

Xilinx ML Solutions

Jon Cory Xilinx ML Specialist

- ▶ How are We Different?
- Vitis and Vitis-AI
- Vitis-AI design flow
- Deployment
 - Edge
 - Cloud
- Getting started
- Not just CNNs..

- ▶ How are We Different?
- Vitis and Vitis-Al
- Vitis-Al design flow
- Deployment
 - Edge
 - Cloud
- Getting started
- Not just CNNs..

How are We Different?

Competing GPU ZCU104 (2 * B4096 @ 300MHz (21 TOPS INT8) V1.4.1, 2.46TOPS INT8) Model Efficiency Efficiency Efficiency Efficiency Batch=1 Batch>1 Thread = 1Thread > 1 Inceptionv4(299x299), 24.5G 28.2% 30.1% 32.8% 58.4% Resnet-50(224x224), 7.74G 19.9% 29.8% 24.5% 44.7% SSD Mobilenet-V1(300x300), 5.7% 9.3% 9.3% 33.1% 2.47G VGG-19(224x224), 39.28G 10.8% 31.2% 29.4% 54.0%

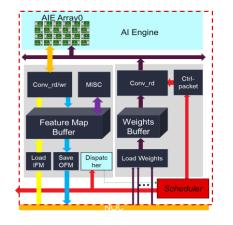
Chip Down Design

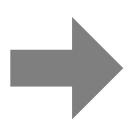
- •Form Factor Control
- •BOM Control (PPAP, etc.)
- •EMI/EMC
- Cost Control
- •AECQ100

2-3x

Efficiency

Improvement


- Scalable Portfolio
- Pin Compatible Packages

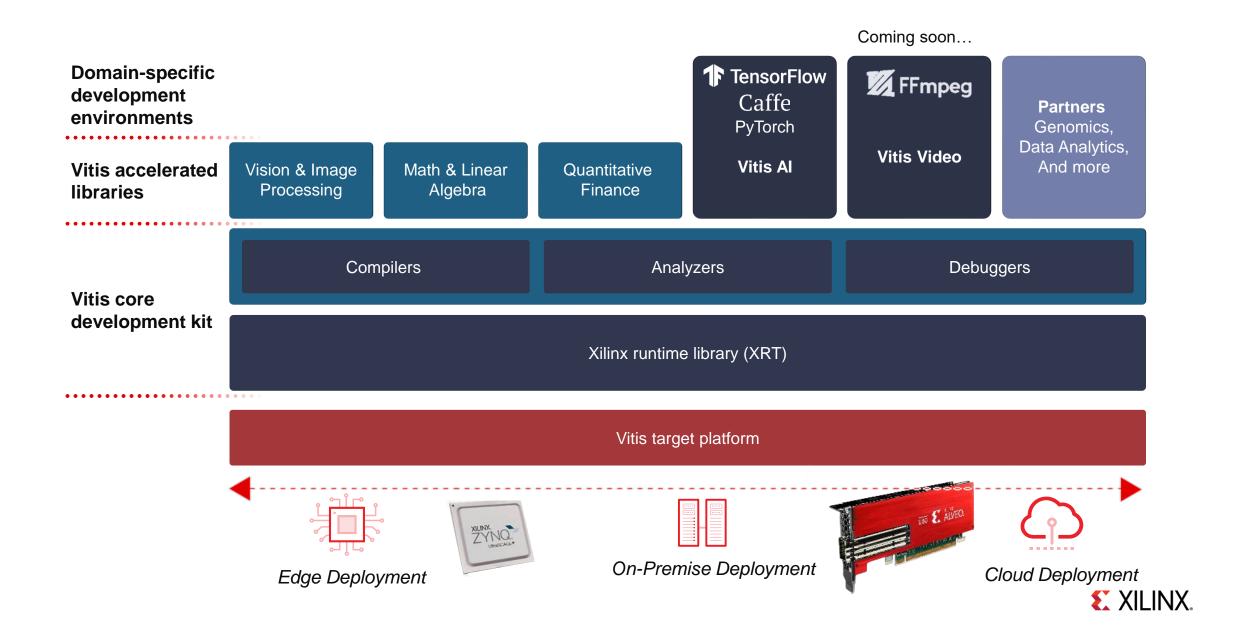

Custom, Flexible, Low Latency Acceleration, Fusion, & Interfaces

Performance on Versal Al Core Series (Al Edge use case)

