
© Copyright 2021 Xilinx

Dynamic Function eXchange
featuring Abstract Shell

David Dye

Xilinx Adapt

February 2021

© Copyright 2021 Xilinx

Agenda

Vivado Dynamic Function eXchange (DFX) solution

New DFX flow capabilities

 Nested DFX

 Abstract Shell

Customer Testimonial – Abaco Systems

Forthcoming DFX Solutions

 Block Design Containers

 Versal DFX

>> 2

© Copyright 2021 Xilinx

Xilinx DFX Solution Overview

© Copyright 2021 Xilinx

Dynamic Function eXchange Overview

Expand System Flexibility

 Swap functions on the fly

 Perform remote updates while system is operational

Cost and Size Reduction

 Time-multiplexing hardware requires a smaller FPGA

 Reduces board space

 Minimizes bitstream storage

Deploy Dynamic Systems

 Dynamically load accelerated functions

 Change features to systems in the field

>> 4

© Copyright 2021 Xilinx

Vivado DFX Tool Flow

In-context multi-pass hierarchical place and route solution

 First pass: route static plus one Reconfigurable Module (RM) per Reconfigurable Partition (RP)

 Remaining passes: route new RMs in context of locked static image

 Floorplan required to identify static vs. dynamic resources

Partitioning, Floorplanning

RP_color RP_pos

RM_orig

RM_rev

RM_allc

RM_gray

RM_sepia

Static Logic

Static Logic

RP_color
RP_pos

Implementing Configuration

RM_origRM_allcSTATIC
Storing Results

To Implement Next Configuration

RM_graySTATIC RM_rev

Implementing Configuration
Storing New Results

import

implement implement

preserved

implemented implemented

>> 5

© Copyright 2021 Xilinx

New DFX Solution Capabilities

© Copyright 2021 Xilinx

DFX within DFX: Subdivide an existing DFX region into multiple lower-level DFX regions

 Implementation flow follows hierarchical order

 Change scope of static / reconfigurable boundary down to a lower level

New in Vivado 2020.1 for UltraScale and UltraScale+ devices

 Tcl script only; project mode support on roadmap

Nested DFX – Expand Silicon Flexibility

2nd order implementation, ver 11st order implementation 2nd order implementation, ver 2

RP: A

RM: A0

RP: A

RM: A0

RP: A

RM: A1
RP: W

RM: W2

RP: Z

RM: Z2

RP: X

RM: X2

>> 7

© Copyright 2021 Xilinx

Nested Dynamic Function eXchange

Technology enables Dynamic Platforms

D
E

C
O

U
P

L
IN

G

PCIe

Base

Platform

Reconfigurable

Partition

D
E

C
O

U
P

L
IN

G

D
E

C
O

U
P

L
IN

G

Provider

Dynamic

Platform

VER1: XDMA

User Dynamic Region

VER1:

Search Algorithm

Provider

Dynamic

Platform

VER2: QDMA

User Dynamic Region

VER2:

Crypto Algorithm

User Dynamic Region

VER3:

Video codec

Channel 1 Channel 2Channel 1

>> 8

Reconfigurable Partition

D
E

C
O

U
P

L
IN

G

Provider

Dynamic

Platform

User Dynamic Region A D
E

C
O

U
P

L
IN

G

User Dynamic Region B

© Copyright 2021 Xilinx

Abstract Shell for DFX

Abstract Shell = Static Design limited to a minimal

interface around target Reconfigurable Partition

 Everything needed to implement Reconfigurable Modules must
be included in DCP

Key Solution Details

 Write complete RP interface (logical, physical) in Abstract Shell

 Must achieve sign-off timing from Abstract Shell environment

 Generation of partial bitstreams from Abstract Shell environment

Key Benefits

1. Faster runtime and lower memory usage

2. Compile all Reconfigurable Modules in parallel

3. Hide proprietary static design information

4. Bypass IP license check tags for static design

Production release in Vivado 2020.2 for UltraScale+

Workspace

Abstract Shell

Shell

Workspace

Licensed

IP

Proprietary

Design

>> 9

© Copyright 2021 Xilinx

Standard DFX flow vs Abstract Shell flow

write_abstract_shell –cell

<RM cell> abs_shell.dcp

add_files abs_shell.dcp

add_files rm2_synth.dcp

link_design

#Implement

update_design –black_box

–cell <RM cell>

lock_design –level routing

write_checkpoint –force

static_bb.dcp

add_files static_bb.dcp

add_files rm2_synth.dcp

link_design

#Implement

Standard DFX flow

Abstract Shell flow

Routed DCP after

first implementation

Intermediate DCP to second implementation Second Implementation

Routed DCP

Update_design and

lock_design routines

embedded in

write_abstract_shell

Identical first

implementation flow

Identical second

implementation flow,

but different starting

checkpoint

>> 10

© Copyright 2021 Xilinx

Abstract Shell Reduces Implementation Runtime

Average improvement across varied suite: 3X faster

Runtime improvements depend on (static + RM) design size

 Alveo platforms have smaller static portions compared to general DFX (e.g. Customer A) designs

