

Design Closure: Power Constraints, best practices for an accurate Report Power estimation

Feb 2021

Design Closure Sessions

Session 1

Methodology, tips, and tricks for achieving better Quality-of-Results

Session 2

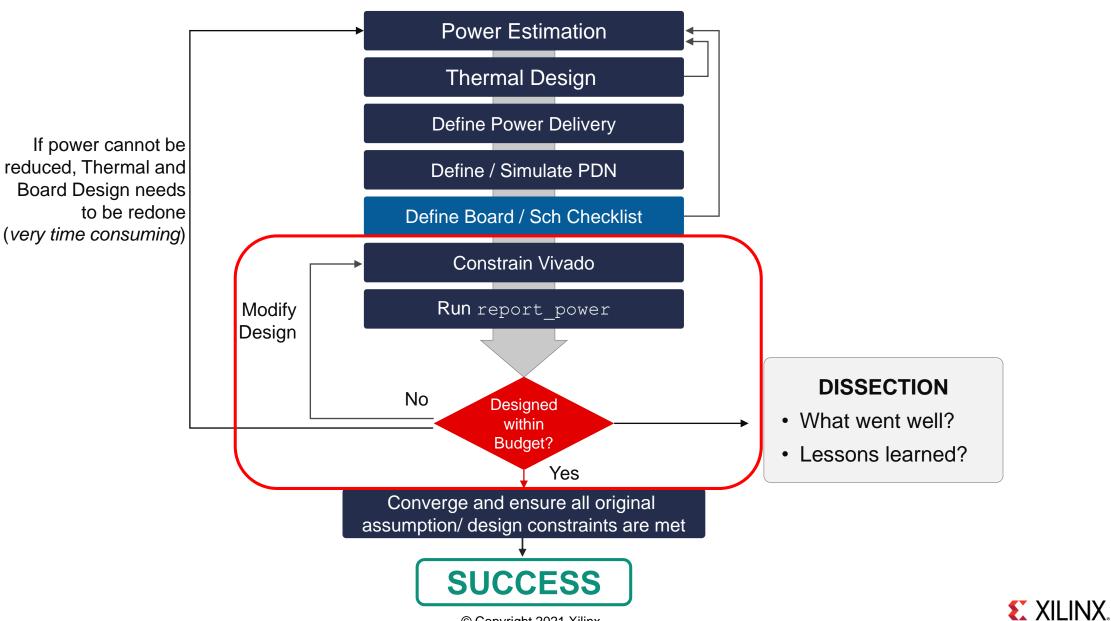
Using Timing Closure Assistance tools to address tough timing issues

