
© Copyright 2021 Xilinx

Vivado Adapt 2021
Design Closure
Methodology, tips, and tricks for achieving better Quality-of-Results (QoR)

Feb 11, 2021

© Copyright 2021 Xilinx

Design Closure Sessions

2

Session 1

Methodology, tips, and tricks for achieving better Quality-of-Results

Session 2

Using Timing Closure Assistance tools to address tough timing issues

Session 3

Power Constraints, best practices for an accurate Report Power estimation

© Copyright 2021 Xilinx

Agenda - Methodology, Tips, and Tricks

3

Vivado Tool and Methodology Updates

Synthesis

 Key Synthesis Features (2020.X)

 Tips and Tricks

Implementation Updates

 Key Implementation Features (2020.X)

 Versal Implementation Guidelines

© Copyright 2021 Xilinx

Tool and Methodology Updates

4

© Copyright 2021 Xilinx

Vivado Compile Time Improvements

5

Synthesis speedup

 2020.1: Constant RTL function compile times reduced to tiny fraction of 2019.2 time

 2020.2: Average 20% overall improvement compared to 2020.1 (Versal devices)

Placer 20% average speedup on SSI designs with UltraThreads

 Initial support (2020.2): enabled for Default, RuntimeOptimized, and Quick directives

 Planned improvements (2021.x): enabled for other directives using
place_design -ultrathreads

 Use with general.maxThreads >= number of SLRs

Router 33% average speedup in 2020.2 compared to 2019.2

 Major initialization tasks are now completed offline

 Improved SLR crossing routing algorithms

© Copyright 2021 Xilinx

Incremental Synthesis

6

HDL Synthesis Implementation
Reference

Run

Synthesis ImplementationHDL

DCP Reuse

Incremental

Run

Synthesis ImplementationHDL

DCP Reuse

Incremental

Run

Changes

Changes

Time

Bitstream

Bitstream

Bitstream

• Incremental Compile includes Synthesis, runs almost twice as fast!

• Setup in Synthesis Options or use read_checkpoint -incremental --- See UG901

© Copyright 2021 Xilinx

New Methodology Checks

7

UltraFast Methodology checks are built into

Vivado reports

 Access under Reports menu or Tcl command
report_methodology

 Automatically generated in Vivado projects

Review and correct or waive warnings and

critical violations!

Rule ID Severity Description

XDCB-6 Advisory Timing constraint pointing to hierarchical pins

TIMING-54 Critical Warning Scoped false path or clock group constraint between clocks

TIMING-56 Warning Missing logically or physically exclusive clock groups constraint

Recently added checks in 2020

© Copyright 2021 Xilinx

Help -> Leave Feedback

Community Forums

 Discussions

 Categories for all tools

 Experts and other users

 Design Blogs

 Written by Xilinx experts

 Most new features are introduced in blogs

 Leave comments at end!

Vivado: Feedback, Discussions, and Blogs

8

© Copyright 2021 Xilinx

Tool and Methodology Takeaways

9

Enable Incremental Synthesis with Incremental Compile to speed up iterations

Review Methodology Reports and correct or waive warnings and critical

violations

Share feedback on Vivado, join online forum discussions, and review and

comment on our blogs

© Copyright 2021 Xilinx

Key Synthesis Features (2020.X)

10

© Copyright 2021 Xilinx

Expanded Language Support

11

VHDL-2008 IEEE fixed-point and floating-point packages

 Now can target both packages using ieee statements instead of using an intermediate file

 use ieee.float_pkg.all;

 use ieee.fixed_pkg.all;

SystemVerilog: constant strings

 Strings can be used as parameters/localparams where the size of the string is fixed (Not to
be used in logic)

 Support for methods Len(), Getc(), Toupper(), Tolower(), Compare(), Atopi(), Atohex(),
Atooct(), Atobin(), Atoreal()