87% Higher Performance, 19x Lower Latency Than Nvidia Jetson AGX Xavier

ResNet50 v1.5	Versal Al Core (96 AIE, 3DPU, 32T)		NVidia AGX Xavier (32T)
Performance	1567 FPS ———	87% Higher	→ 879 FPS
Latency	7.6 ms ———	_ - 19x Lower <i>-</i>	145.7 ms

Our Differentiators


- Al Engines and DPU design for high compute efficiency
- Cacheless memory hierarchy for determinism and low latency
- High bandwidth IO to remove IO bottlenecks

NETWORK	BATCH SIZE	PERF (img/sec)	LATENCY (ms)
ResNet-50	1	358	2.8
ResNet-50	2	508	3.9
ResNet-50	4	634	6.3
ResNet-50	8	717	11.2
ResNet-50	16	767	20.9
ResNet-50	32	841	38.0
ResNet-50	64	869	73.6
ResNet-50	128	879	145.7

- ▶ How are We Different?
- Vitis and Vitis-AI
- Vitis-Al design flow
- Deployment
 - Edge
 - Cloud
- Getting started
- Not just CNNs..

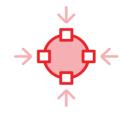
Vitis Unified Software Platform

Vitis AI: Deep Learning Acceleration

TensorFlow Caffe OPyTorch **!!**tvm **Frameworks** Vitis Al models Al Optimizer Al Quantizer Al Compiler Al Profiler **Al Library** Vitis Al development kit Xilinx runtime library (XRT) **Deep Learning Processing Unit CNN DPU** LSTM DPU MLP DPU (DPU)

