASTER_JTAG
primitive along with logic that can
perform a secure key exchange in
FPGA logic in response to a key
management event.

BBRAM key zeroize
(erase + verify)(1)

Zeroize the battery-backed key in
response to a tamper event.

Instantiate STARTUPE3 primitive
and develop FPGA logic to
determine the proper conditions
for KEYCLEARB assertion and for
reading the verification bit in the
STATUS register.

Non-volatile (eFUSE) tamper event
logging(1)

Securely log a tamper event in
non-volatile memory (eFUSE) for
later forensic analysis.

Instantiate the MASTER_JTAG
primitive and develop FPGA logic
function for logging tamper events
in eFUSE bits (POST_CRC must be
paused when eFUSE bits are
programmed).

Bitstream decryptor permanent
disable (eFUSE)(1)

Permanently prevent side-channel
analysis of the bitstream decryptor
(either as a preventive measure or
in response to a tamper event).

Instantiate the MASTER_JTAG
primitive and develop FPGA logic
to program the decryptor disable
eFUSE.

GTS Shut off outputs in response to a
tamper event to prevent any
information leakage out of the
device.

Instantiate STARTUPE3 primitive
and develop FPGA logic to
determine the proper conditions
for GTS assertion.

Table 5: Active Security Features Use Cases Summary (Cont’d)

Feature Use Case User How-to

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=19

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 20

JTAG Port Disable (Active)
An attacker often starts at the external JTAG port when trying to break into a system. With
UltraScale and UltraScale+ FPGAs, there are a number of active methods to block the JTAG port
that can be done both temporarily and permanently. Like in previous FPGA families, the first
method uses a single BSCANE2 primitive that is instantiated with the DISABLE_JTAG attribute
set to TRUE. This breaks the JTAG chain (both the external JTAG port and the internal
MASTER_JTAG port) and any other devices in the same chain as the FPGA device, either
upstream or downstream. Here is an example VHDL instantiation [Ref 13] for an UltraScale or
UltraScale+ FPGA design:

BSCAN_U0 : BSCANE2
 generic map (
 DISABLE_JTAG => TRUE,
 JTAG_CHAIN => 1 -- can be 1, 2, 3, or 4 depending on chain location
)
 port map (
 CAPTURE => open,
 DRCK => open,
 RESET => open,
 RUNTEST => open,
 SEL => open,
 SHIFT => open,
 TCK => tck_signal,
 TDI => tdi_signal, TMS => tms_signal, UPDATE => open,
 TDO => '1'
);

Note: The TCK, TDI, and TMS signals are the only ports connected above because they can be used
to monitor for any JTAG activity (this is explained in JTAG Monitoring (Detection)).

The second method to block the external JTAG port is to instantiate a new primitive for the
UltraScale and UltraScale+ FPGAs named MASTER_JTAG. This primitive can be used to override
the external JTAG pins of the FPGA allowing full access to the JTAG port from within the device.
This method effectively disables the external pins and turn them inside to the FPGA logic. This
is effective as an external JTAG disable if authentication is required or if the only time the JTAG
disable is required is while the user design is loaded. Using this method, the user design now
has full JTAG control but any activity on the external JTAG pins cannot be monitored. Because
MASTER_JTAG is accessible by the user design, in response to a tamper event it could be used
to program an eFUSE bit that permanently disables the external JTAG port. Contact your local
Xilinx FAE for additional details on how to program eFUSE bits from within the device via
MASTER_JTAG.

GSR Restore user flip-flop states to
initial conditions in response to a
tamper event, effectively clearing
possible CT from within the device.

Instantiate STARTUPE3 primitive
and develop FPGA logic to
determine the proper conditions
for GSR assertion.

Notes:
1. This feature is new or improved in UltraScale and UltraScale+ FPGAs.

Table 5: Active Security Features Use Cases Summary (Cont’d)

Feature Use Case User How-to

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=20

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 21

If there are any JTAG-based debugging tools in your FPGA logic design (which are connected to
the dedicated external JTAG port), breaking the JTAG chain does not allow them to function.
During the FPGA debug phase, the JTAG chain can be left intact and then broken later on in the
development cycle when the JTAG-based debugger tool is no longer required.

JTAG configuration of the device cannot be used when the option to break the JTAG chain is
enabled. You must choose one of the other configuration interfaces such as serial, serial
peripheral interface (SPI), byte parallel interface (BPI), and SelectMAP [Ref 3]. JTAG
boundary-scan board-level tests operate normally as long as the actual configuration of the
FPGA device is delayed.