Session 3

Power Constraints, best practices for an accurate Report Power estimation

Agenda

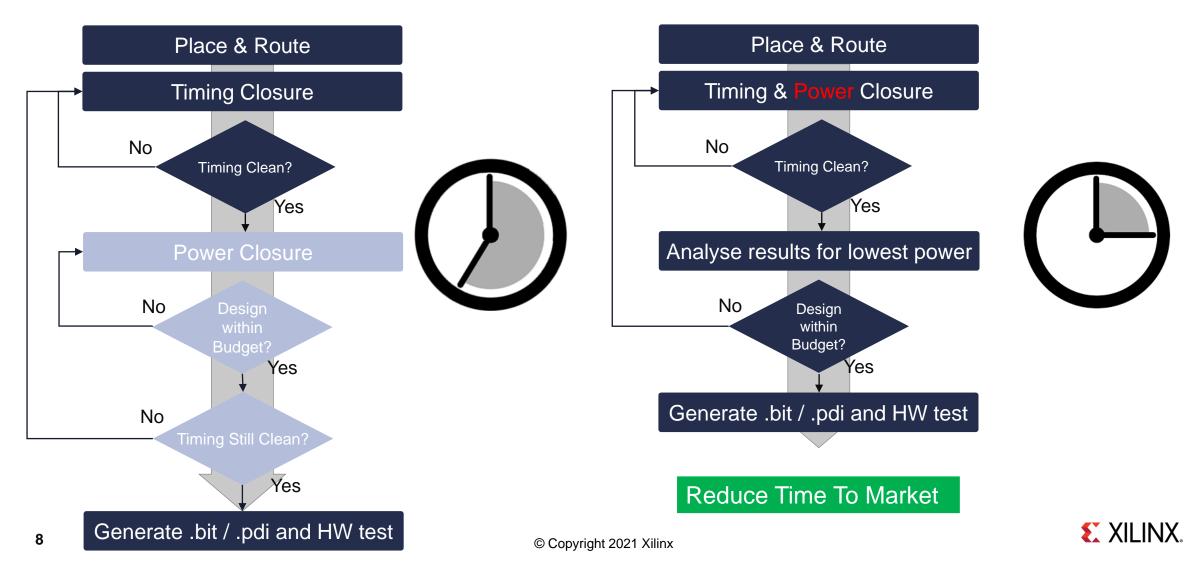
- Power impact and Time to Market
- Design Closure an efficient approach
- Understanding design power
- Design Power Constraints
- Vivado Commands


Power impact and Time to Market

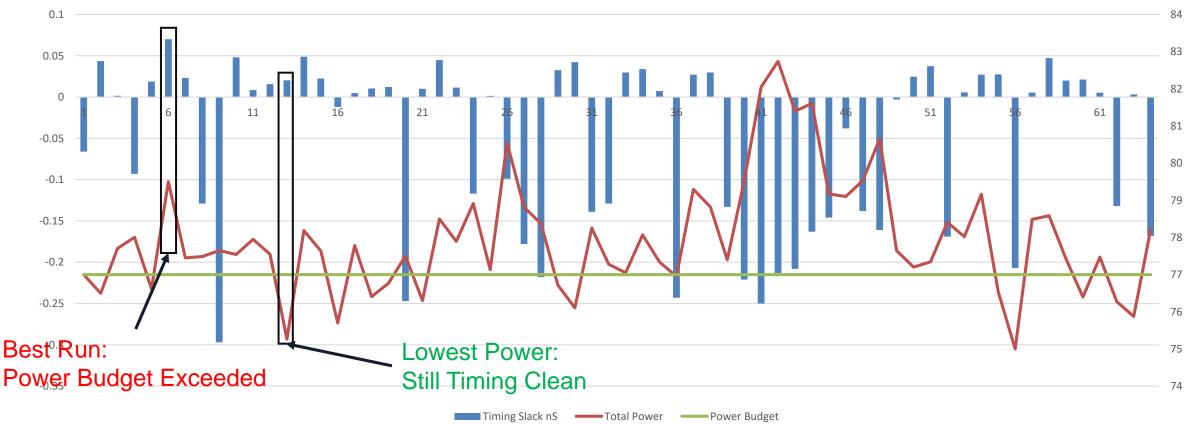
Why is Power Closure so important?

- Board Design is Fixed
- Power and Thermal Issues take a long time to correct
- Design Changes (Typically Weeks)
 - Re-Run P&R
 - HDL Changes
 - Reducing design specifications
- Hardware changes (Typically Months)
 - Board Re-spin
 - Power Delivery Changes
 - Thermal Solution Changes