Develop: Use Extensive, Open Source Libraries

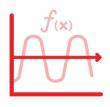
Domain-Specific Libraries


Vision & Image

Quantitative Finance

Data Analytics & Database

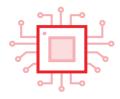
Data Compression



Data Security

Partner Libraries

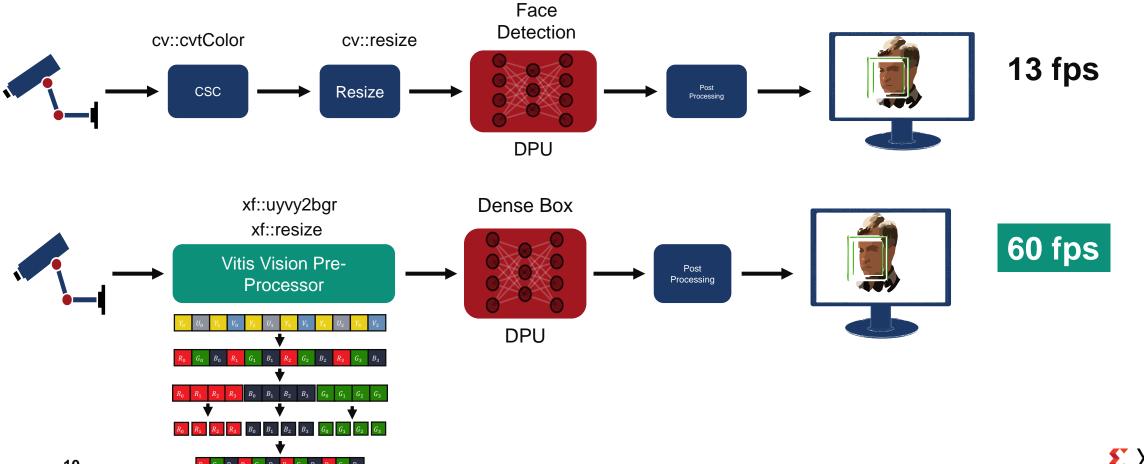
Common Libraries


Math

Linear Algebra

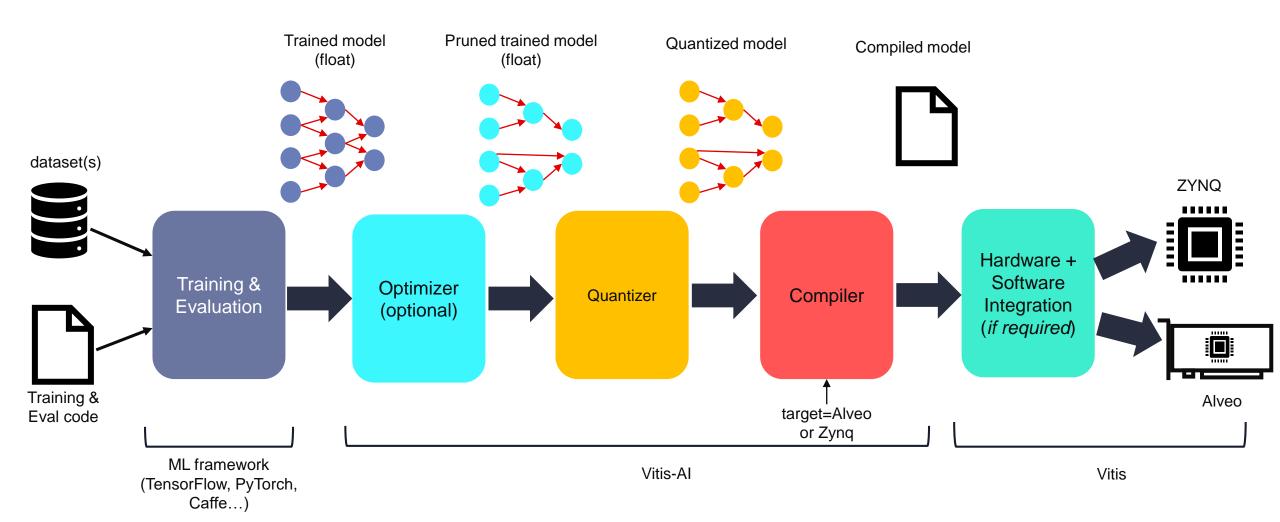
Statistics

DSP

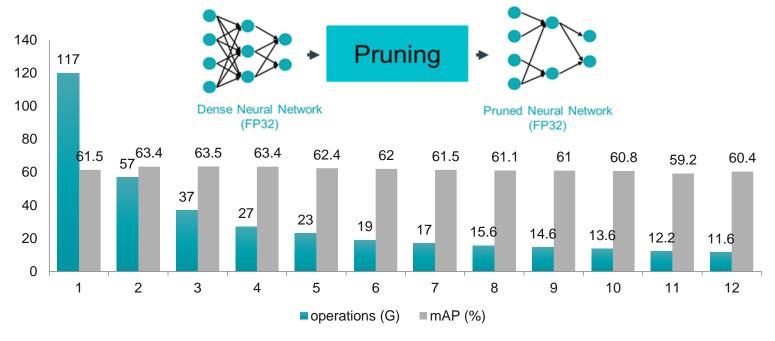

Data Management

500+ functions across multiple libraries for performance-optimized out-of-the-box acceleration

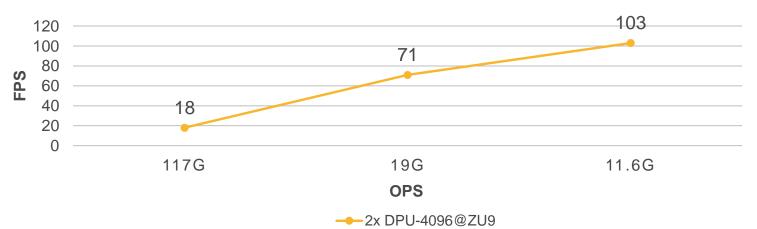
Preprocess Acceleration with Vitis Vision Library


Design captures 1080p60 camera data, runs a neural network inference, and displays the results on a monitor.