JTAG Monitoring (Detection)
To detect any JTAG activity from within the device, you need to monitor any combination of the
JTAG TCK, TDI, or TMS line(s) on a BSCANE2 primitive. Because any external JTAG command
requires these lines to toggle, activity detectors on any or all of these lines can catch JTAG
activity. For example, to monitor any rising edges on the TDI line, the circuit in Figure 7 could be
used.

Any rising edge on the TDI line gets latched, and the detect output of the DFF remains at 1 until
the part is reconfigured (i.e., until the PROGRAM_B input is asserted). This method can be
extended to monitor rising or falling edges on any of the TCK, TDI, or TMS signal lines. When
any of the outputs of the JTAG detector DFFs are set, they can be used to initiate a tamper
penalty.

Configuration Memory Integrity Checking (Detection)
Corruption of any of the internal configuration memory cells (which are configured by the
decrypted bitstream) could cause the FPGA to operate in an unknown or undesired manner. The
corruption could occur by an intentional post configuration tamper attack or by an
unintentional event such as a single-event upset (SEU). By using the SEM IP core [Ref 12],
continuous readback of configuration data in the background of a design is performed to
detect any bit flips. The SEM IP core can also perform SEU corrections.

Unique Identifiers (Detection)
Two types of unique identifiers (UIs) are available for use: device DNA and user eFUSE. These
UIs can be used as anti-cloning security measures (i.e., someone steals the user’s bitstream and

X-Ref Target - Figure 7

Figure 7: Example JTAG Activity Detector

DFF

BSCAN TDI

‘1’ DetectD

Clk

Q

X1098_07_061115

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=21

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 22

uses it to program their own devices) or for enabling or disabling certain features (upgrade or
downgrade) depending on the value of the UI.

Device DNA consists of a 96-bit device-specific serial number and is set by Xilinx in one-time
programmable (OTP) eFUSE bits on the FPGA during the manufacturing flow (FPGA logic read
access to the value is via the DNA_PORTE2 primitive, or it can be read externally via JTAG). User
eFUSE provides 32 bits of user read/write OTP area and is set by the user via JTAG (FPGA logic
read access to the value is via the EFUSE_USR primitive). Both of these UIs can be used
separately or in conjunction for security purposes.

Note: Use of device DNA or user eFUSE provides for unique IDs, but does not provide cryptographically
strong confidentiality or authentication (such as AES-GCM). AES-GCM encryption is the preferred
method of providing anti-cloning protection. However, by taking advantage of these UIs, you can add
another layer to the overall AT scheme.

These UIs can be used to link the bitstream to one particular device (in the case of device DNA,
or multiple devices in the case of user eFUSE). The UI comparison is put into the FPGA design by
the user and the results of this comparison can be used to gate FPGA activity. For example, if the
UI comparison fails, the design can refuse to function or function with limited capability. An
example use case of the UIs is as follows:

1. Setup: Read the UI value(s) from the FPGA via JTAG, generate a hash from the UI value(s),
and store in a flash device accessible to the FPGA using a robust one-way function (a keyed
type is the most secure) as shown in Figure 8.

The key for the one-way function shown in Figure 8 could be stored within the encrypted
bitstream. If bitstream encryption is not used, this approach relies on the complexity of the
bitstream to keep the key confidential.

2. Configure the FPGA.
3. Compare: The FPGA design reads the UI value from either or both the DNA_PORT and

EFUSE_USR primitive(s) and then calculates the checksum using the same algorithm. The
design then compares the calculated hash with the hash read from flash. If the hash passes,
the design is allowed to become active.

X-Ref Target - Figure 8

Figure 8: Encrypt the DNA Value with a Confidential Key

One-Way
Function

Key

Stored Hash
(Flash)

X1098_08_061115

UI
JTAG

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=22

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 23

For additional information on these UIs, consult the UltraScale Architecture Configuration User
Guide (UG570) [Ref 3]. Security Solutions Using Spartan-3 Generation FPGAs (WP266) [Ref 14]
also talks about device DNA operation for the Spartan-3 generation FPGAs.

On-Chip Temperature and Voltage Monitors/Alarms
(Detection/Response)
By modifying the normal operating voltages and/or temperature of an FPGA, an attacker might
attempt to cause the device to behave in an unintended way, such as to extract data from it or
cause it to bypass certain security features. For example, the Federal Information Processing
Standards Publication (FIPS) 140-2 Security Requirements For Cryptographic Modules [Ref 15]
states: “In particular, the cryptographic module shall monitor and correctly respond to
fluctuations in the operating temperature and voltage outside of the specified normal
operating ranges.”