Power / Thermal / Board Design Methodology



Design Closure an efficient approach


Design closure – combining Timing and Power

More efficient, build a complete picture of timing AND power

Combining Timing and Power gives much more information

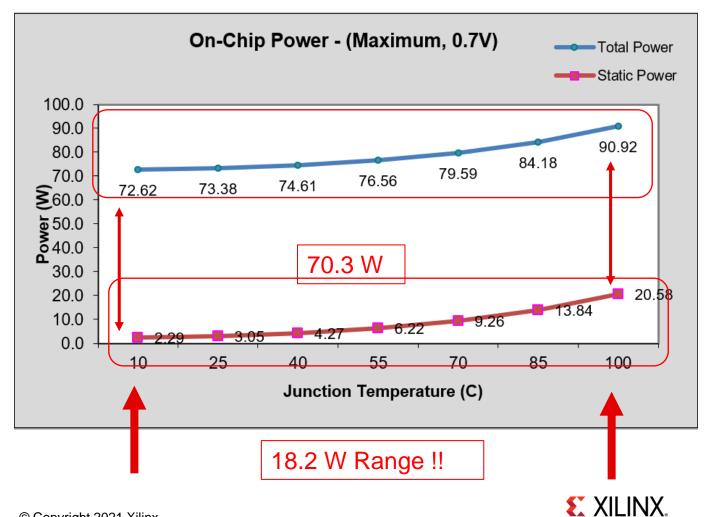
Allows users to take the best run from a Timing AND power perspective, not just the best timing run

Power / Timing Slack for Different P&R Runs

Understanding design power

Design Power – Sum of two Parts

Dynamic power directly related to the user design

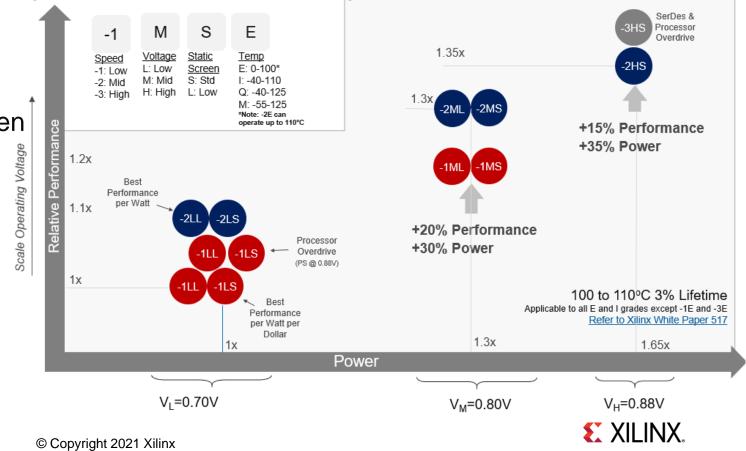

- Resource count, Fmax, toggle rates
- Static Power Junction temperature related
 - Rises as Junction temperature rises
 - Xilinx provides Typical and Maximum process numbers
 - Maximum process should be used for worst case power
- Static power often overlooked
 - Causes Power Analysis inaccuracies
- Static power reduction via:
 - Thermal solution improvements
 - Low Voltage devices

Design Power – Sum of Two Parts

Example of Total Design power over temperature

- Total Power Range 72 90W
- Dynamic power 70.3W
- ► Static power range 2.2 20.5W

▶ 18.2W range


Device Selection – impact on Static power

Best Practice is to design for low voltage devices

- Easier to move up if timing is challenged
- Harder to move from High or Mid voltage to Low if power is too high