Mixed language support - passing generics and parameters in between VHDL

and Verilog improved

 Can handle multidimensional arrays/records/structs

© Copyright 2021 Xilinx

Maps to a mix of LUTRAM, Block RAM, and UltraRAM for highest efficiency

 2020.1: HDL attribute ram_style=mixed added

 2020.2: Pipeline register mapping

 2021.1: Planned support for XPMs

Heterogeneous RAM Mapping

12

URAMURAM

URAMURAM

5184x128
URAM URAM

Example:

5184x128 array

4 URAMs

holds 8192x144

so portions are

wasted

2 URAMs

4 BRAMs

128 LUTRAMs ~

8 SLICEs

Heterogeneous

Mapping:

Note: report_ram_utilization reports

bit utilization percentage (depth x width util)

5184x128

© Copyright 2021 Xilinx

Logic Compaction Optimization

13

Reduce slice utilization of low-precision arithmetic

Available globally as a directive or per-hierarchy

using BLOCK_SYNTH cell property

Supports both CARRY and LOOKAHEAD (Versal)

Versal example:

9x9 Multiply-Add, 3 stages

Default: timing-optimized

240 LUTs, 12 LOOKAHEADs

49 Slices

Smaller with Logic Compaction

186 LUTs, 27 LOOKAHEADs

40 Slices

© Copyright 2021 Xilinx

Ease of Use Enhancements

14

SRL_STYLE for static shift registers becomes a global

option, additional usage now includes:

 Hierarchical cells
set_property BLOCK_SYNTH.SRL_STYLE REG_SRL [get_cells mod_inst]

 Tcl command
synth_design –top <top_name> -srl_style reg_srl_reg ...

Override KEEP and DONT_TOUCH in RTL code

 Set KEEP or DONT_TOUCH false in XDC to optimize away

 Useful when RTL code cannot be modified

If used in XDC files, limit USED_IN to Synthesis - will generate critical

warnings in Implementation due to constraints applied to optimized nets

Value Style

register no SRL, all FFs

srl SRL only

srl_reg SRL->FF

reg_srl FF->SRL

reg_srl_reg FF->SRL->FF

block block RAM

HDL:

Synthesis XDC:

© Copyright 2021 Xilinx

Fewer Block RAM aspect ratios: 8kx4, 16kx2, 32kx1 not supported

UltraRAM initialization is supported, more aspect ratios: 8kx16, 16kx8, 32kx4

Synthesizing for Versal: RAM Mapping

15

Depth Width UltraScale+ Versal
210 (1k) 32 1 1

211 (2k) 16 1 1

212 (4k) 8 1 1

213 (8k) 4 1 2

214 (16k) 2 1 4

215 (32k) 1 1 8

Block RAMs vs array sizes

Depth Width UltraScale+ Versal
212 (4k) 32 1 1

213 (8k) 16 2 1

214 (16k) 8 4 1

215 (32k) 4 8 1

UltraRAMs vs array sizes

© Copyright 2021 Xilinx

Synthesizing for Versal: DSP Block Mapping

16

Complex Multiplier: 18x18 in 2 DSP blocks (3 required for UltraScale+)

Dot Product: single DSP block holds 3 9x8 signed multiply-add

See Language Templates

Floating point modes:

DSPFP32 instantiation required

See AM004 for further details on Versal DSP

© Copyright 2021 Xilinx

Synthesis Tips & Tricks

17

© Copyright 2021 Xilinx

Optimizing a Critical Multiplexer 1/2

18

Multiplexer in the critical path

 Select path driven by counter->comparator

 Mux inputs are driven by adder-subtractor

Can the multiplexer be optimized further?

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

© Copyright 2021 Xilinx

Optimizing a Critical Multiplexer 2/2

19

Trick: replace counter - comparator with one-hot shift

register

 No complex decode logic, single bit for mux selection

 Long shift register can be mapped to SRLs (LUTRAMs)

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

Version LUTs FFs WNS Critical Path

Original 24 56 -0.298 ns FF -> LUT -> 2 LOOKAHEADs -> FF

Modified 24 49 0.232 ns FF -> 2 LOOKAHEADs -> FF

© Copyright 2021 Xilinx

Optimizing Logical Comparisons 1/2

20

Comparing two bit vectors: count and din

 Is count >= din?