- ▶ How are We Different?
- Vitis and Vitis-Al
- Vitis-AI design flow
- Deployment
 - Edge
 - Cloud
- Getting started
- Not just CNNs..

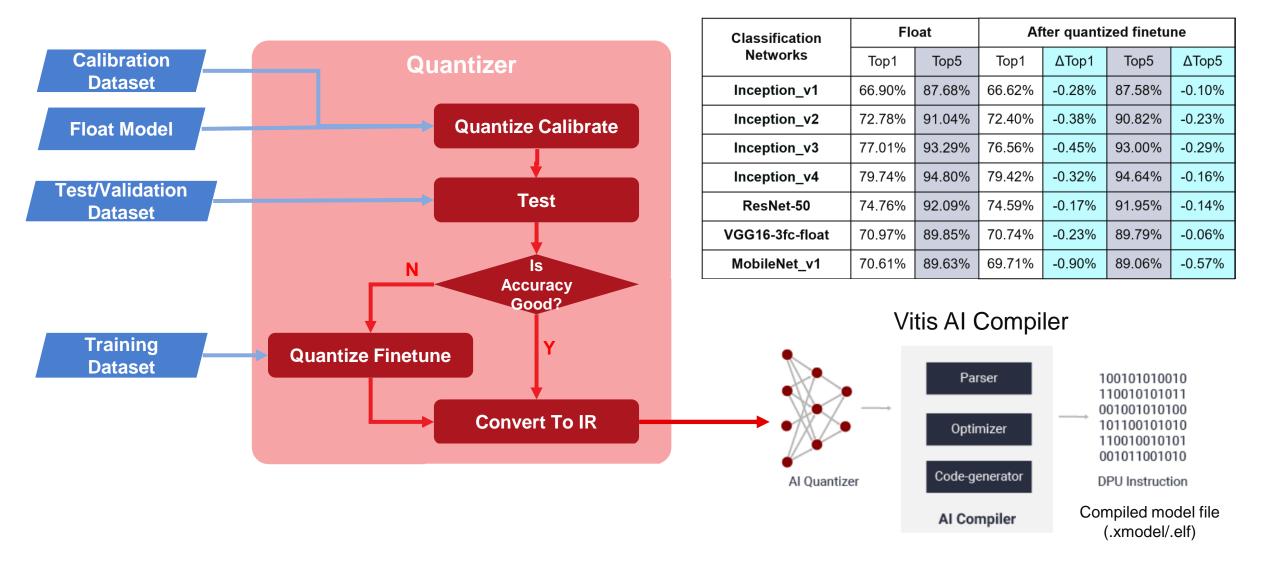


Unified Edge/Cloud Development Flow

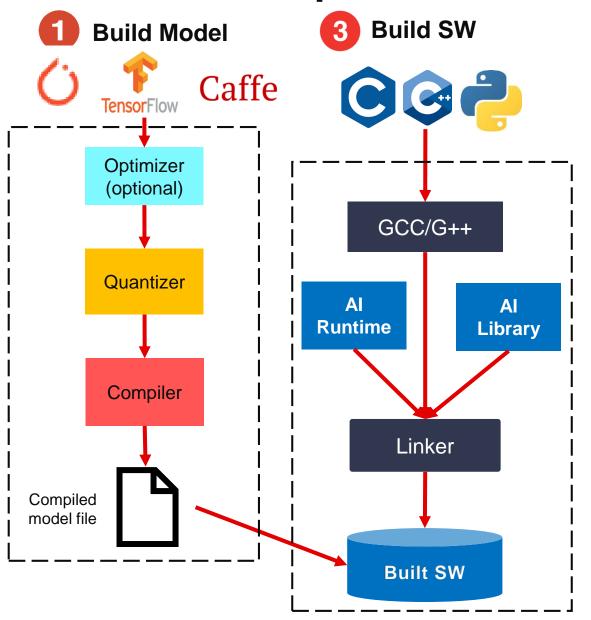


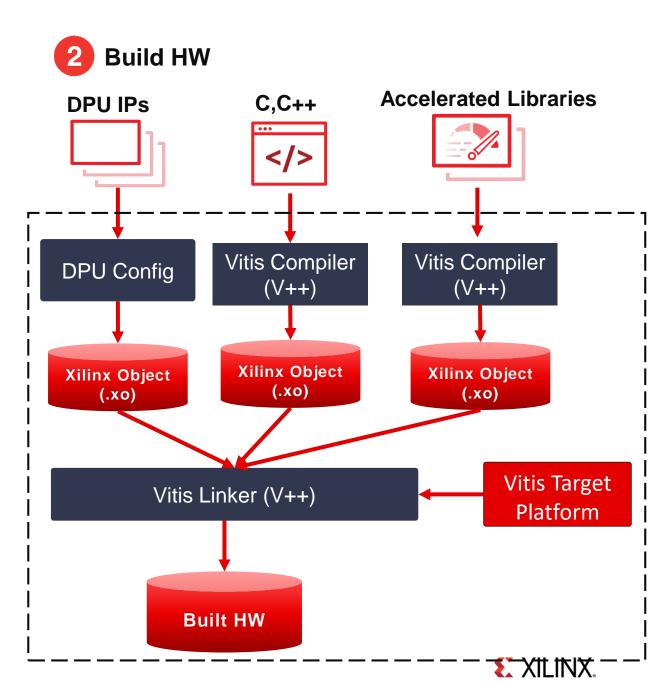
Vitis AI Optimizer

Performance Speedup

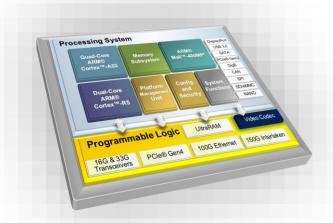


SSD+VGG @ Surveillance 4 Classes




Vitis AI Quantizer and Compiler

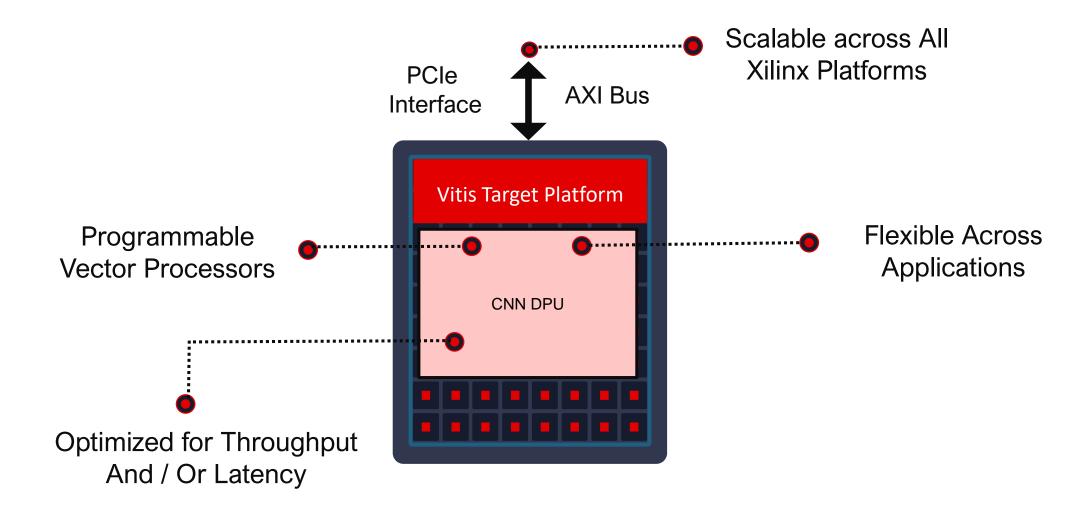
Vitis AI Development Flow



- ▶ How are We Different?
- Vitis and Vitis-Al
- Vitis-Al design flow
- Deployment
 - Edge
 - Cloud
- Getting started
- Not just CNNs..

Target Platforms

- Edge
 - Zynq family with built-in ARM processors
 - Zynq MPSoC: Quad Cortex-A53 + dual Cortex-R5
 - Zynq-7000: Dual Cortex-A9 for Zynq-7000
 - H.264/265 Video Codecs
 - ideal for streaming video
 - ARM Mali-400 GPU and DisplayPort outputs
 - Multiple high-speed interfaces
 - PCIe, USB3, Gigbit Ethernet, SATA, MIPI...


Cloud/DataCenter

- Xilinx provides the Alveo Family of PCI Express accelerator cards
- Vitis-Al 1.2 currently supports
 - U50, U50LV, U280, U200, U250
 - U25 support coming soon