Versal has 3 Voltages

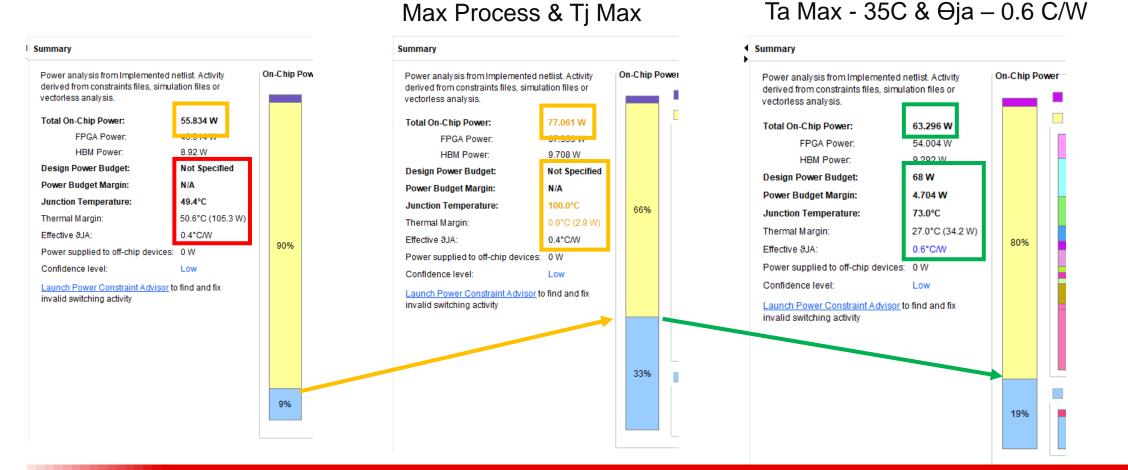
- Low, Mid and High
- Also, Low and Standard Static Screen
- UltraScale Plus
 - Supports for Vlow (0.72v)

Design Power Constraints

Minimum recommended power constraints

- Ensure a power budget is defined
- Maximum process is set
- Without thermal information the MAX Junction Temp (Tj) should be used
- set_operating_conditions -design_power_budget <Power in Watts>
- set_operating_conditions -process maximum
- set_operating_conditions -junction_temp <Max Tj based on Temp Grade>

Best accuracy Power Constraints


- Minimum constraints use the Max junction temp
 - Worst case Power analysis
- Power Estimate can be refined further
 - Defined maximum ambient the application will support
 - Define Theta Ja Thermal solution efficiency (C/W)
 - For example: 1.5 C/W for every W dissipated Tj increases by 1.5C

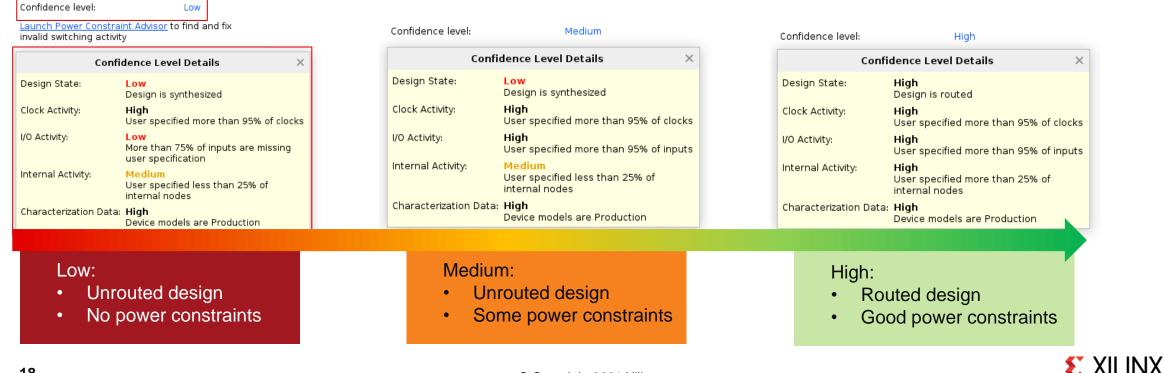
set_operating_conditions -ambient_temp <Max Supported by Application>
set_operating_conditions -thetaja <Increase in Tj for every W dissipated C/W>

Refining Power Estimation using Ta and OJa

2. Worst Case – 77W

1. No Constraints - 55W

3. Refined -63W


Ensures accurate modelling of Static and Total Power

Improving the Confidence Level

Try to achieve High Confidence Level of accuracy - review power reports

- Review switching activity constraints: specify missing and correct invalid constraints
- Report the power after Implementation for accurate signal power
- Use most recent Vivado version for most up-to-date power characterization data