 Critical path: add-sub -> 3-input mux -> comparator

How can the critical path be improved?

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

© Copyright 2021 Xilinx

Optimizing Logical Comparisons 2/2

21

Trick: move final comparison before 3-input mux

 3 comparators in parallel, area tradeoff

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

Version LUTs FFs WNS Critical Path

Original 25 23 -0.501 ns FF -> LOOKAHEAD -> LUT -> 2 LOOKAHEADs -> FF

Modified 42 23 0.311 ns FF -> 2 LUTS -> LOOKAHEADs -> FF

count + 1 >= din
count - 1 >= din
count >= din

count_next >= din

© Copyright 2021 Xilinx

Key Synthesis Takeaways

22

New features help you use device resources more efficiently

 Logic Compaction for low-precision arithmetic

 RAM_STYLE = mixed for heterogeneous RAM mapping

Remember key differences when migrating to Versal

 Versal has more UltraRAM capabilities, fewer BRAM options

 Versal DSP block natively supports complex multiplication and dot products

To improve critical paths, look at the Elaborated Design and think of ways to

improve the data flow

© Copyright 2021 Xilinx

Key Implementation Features (2020.X)

23

© Copyright 2021 Xilinx

Pblocks are Treated as Soft By Default

Soft Pblocks have been supported since Vivado 2019.1

 In 2020.2 Pblocks are treated as Soft by default and are honored until
Physical-Synthesis-In-Placer in Global Placement

 Reduces need to update pblocks when changing design

 Reduces pblock restriction on congestion handling in rest of placer flow

 Allows all physical optimizations (PSIP, phys_opt_design)

DFX parent & child pblocks = hard by default
 HD.ISOLATED

 HD.RECONFIGURABLE

 HD.TANDEM

 HD.TANDEM_IP_PBLOCK

 HD.RECONFIGURABLE_CONTAINER

User constraint IS_SOFT=FALSE carried forward in DCPs from

previous Vivado releases when loaded in Vivado 2020.2

Hard Pblocks

Soft Pblocks

24

© Copyright 2021 Xilinx

Physical-Synthesis-In-Placer (PSIP) Improvements

25

Equivalent Driver Re-wire Optimization

 Loads are redistributed between logically-equivalent drivers based
on their placements

 Helps reduce routing resource utilization and congestion

After rewiring it is possible that some inputs of a LUT are

connected to the same net and LUT reduction can result

© Copyright 2021 Xilinx

PSIP Replication Properties

26

MAX_FANOUT_MODE and

FORCE_MAX_FANOUT allow user to direct

replication in PSIP

 Works for FF and LUT

For replication of drivers with far-apart loads

 MAX_FANOUT_MODE values

 MACRO (Block RAM, UltraRAM, DSP)

 CLOCK_REGION

 SLR

© Copyright 2021 Xilinx

MAX_PROG_DELAY Capped For SLR Crossing
Performance

27

Placer limits MAX_PROG_DELAY for UltraScale+ devices

 Minimizes clock skew on SLR crossing when balancing clock network delays

 USER_MAX_PROG_DELAY property allows user to cap delays further if required

Clock Utilization Report shows programmable delays used for each clock

© Copyright 2021 Xilinx

Versal Implementation Guidelines

28

© Copyright 2021 Xilinx

Versal Changes to Fabric

Versal has a Uniform fabric

 Half of LUTs in every CLB are LUTRAM/SRL capable

 Even Block RAM & UltraRAM distribution

Simplified CLB architecture with fast LUT cascade

 No F7/F8/F9 muxes

 CARRY8 replaced by LOOKAHEAD8 and LUTCY

 Fast LUT cascade

 More LUT combining options

To take full advantage of the architectural changes need to re-synthesize

 Remove instantiated legacy primitives and synthesis attributes

 Re-targeting prior architecture netlist will result in sub-optimal implementation