To help meet this type of requirement, on-chip dedicated IP blocks can be used, namely, the
UltraScale and UltraScale+ FPGA system monitor (SYSMONE1) [Ref 16]. The SYSMONE1 is a
multi-channel ADC within the FPGA and can be used to monitor on-chip power supply voltages,
a number of I/O bank voltages, on-chip die temperature, and a number of user analog voltages
fed into the FPGA’s external pins. The SYSMONE1 can be easily instantiated in your FPGA logic
design. This type of on-chip monitoring is more secure than off-chip monitoring because it is
harder to tamper with. You also have the option of using an external or internal voltage
reference (VREF) for SYSMONE1. Although the external reference is more accurate, the internal
reference is more secure because it is much more difficult for an adversary to tamper with. The
selection between the internal and external reference is controlled by an external pin. You
should thus read the appropriate SYSMONE2 status register to confirm that the internal VREF is
being used [Ref 16].

Upper and lower alarm limits can be programmed directly into SYSMONE1 for the on-chip
parameters. Additional FPGA logic can be used to create alarm limits for external voltage inputs
(e.g., an external analog voltage tamper loop or the output of a pressure sensor). The status of
the alarm signals can be used by your design or system to determine the appropriate course of
action in case they become active (i.e., determine the appropriate tamper penalty). The analog

X-Ref Target - Figure 9

Figure 9: Hash Comparison

One-Way
Function

Key

Hash

X1098_09_061115

Stored Checksum

Flash

FPGA

UI Port

=

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=23

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 24

inputs are bandwidth limited (see UltraScale Architecture System Monitor User Guide (UG580)
[Ref 16] for the maximum input frequencies).

If detection of very fast changes in temperature or voltages is required, an off-chip solution
might be required. It is up to you to define what the required detection bandwidth needs to be.
The Sorcerer’s Apprentice Guide to Fault Attacks [Ref 17] describes a number of methods to
mount an attack on a chip, one of them being variations in the power supply voltage.

Uninterruptible Internal Clock Source (Detection)
When using bitstream encryption, you can take advantage of an uninterruptible clock source
named CFGMCLK (configuration internal oscillator clock output) located as an output on the
STARTUPE3 block primitive (refer to the example VHDL instantiation of the STARTUPE3 block in
PROGRAM_B intercept). Because this clock is always active, it can be used as the basis for a user
clock (or other critical user signal) monitoring function. Even though CFGMCLK can vary quite a
bit from its nominal value of 50 MHz ± 15% [Ref 18] [Ref 19], it can still be quite useful in a
monitoring function to make sure a critical user clock or signal is still “alive” and toggling
between a lower and upper frequency range (which takes into account the CFGMCLK variation).
If the critical user clock or signal falls out of this range, it can indicate either that the design has
malfunctioned or is being tampered with, and the appropriate penalty could be asserted.

CFGMCLK can be also used as the clock source for any other user-defined AT functions in FPGA
logic. It is important that AT functions cannot be halted by simply removing an external clock
source.

External PROGRAM_B Intercept (Prevention and Detection)
Not all memory elements in the FPGA are cleared upon configuration. For example, there might
be GTH and GTY transceivers with FIFOs in use that retain state even after the external
PROGRAM_B pin is asserted (assertion of PROGRAM_B causes the FPGA to reset and become
reconfigured via the bitstream). An attacker could potentially assert the PROGRAM_B pin and
replace the user bitstream with their own bitstream, one that is designed to dump out the
contents of the uncleared memory elements after the FPGA is configured. By using the
PROGRAM_B intercept feature such as the PROGRAM_B request/acknowledge pair on the
STARTUP block PREQ/PACK, you can indefinitely delay the reconfiguration of the FPGA so that
these memory elements can first be cleared by your design or any other housekeeping tasks
can be completed before allowing a PROGRAM_B to happen.

Another use case for PROGRAM_B intercept could be a system (when fielded) that should never
see PROGRAM_B assertion while active—its mere presence signifies a tamper event. One of the
first things an attacker might do is to assert the PROGRAM_B to observe the start-up behavior
of the FPGA. If PREQ goes active in your design, it could invoke a penalty and then allow the
PROGRAM_B to occur by asserting PACK.