Power Constraints Advisor

Available from the Launch Power Constraints Advisor in Power Summary

- Simple GUI that shows confidence level of Sets / Resets and Enables
 - Allows sorting and filtering
 - Start with Low Confidence High Fanout nets

Negative power margin clearly shown

y (70.031 W, Margin: -0.031 W)	Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.			Net	Confidence 1	Fanout	Fanout Types	Polarity	Static Probability	Toggle Rate %
upply				Not	Commutence	ranout	Tanout Types	rolanty	[0.0 - 1.0]	[0 - 100]
Details	T () D	70.004.00		<pre>_ pfm_top_i/dynact_aresetn[0]</pre>	Low	1010	Set, Reset, Clear, Preset	Both	0.573	0.667
	Total On-Chip Power:	70.031 W		_ pfm_top_i/staclp_mem_we[2]	Low	522	Reg Enable	Active High	0.004	0.787
	FPGA Power:	60.529 W		_ pfm_top_i/dynainst/r_shelf	Low	514	Reg Enable	Active High	0.03	5.837
	HBM Power:	9.502 W		_ pfm_top_i/dynaias_rvalid[0]	Low	512	Reg Enable	Active High	0.013	1.518
	Design Power Budget:	70 W		_ pfm_top_i/dynat_reg[0]_0[0]	Low	512	Reg Enable	Active High	0.001	0.081
	Power Budget Margin:	-0.031 W		_ pfm_top_i/dynat_reg[0]_0[0]	Low		Reg Enable	Active High	0.001	0.08
	Junction Temperature:	91.0°C	n		Low		Reg Enable	Active High	0.001	0.082
	Thermal Margin:	9.0°C (7.1 W)		pfm_top_i/dynat_reg[0]_0[0]	Low		Reg Enable	Active High	0.001	0.084
	Effective &JA:	0.8°C/W		_ pfm_top_i/dynaata_reg[29][0]			Reg Enable	Active High	0.001	0.098
	Power supplied to off-chip dev	rices: 0 W		onstraints will be applied						
	Confidence level.	Lon								
	Launch Power Constraint Adv	isor to find and fix	?						(ок Са

ive periods of time. Review this table and modif

Switching Activity for Review and Correcti

The Power Constraint Advisor will check the design for abnormal switching activity on control signals such as inactive enables and set/reset signals that are asserted fo

inaccurate switching activity on critical control signals. Reasonable switching activity ensures the most accurate

Power Constraints Adviso

nower measurements

Power Rail Constraints

- New Feature in Vivado 2020.2
- Should be used in addition to Design Power Budget
- Allows regulator power to be validated
- Create a new power rail:
 - create_power_rail <power rail name> -power_sources {supply1, supply2 ,..}

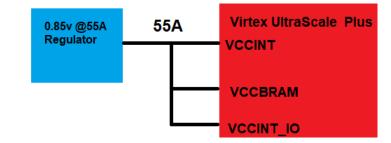
Add power sources to an existing power rail.

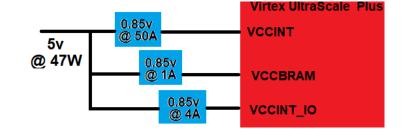
- add_to_power_rail <power rail name> -power_sources {supply1, supply2, ..}

Define current budget:

 set_operating_conditions -supply_current_budget {<supply rail name> <current budget in Amp>} -voltage {<supply rail name> <voltage>}

Power Rail Constraints – Example

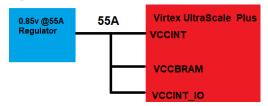

Direct: Single regulator to 1 or more rails


create_power_rail board_85V -power_sources {VCCINT VCCBRAM VCCINT_IO}

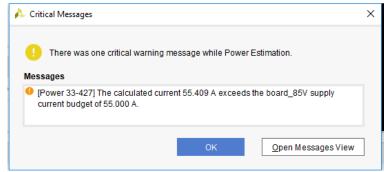
set_operating_conditions -supply_current_budget {board_85V 55} -voltage {board_85V 0.85}