 Second order dependencies: Isolation of RM from static, tool algorithm heuristics

 Memory Usage: 10x Design Checkpoint (.dcp) size reduction

0.00

5.00

10.00

15.00

20.00

25.00

0:00:00

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

7:12:00

Im
p

ro
v
e

m
e

n
t
a

n
d

 S
iz

e
 (

X
)

R
u

n
ti
m

e

Full Shell Vs Abstract Shell
Geomean: > 3X

FullShell Abstract Shell Full / Abs runtime Full / Abs (RM + static) size

Customer A – 6X Alveo – 1.8X

>> 11

© Copyright 2021 Xilinx

Customer Example Design

VCU118 (VU9P) design

 3 SLR device, 1 RP

 2 memory interfaces + PCIe

 File size 331 MB

Full Shell (locked static)

 File size 266 MB

 97 min to implement RM

 21385 MB peak memory

Abstract Shell

 File size 10 MB

 27 min to implement RM

 14446 MB peak memory

>> 12

© Copyright 2021 Xilinx

More Examples of Customer Designs

Full Shell

RM result

Abstract Shell

RM result

>> 13

© Copyright 2021 Xilinx

Multi-User Scenario – Secondary User Programming Path

 Primary Customer shares Abstract Shell checkpoint and static design bitstream

 Runtime details (e.g. Decoupling) managed in static design and loading firmware

 All must be updated if anything in shell is updated, unless part of shell is in a second RP

 IMPORTANT: Primary customer must have redistribution rights for any IP in static design

 Secondary Customer programs first with delivered static bitstream

 Then with their own partial bitstreams

Shell

Empty

Workspace

Licensed

IP

Proprietary

Design

Workspace

Abstract Shell

Static + Grey Box Bitstream (full device)

Abstract Shell DCP

Partial Bitstreams

Primary User

Secondary User

>> 14

© Copyright 2021 Xilinx

Forthcoming DFX Solutions

© Copyright 2021 Xilinx

Block Design Containers in IP Integrator

Instantiate or create one Block Design

inside another

 Enables Modular Design for reusability

 Allows Team Based Design

 Enables DFX Flow

Block Design Container capabilities

 Build designs bottom-up or top-down

 Load different versions to active status

 Differentiate between synthesis and simulation

 Modify address information from top level

>> 27

© Copyright 2021 Xilinx

Block Design Containers enable DFX

BDC can be set as Reconfigurable

 Establishes logical instance with multiple
design variants

Use DFX Wizard to manage system

 Define Configurations

 Create and Manage Runs

 Set strategies and options

>> 28

© Copyright 2021 Xilinx

Key Advancements in Versal for DFX

>> 29

Configuration Performance Increase

 Maximum bandwidth 8X faster than Zynq US+ MPSoC (6.4GByte/sec)*

 Capable of reconfiguring 1M logic cells in under 8ms

Hardened Memory Controllers + DDRIO moved to periphery

 Memory controllers remain active while fabric is reconfigured

 Moving DDRIO out of fabric improves ease of floorplanning

Hardened PCIe + DMA

 PCIe enumerated with minimal programming

 PCIe can remain active during reconfiguration

Floorplan granularity twice as fine

 Programming images aligned to half clock region height

* When using an external interface such as PCIe, DDR memory, etc.

© Copyright 2021 Xilinx

Versal DFX – Network on Chip (NoC)

NoC can be split between static and reconfigurable functions

 Any static part of the NoC continues to operate during reconfiguration

 One or more endpoints and associated paths can be reconfigured

NoC Represented as multiple instances of Hierarchical IP

 Each instance represents a subset of the master and slave units

 Each instance is customized individually to specify number
and type of ports, connectivity and QoS

INI connects different sections of NoC

 Logical/physical boundary established

Quiescing traffic occurs automatically

during reconfiguration

>> 30

© Copyright 2021 Xilinx

Platform remains operational at all times

Remainder of the device is the

reconfigurable area or “Workload”

The Platform may consist of:

 PS/PMC

 PCIe (CPM) with XDMA

 GTs + XPIPE

 DDR Memory Interface
(XPIO/XPHY/XPLL/DDRMC)

 AXI Connections to fabric and AIE through NoC

 Note: These elements must be configured initially

through a primary boot interface such as QSPI

Platform/Workload Model

>> 31

Platform

© Copyright 2021 Xilinx

Dynamic Function eXchange Resources

From the Xilinx.com home page:

 Products

 Hardware Development

 Vivado Design Suite,

 then click Dynamic Function eXchange

Resources available:

 Documentation

 Tutorials

 Application Notes

 IP Product Guides

 Videos

DocNav

Design

Hub

>> 32

https://www.xilinx.com/products/design-tools/vivado/implementation/dynamic-function-exchange.html#trainingSupport

© Copyright 2021 Xilinx

Thank You