29

© Copyright 2021 Xilinx

UltraScale+ uses 8 logic levels, 6 routes with CARRY8s

 Datapath delay = 3.822 ns

Comparing CARRY8 vs. LOOKAHEAD8/LUTCY

30

Versal uses 10 logic levels but still only 6 routes with LOOKAHEAD8s

 Datapath delay = 3.635 ns

Above results require re-synthesis of RTL

© Copyright 2021 Xilinx

Versal Multi-Clock Buffer - MBUFG

31

Versal supports a new Multi-Clock Buffer (MBUFG) that generates up to 4

output clocks from a single input clock

 Output clocks are /1, /2, /4, and /8 versions of input clock

MBUFG versions exist for BUFGCE, BUFGCE_DIV, BUFG_PS, BUFG_GT

and BUFGCTRL

MBUFG is a logical buffer with 4 outputs (O1, O2, O3, O4)

 Physical implementation uses BUFG* and BUFDIV_LEAF leaf clock dividers

 BUFDIV_LEAF buffers are driven by horizontal clock distribution and are the final clock buffer for fabric loads
(CLB, DSP, BRAM, URAM) and most hard-IP blocks (GTYP_QUAD, MRMAC, etc.)

© Copyright 2021 Xilinx

Versal MBUFG For Synchronous CDC

MBUFGCE

 Common node closer to path

 Inter Clock Skew ~ 0.174ns

 Inter Clock FMAX > 600 MHz

Parallel BUFGCE

 Common node at driver

 Can be far away if driver in XPIO
clock region or GT Column

 Inter Clock Skew > 0.500ns

 Inter Clock FMAX < 500 MHz
32

© Copyright 2021 Xilinx

MBUFG Transform In Logical Optimization Phase

opt_design –mbufg_opt for global transformation of parallel BUFG -> MBUFG

MBUFG_GROUP property allows for targeted transformation

 Set precedents over which BUFG* should get converted to MBUFG*

Transformations are prevented if timing constraints could result in mismatch

set_property MBUFG_GROUP group1 [get_nets -of [get_pins {u_buf0a/O u_buf1a/O u_buf2a/O u_buf3a/O }]]

MBUFG_GROUP property

applied here

33

© Copyright 2021 Xilinx

Clocking Wizard Support for MBUFG

34

Inferred MBUFGCE

1. Select Output

Frequencies that

are /1, /2, /4, /8

2. Select “Buffer” or

“Buffer with CE”

as clock driver

Instantiated MBUFGCE

1. Select “MBUFGCE”

as clock driver

/1

/4
/8
/2

© Copyright 2021 Xilinx

Real World Example Of QoR Improvement with MBUFG

WNS went from -1.737ns to timing closed!

 impl_1_AIE2PLFP WNS=-1.737ns

 Default strategy implementation

 impl_2 WNS=0.024ns

 Default strategy implementation

 MBUFG transform using MBUFG_GROUP constraint

35

© Copyright 2021 Xilinx

Top Takeaways

36

Run methodology reports, review and fix critical violations and warnings

Synthesis has many options to drive improved results. In addition, you can

develop your own bag of tricks to fine tune critical logic

Vivado placement has very comprehensive replication to improve QoR, both

automatic and user-driven

Versal architecture brings many improvements over prior architectures, be

aware of key differences

 Re-synthesize for optimal results, and recode if necessary

 Take advantage of new capabilities like MBUFG, URAM initialization, DSP complex and dot-
product modes

© Copyright 2021 Xilinx

Where to Find More Information

37

User Guides on xilinx.com

 UG901 - Synthesis

 UG904 - Implementation

 UG906 - Design Analysis & Closure

 UG949 - UltraFast Methodology

Xilinx Community Forums

 Vivado RTL Development

 Blogs: Design and Debug Techniques

© Copyright 2021 Xilinx

Thank You