- Indirect: Two or more regulator stages
- Can define multiple regulation stages
 - Example: Board supply power and Rail current

Set_operating_conditions -supply_current_budget {VCCINT 50 VCCBRAM 1 VCCINT_IO 4}



S XII INX


21

Power Rail Constraints - Results

Single regulator to 1 or more rails

Critical Warning Generated

Margin Reported in Text report:

Source	Voltage (V)	Total (A)	Budget (A) Margin (A)
board_85V Vccint	0.850	55.409 47.652	55.000 -0.409 (VIOLATED)
Vccbram Vccint io	0.850	0.644	Unspecified NA Unspecified NA
Vccaux	1.800	1.420*	Unspecified NA

Two or more regulator stages

5v

@ 47W

C	itical Messages
Me	ssages
-	ssages [Power 33-427] The calculated current 55.409 A exceeds the board_85V supply current budget of 55.000 A.

Power Supply

Supply Source	Voltage (V)	Total (A)	Dynamic (A)	Static (A)	Budget (A)	Margin (A)
Vccint	0.850	47.652	36.324	11.328	50.000	2.348
Vccint_io	0.850	7.113	6.227	0.886	4.000	-3.113
Vccbram	0.850	0.644	0.244	0.400	1.000	0.356
Veccur	4 000	0.074	0.205	4 006	Unoncoified	NIA

Source	Voltage (V)	Total (A) Bud	lget (A)	Margin (A)
board_85V	0.850	55.409	55.000	
Vccint Vccbram	0.850 0.850	47.652 0.644	1.000	2.348 (MET) 0.356 (MET)
Vccint_io	0.850	7.113	4.000	-3.113 (VIOLATED)

CCINT

CCBRAM

CCINT IO

Vivado Commands

Vivado Power Optimization commands

- Vivado has some powerful options that can save up to 30% on dynamic power
 - Intelligent Clock Gating
- Power optimization available via the following commands:
 - power_opt_design
 - opt_design
- power_opt_design can be run before or after placement
 - Best results before placement
 - After placement it will preserve timing
- > opt_design
 - Runs Block RAM power optimizations Can impact timing
 - Disabled via -directive NoBramPowerOpt

Potential Power Impact of Place & Route directive

Synthesis	opt_design	Place	Route
AreaOptimized_high	ExploreArea	ExtraNetDelay_high	HigherDelayCost
AlternateRoutability	ExploreSequentialArea	ExtraPostPlacementOpt	
	ExploreWithRemap	WLDrivenBlockPlacement	
		SSI_SpreadLogic_high	
		SSI_HighUtilSLRs	

Examples of what we have found beneficial for power

- Every design is different experiment to understand the impact to Timing and Power
- The earlier in the flow the better the results i.e Synthesis and opt_design
- •flatten_hierarchy full generally improves power

Power Design Closure Conclusions

Utilize Timing Closure to get the best understanding of Design Power Tcl Script for Timing and Power Closure - <u>AR 76056</u>

Largest Dependency on user input out of all Design Closure steps

User application Power Delivery, Ambient and Thermal solution information critical

Thermal Data should be used to refine Power Estimation Ensuring a successful Power Delivery and Board design

Power impacts every design

If not correctly addressed can have the largest Time To Market Impact

XILINX®

Thank You

Additional Resources

- Xilinx Power Page Xilinx.com/power
- Vivado Power Analysis & Optimization User Guide UG 907
- UltraFast Design Methodology User Guide UG949
- Vivado Design Suite Tcl Command Reference Guide UG835
- Xilinx Power Estimator User Guide
 - Versal ACAP UG1275
 - UltraScale Plus <u>UG440</u>
- Power & Thermal Checklist <u>AR 76055</u>
- Tcl Script for Timing and Power Closure <u>AR 76056</u>