Whenever an encrypted bitstream with the PROGRAM_B intercept security feature enabled has
been loaded and the PROGRAM_B pin is asserted externally (or an internal IPROG command is
sent to the ICAPE3), the PREQ output is asserted High on the STARTUPE3 block. Configuration
is held off indefinitely until you drive the PACK input High (rising-edge sensitive) or until the
device is power cycled.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=24

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 25

The following is an example VHDL instantiation of the STARTUPE3 block with the correct
security generic set and the PREQ/PACK signal connections:

STARTUP_U0 : STARTUPE3
 generic map (
 PROG_USR => TRUE) -- turn on PROGRAM_B intercept security feature
 port map (
 CFGCLK => open,
 CFGMCLK => cfgmclk_signal,
 DI => open,
 EOS => open,
 PREQ => preq_signal, -- PROGRAM request to FPGA logic output
 DO => (others => '0'),
 DTS => (others => '0'),
 FCSBO => '0',
 FCSBTS => '0',
 GSR => gsr_signal,
 GTS => gts_signal,
 KEYCLEARB => keyclearb_signal,
 PACK => pack_signal, -- PROGRAM acknowledge input (rising edge)
 USRCCLKO => '0',
 USRCCLKTS => '0',
 USRDONEO => '0',
 USRDONETS => '0'
);

Note: The PROGRAM_B intercept intercepts all program attempts, not just external. It intercepts IPROG
and JPROGRAM from MASTER_JTAG as well.

Configuration Memory Clearing (Response/Penalty)
IPROG is an internal command sent through the ICAPE3 interface that clears the FPGA
configuration memory, all flip-flop contents, and key expansion memory, but does not clear the
key itself. IPROG is equivalent to the assertion of the external PROGRAM_B pin. This command
effectively clears configuration memory (configuration data, block RAM, UltraRAM, and
flip-flop states).

After both of the KEYCLEARB and IPROG penalties are invoked, the FPGA becomes inoperable
because the existing bitstream can no longer be decrypted by the FPGA. The fact that device
configuration is no longer possible with the encrypted bitstream is an indication that a tamper
event has occurred. At this point, your design might choose to load in an unencrypted
bitstream after the KEYCLEARB and IPROG penalties so that there is some basic functionality
without exposing any of the CT. Of course, an unencrypted bitstream cannot be loaded if using
an eFUSE-based key and the cfg_aes_only eFUSE is also programmed.

To send an IPROG command to the configuration engine, the ICAPE3 primitive must be
instantiated in your design and the appropriate sequence of commands must be written to the
ICAPE3. For more information, refer to the IPROG Reconfiguration sections in the UltraScale
Architecture Configuration User Guide (UG570) [Ref 3].

Key Agility (Response)
Key agility refers to the ability to update or change the AES bitstream decryption key in BBRAM
via the FPGA logic. This does not apply to eFUSE-based keys.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=25

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 26

In Figure 10, an UltraScale/UltraScale+ FPGA is shown with its initial key already loaded into
BBRAM. You can then load in an external encrypted bitstream, decrypt it, and then have the
initial FPGA logic design up and running.

At some time in the future, a key management event occurs, which means that the key requires
to be changed or updated due to a security breach, good cryptographic practice, or new
design. By using some sort of secure key exchange algorithm (which would be an IP core
running in FPGA logic, such as the Diffie-Hellman protocol) you can bring in an external
encrypted key, perhaps even via the Internet. Then, you can decrypt this key with the IP core,
load it into BBRAM, and perform the integrity check internally via the MASTER_JTAG primitive
(Figure 11).

X-Ref Target - Figure 10

Figure 10: UltraScale/UltraScale+ FPGA with Key Loaded into BBRAM

X-Ref Target - Figure 11

Figure 11: Key Management Event

X1098_10_082018

Initial Fabric Design
(decrypted with initial key)

UltraScale/UltraScale+
 FPGA

External Encrypted
Bitstream Source

Initial Key (BBRAM)

Initial Fabric Design
(decrypted with initial key)

UltraScale/UltraScale+ FPGA

X1098_11_082018

New Key (BBRAM)

External Encrypted
Key Source

PASSWRITE
ONLY

Secure Key
Exchange
(Soft IP)

Via
MASTER_JTAG

Primitive

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=26

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 27

You can then load in an external encrypted bitstream (encrypted on the new key), decrypt it,
and have a new fabric design that was decrypted with this new key as shown in Figure 12.

Using the above scheme, it is possible to update the key in the field without having to bring the
board or the system all the way back to a secure facility.

BBRAM Key Zeroize (Response/Penalty)
The crown jewel of the FPGA is the AES-GCM key used to decrypt the bitstream. After an
attacker has access to the key, the contents of the original bitstream can be easily determined.
By connecting your design to the KEYCLEARB(1) input (located on the STARTUP block primitive
in External PROGRAM_B Intercept (Prevention and Detection)), you can choose to assert this
signal as a penalty in response to internal (or external) tamper events. By zeroizing the 256-bit
key in BBRAM, the registered content of the eFUSE key, and the 1920-bit expanded key in the
decryption block, the encrypted bitstream stored in off-chip non-volatile memory becomes
useless to the attacker. For UltraScale and UltraScale+ FPGAs, a configuration status bit(2) is also
available that indicates whether the key data erasure has been verified (proves zeroization).

The decision for the KEYCLEARB assertion (as well as all other tamper responses) does not
necessarily need to originate from within the FPGA itself. It could be due to a tamper event
somewhere else in the system (e.g., a breach of a system-level or module-level tamper
boundary).

After the key is zeroized, the FPGA device is useless until reprogrammed with the same key or
reconfigured using IPROG [Ref 3] to an unencrypted bitstream (perhaps with reduced

X-Ref Target - Figure 12

Figure 12: New Fabric Design

1. The KEYCLEARB signal has no effect on the non-volatile eFUSE key.
2. This is bit 21 of the ICAP accessible status register

X1098_12_082018

New Fabric Design
(decrypted with new key)

UltraScale/UltraScale+
FPGA

External Encrypted
Bitstream Source

New Key (BBRAM)

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=27

Active AT Silicon Features

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 28

functionality). Ensure that the KEYCLEARB input is only asserted under the proper conditions. In
many cases, equipment must be taken out of the field and sent back to a central depot or
manufacturing facility to be re-enabled with a key load operation.

KEYCLEARB can also be combined with the IPROG command (described in Configuration
Memory Clearing (Response/Penalty)) in response to tampering to also erase the configuration
memory. The KEYCLEARB assertion must occur before an IPROG command is sent (i.e., the
IPROG command can be sent to the ICAPE3 immediately following the assertion of KEYCLEARB).

Non-Volatile (eFUSE) Tamper Event Logging (Response)
The UltraScale and UltraScale+ FPGAs include a new 128-bit USER eFUSE register. This register
can be used to flexibly meet your needs for a non-volatile area. The eFUSE register bits can only
be programmed and read back using JTAG instructions (see the UltraScale Architecture
Configuration User Guide (UG570) [Ref 3] for more information). These eFUSE bits can be
programmed via the external JTAG port or the internal MASTER_JTAG. Contact your local Xilinx
FAE for additional details on how to program eFUSE bits from within the device via
MASTER_JTAG.

IMPORTANT: After these eFUSE bits are programmed, it is possible to program another eFUSE (a write
disable) that prevents any more programming of the eFUSE register bits (i.e., to “lock the door”). Thus, an
adversary cannot attempt to overwrite the tamper log information.

Bitstream Decryptor Permanent (eFUSE) Disable
(Prevention/Response/Penalty)
To prevent an attacker from collecting any side-channel information, an eFUSE can be
programmed that permanently disables the AES-GCM decryptor. This eFUSE can be
programmed via the external JTAG port or the internal MASTER_JTAG. Contact your local Xilinx
FAE for additional details on how to program eFUSE bits from within the device via
MASTER_JTAG. This feature can be used as a tamper response or to simply create a one-time
encrypted configurable device. If the cfg_aes_only eFUSE bit is also programmed, it prevents
the device from getting configured again (i.e., “brick” the device).

Global 3-State (Response/Penalty)
Depending on the system design, critical (red) information might flow out of the external FPGA
pins (e.g., a cryptographic module). Asserting the GTS input on the STARTUPE3 block (see the
sample code in External PROGRAM_B Intercept (Prevention and Detection)) in response to a
tamper event causes all FPGA outputs to immediately enter a high-Z state and prevent any
more data from flowing outside the FPGA. This could be an immediate step to take just prior to
an IPROG or KEYCLEARB to make sure red data flow is halted as soon as possible.

Global Reset (Response/Penalty)
Critical data or sensitive parameters can be stored in FPGA logic registers such as a user key
(not the AES BBRAM bitstream decryption key). Asserting the GSR input on the STARTUP block

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=28

Tamper Resistance Guidance

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 29

(see External PROGRAM_B Intercept (Prevention and Detection)) in response to a tamper event
causes all FPGA registers (i.e., flip-flops) to be restored to their default state. This could be an
immediate step to take along with KEYCLEARB to make sure all sensitive data in the FPGA is
erased as soon as possible. The GSR does not impact the shift register look-up table (SRL) or
block RAM contents. These must be cleared by your design or by an IPROG command.

Tamper Resistance Guidance
This section provides guidance and technical tips that can be used in conjunction with the
previously addressed built-in silicon AT features to create tamper-resistant designs using
UltraScale and UltraScale+ FPGAs.

Load CT Only When Needed (Prevention)
If the design can be partitioned into sections that contain non-critical and critical technology
blocks, it might be possible to only have the non-CT portion of the design resident at all times
and use partial reconfiguration (PR) features [Ref 20] of the FPGA to allow the CT to be loaded
only when needed. The CT can then be erased by loading in a black box version of the PR region
when it has completed its tasks. The partial bitstream for the CT can be decrypted by your
algorithm of choice in the FPGA logic. In response to a tamper event, both the PR region and
the key for the CT (perhaps stored in block RAM or FPGA logic registers) could be erased.

For example, Figure 13 and Figure 14 illustrate a general system with an FPGA, CPU, and
external memory devices (for FPGA configuration, PR, CPU code, and CPU boot code). In
Figure 13, the PR region (named user CT logic region) is empty.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=29

Tamper Resistance Guidance

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 30

In Figure 14, the PR region on the FPGA has been dynamically loaded with CT logic via PR
(named user CT logic). When the CT function is completed or a tamper event occurs, the PR
region can be returned to the state shown in Figure 13 by loading in a black box version of the
PR module.

X-Ref Target - Figure 13

Figure 13: Use Model: Protecting System CT

X-Ref Target - Figure 14

Figure 14: Use Model: Protecting System CT–Tamper Response

Encrypted
FPGA Bitstream

Encrypted
FW and SW

Limited
Services

Boot Code

RAM for
CPU CT

Code

CPU

Configure UltraScale/UltraScale+ FPGA
Using AES-GCM

User
CT

Logic
Region

Memory I/F

Other
User
Logic

X1098_13_031415

Encrypted
FPGA Bitstream

Encrypted
FW and SW

Limited
Services

Boot Code

Sensitive
CPU
Code

Erase in Response
to a Tamper Event

CPU

Configure UltraScale/UltraScale+ FPGA
Using AES-GCM

User
CT

Logic

Memory I/F

Other
User
Logic

X1098_14_031415

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=30

Tamper Resistance Guidance

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 31

Note: If a tamper event occurs, the external sensitive CPU code memory could be erased so that only
encrypted, cleared, or non-sensitive external memory contents remain.

In these examples, the ICAPE3 is used to perform the PR. Because the ICAPE3 is a trusted
channel, it allows either encrypted or unencrypted PR bitstreams (even if an eFUSE key is being
used with the cfg_aes_only eFUSE bit blown). An encrypted and authenticated PR bitstream is
always recommended where the decryption and authentication take place with your decryptor
authentication engine of choice in the FPGA logic. A useful reference on secure PR is PRC/EPRC:
Data Integrity and Security Controller for Partial Reconfiguration (XAPP887) [Ref 20].

Key Erase via External Shunt
Another method to erase the BBRAM key is via an external shunt to ground on the VBATT line.
This method can be used to erase the key when main power (VCCINT and VCCAUX) to the FPGA is
not applied because active features, such as KEYCLEARB, can be used only after the FPGA is
powered up and configured. For instance, if a system-level tamper event is detected prior to the
FPGA having its main power applied (perhaps a tamper switch becomes activated), the external
battery power line to the FPGA’s VBATT pin can be opened and the VBATT pin driven to ground
with some sort of transistor shunt. Care must be taken that the circuit is designed to open the
battery connection before shunting the VBATT pin to ground. Another option is to connect the
battery to the VBATT pin via a resistor. (The VBATT pin maximum input current is 150 nA.) By
choosing the appropriate resistance value, the VBATT pin can be shunted to ground directly
without causing excessive current flow out of the battery.

If an FPGA is not powered up (no VCCINT, VCCAUX, or other voltages except for VBATT), it would
take a worst-case maximum time of 50 ms for the AES key stored in BBRAM to become erased
if a user was to properly shunt the VBATT pin to ground at –55°C.

IMPORTANT: For improved security and to keep leakage as small as possible, use a battery whose voltage
is as low as possible. For more information on battery voltage levels, refer to the UltraScale and UltraScale+
architecture data sheets [Ref 18] [Ref 19] [Ref 21] [Ref 22].

Preemptive BBRAM Key Zeroize
Another use case for key zeroize could be a preemptive measure. After loading and decrypting
the bitstream, the BBRAM key can be purposely zeroized before sending the system out into the
field. Of course, this would only work for a system that is not intended to be power cycled after
it becomes deployed (for example, a missile after being launched). This could also be used for
an eFUSE key by writing over it with all ones via MASTER_JTAG before deployment as long as
eFUSE key reading and writing has not yet been disabled.

Avoiding Weak or Duplicate Keys
All zeros, all ones, or repetitive patterns should never be used in user keys. Keys should not be
reused if at all possible. Personnel access to the key values should be tightly controlled (i.e.,
only those with a need to know should have access to key data). Ideally, a random source should
be used to create the keys. Avoid using weak keys. (For example, an all zeros random key is
theoretically possible.) The Vivado software can automatically generate the AES-GCM keys.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=31

Conclusion

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 32

However, it uses a pseudorandom process seeded with the current date and time. The most
secure keying material comes from a truly random process.

Key management is a very important element (and probably the most complex) in any
cryptographic system. For additional help on this subject, the NIST Key Management Guideline
[Ref 23] is a useful reference.

Sending Tamper Status Outputs to System
Upon a tamper event (in addition to asserting a penalty) your design could send tamper status
information back to the system (instead of or in addition to logging it locally in user eFUSE
space). The system could then store this information away for future auditing purposes. It
would have to be designed to transmit the data before an IPROG command (tamper penalty) is
given.

Restricting Access to FPGA Probe Points
Making it difficult for an attacker to get near the FPGA is a good example of a layered approach.
A robust tamper boundary (perhaps with tamper detect switches) can be used around any
device(s) that might contain CT. For example, an activated tamper switch could cause a shunt to
go active on the FPGA’s VBATT line. Buried vias and routing can be used on the printed circuit
board for FPGA signals, power supply routing can be kept within buried layers (and difficult to
get to), and adequate decoupling can be used (buried capacitance technology should be used,
if possible). JTAG boundary-scan techniques can be relied on for board-level factory testing,
and test points should be removed from production boards. For more information, refer to the
UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) [Ref 24] and the
UltraFast Design Methodology Checklist (XTP301) [Ref 25].

Conclusion
This application note summarizes the AT features currently available in UltraScale and
UltraScale+ FPGAs and gives practical examples of how to use them effectively. By taking
advantage of these features and following the AT guidance early on in the design cycle, a
tamper-resistant FPGA-enabled system design can be realized.

No single AT feature or technique is 100% effective all of the time or can meet all the AT needs
for the entire system. However, making the adversary’s job as difficult and expensive as possible
and following a multi-layered approach almost always yields very good results.

The tools and technologies for the development and testing of new integrated circuits
including FPGAs are always evolving and improving. In parallel, the tools used by the adversary
also evolve and improve, so it is important to be aware of what AT features and techniques are
available for use. Additionally, Xilinx is committed to staying abreast of these developments to
enhance and develop new features to protect customer IP now and into the future.

Send Feedback

http://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=32

References

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 33

References
1. Xilinx Getting Started

www.xilinx.com/about/getting-started.html
2. Xilinx Vivado Design Suite

www.xilinx.com/products/design-tools/vivado.html
3. UltraScale Architecture Configuration User Guide (UG570)
4. Solving Today’s Design Security Concerns (WP365)
5. Developing Tamper Resistant Designs with Xilinx Virtex-6 and 7 Series FPGAs (XAPP1084)
6. Security Monitor Product Brief

https://www.xilinx.com/support/documentation/product-briefs/
security-monitor-ip-core-product-brief.pdf

7. Vivado Design Suite User Guide: Programming and Debugging (UG908)
8. Introduction to Indirect Programming – SPI or BPI Flash Memory

www.xilinx.com/support/documentation/sw_manuals/xilinx11/
pim_c_introduction_in direct_programming.htm

9. Vivado Design Suite Tcl Command Reference Guide (UG835)
10. Using Encryption to Secure an UltraScale FPGA Bitstream (XAPP1267)
11. UltraScale FPGA RSA Authentication and Supporting Configuration Modes (XCN15038)
12. Soft Error Mitigation (SEM) Core

www.xilinx.com/products/intellectual-property/sem.html
13. UltraScale Architecture Libraries Guide (UG974)
14. Security Solutions Using Spartan-3 Generation FPGAs (WP266)
15. Security Requirements for Cryptographic Modules, FIPS PUB 140-2

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
16. UltraScale Architecture System Monitor User Guide (UG580)
17. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan. The

Sorcerer’s Apprentice Guide to Fault Attacks.
https://eprint.iacr.org/2004/100.pdf

18. Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS892)
19. Virtex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics (DS893)
20. PRC/EPRC: Data Integrity and Security Controller for Partial Reconfiguration (XAPP887)
21. Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS922)
22. Virtex UltraScale+ FPGAs Data Sheet: DC and AC Switching Characteristics (DS923)
23. NIST Key Management Guideline

https://csrc.nist.gov/projects/key-management

Send Feedback

https://www.xilinx.com/about/getting-started.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/white_papers/wp365_Solving_Security_Concerns.pdf
http://www.xilinx.com
https://www.xilinx.com/support/documentation/product-briefs/security-monitor-ip-core-product-brief.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://eprint.iacr.org/2004/100.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=customer_notices;d=xcn15038.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp266.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds892-kintex-ultrascale-data-sheet.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1084_tamp_resist_dsgns.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp_efuse-program.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://www.xilinx.com/products/intellectual-property/sem.html
https://www.xilinx.com/support/documentation/application_notes/xapp887_PRC_EPRC.pdf
https://csrc.nist.gov/projects/key-management
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/white_papers/wp266.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/pim_c_introduction_indirect_programming.htm
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.pdf
http://eprint.iacr.org/2004/100.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds893-virtex-ultrascale-data-sheet.pdf
https://www.xilinx.com/support/documentation/customer_notices/xcn15038.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds922-kintex-ultrascale-plus.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=33

Revision History

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 34

24. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
25. UltraFast Design Methodology Checklist (XTP301)
26. Partial Reconfiguration in the Vivado Design Suite

www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html
27. Secure Hash Standard, FIPS PUB 180-2

csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
28. In-System Programming Using an Embedded Microcontroller (XAPP058)
29. Embedded JTAG ACE Player (XAPP424)
30. Google differential+power+analysis search results

scholar.google.com/scholar?q=Differential+power+analysis&hl=en&as_sdt=0&as_vis=1&o
i=scholart

31. Answer Record (AR 71558)
https://www.xilinx.com/support/answers/71558.html

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the

Date Version Revision
03/25/2021 1.4 • Added a note about not reusing the keys across SSIT devices.

• Updated bitstream format diagram to indicate that encryption is optional.
09/14/2018 1.3 • Updated bitstream authentication, JTAG port permanent disable, and

bitstream decryptor permanent disable rows, and added row for internal test
scan permanent disable in Table 1.

• Replaced “obfuscating key” with “family key,” and added note about
obtaining family key in Obfuscated Key Loading and Storage.

• Replaced RSA_AUTH_ALL_EFUSE with RSA_AUTH. Added Internal Test Scan
Disable (Passive) in Bitstream Authentication (Asymmetric).

• Added UltraRAM to first paragraph in Configuration Memory Clearing
(Response/Penalty).

02/22/2017 1.0 Initial Xilinx release.

Send Feedback

http://www.xilinx.com
http://scholar.google.com/scholar?q=Differential+power+analysis&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://www.xilinx.com/support/answers/71558.html
https://www.xilinx.com/support/answers/71558.html
https://www.xilinx.com/support/answers/71558.html
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp424.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xtp301-design-methodology-checklist.xlsx
https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=34

Please Read: Important Legal Notices

XAPP1098 (v1.4) March 25, 2021 www.xilinx.com 35

Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
Automotive Applications Disclaimer
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN").
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF
CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2017–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of
PCI-SIG. All other trademarks are the property of their respective owners.

Send Feedback

http://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
http://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Application_Notes&docId=XAPP1098&Title=Developing%20Tamper-Resistant%20Designs%20with%20UltraScale%20and%20UltraScale+%20FPGAs&releaseVersion=1.4&docPage=35

	Developing Tamper-Resistant Designs with UltraScale and UltraScale+ FPGAs
	Summary
	Introduction
	Passive AT Silicon Features
	Bitstream Confidentiality and Authentication (Symmetric)
	Volatile and Non-Volatile Key Storage
	Write-only Key Load with Integrity Check
	Obfuscated Key Loading and Storage
	Bitstream Authentication (Asymmetric)
	DPA Protections
	Invalid/Random Bitstream Data
	Configuration Counting Trade-off
	Authenticate-then-Decrypt Trade-off
	Valid Bitstream Data
	DPA Solution Comparison

	Hardened Readback Disabling Circuitry
	Internal Test Scan Disable (Passive)
	JTAG Port Disable (Passive)

	Active AT Silicon Features
	JTAG Port Disable (Active)
	JTAG Monitoring (Detection)
	Configuration Memory Integrity Checking (Detection)
	Unique Identifiers (Detection)
	On-Chip Temperature and Voltage Monitors/Alarms (Detection/Response)
	Uninterruptible Internal Clock Source (Detection)
	External PROGRAM_B Intercept (Prevention and Detection)
	Configuration Memory Clearing (Response/Penalty)
	Key Agility (Response)
	BBRAM Key Zeroize (Response/Penalty)
	Non-Volatile (eFUSE) Tamper Event Logging (Response)
	Bitstream Decryptor Permanent (eFUSE) Disable (Prevention/Response/Penalty)
	Global 3-State (Response/Penalty)
	Global Reset (Response/Penalty)

	Tamper Resistance Guidance
	Load CT Only When Needed (Prevention)
	Key Erase via External Shunt
	Preemptive BBRAM Key Zeroize
	Avoiding Weak or Duplicate Keys
	Sending Tamper Status Outputs to System
	Restricting Access to FPGA Probe Points

	Conclusion
	References
	Revision History
	Please Read: Important Legal Notices