- Users can download the Xilinx provided DPU configurations directly over the PCIe connection
- No hardware development necessary

..or can mix Xilinx DPU IP with custom logic

Deep Learning Processing Unit (DPU)

CNN DPUs for 16/28nm

HIGH

THROUGHPUT

Latency optimized

- Alveo U280 /U50
- Optimized for MobileNet-like models and HBM devices
- Extreme low latency with highresolution images

- Alveo U200 / U250
- Optimized for 100% INT8 models and ResNet/Inception Models
- Optimized for pruned models
- High Throughput at medium latency

Throughput optimized (HBM)

- Alveo U280 / U50
- Optimized for ResNet/Inception models and HBM devices
- · Low-cost and high power efficiency solution

Scalability optimized (DDR)

- Zynq-7000, ZU+ MPSoC
- Support popular CNN models
- Scalable with power & cost

LOW

LATENCY

- ▶ How are We Different?
- Vitis and Vitis-Al
- Vitis-Al design flow
- Deployment
 - Edge
 - Cloud
- Getting started
- Not just CNNs..

How to get Vitis-Al

- Clone or download it from GitHub
- Vitis-AI tools are provided as Docker containers
 - Includes:
 - ML frameworks
 - Vitis-Al tools
 - Default version does not include Optimizer (pruning)
 - Two versions available
 - CPU only: Does not require a GPU card.
 - GPU support: Includes CUDA 10 and CuDNN 7 accelerates quantization phase and allows training to be done from inside Vitis-AI.
 - Either download prebuilt Docker images or build them yourselves
 - All Docker recipes are provided

Everything available from GitHub: https://github.com/Xilinx/Vitis-Al

Vitis-Al Model Zoo

- A collection of pre-trained models ready to be deployed
 - Includes both trained floating-point model and quantized models
 - TensorFlow, PyTorch, Caffe and Darknet models
- Wide range of model types and applications
 - Classification, Segmentation, Object detection
 - license plate detection, face detection, ADAS vehicle, pedestrian detect..
- All models include test, demo and evaluation code
- Performance numbers provided for each model for different target platforms
 - ZCU102, ZCU104, U50, U280...

Performance on U50 lv10e

Measured with Vitis AI 1.2 and Vitis AI Library 1.2

▼ Click here to view details

The following table lists the performance number including end-to-end throughput and latency for each model on the Alveo USO board with 10 DPUv3E kernels running at 275Mhz in Gen3x4:

No.	Model	Name	Frequency (MHz)	E2E throughput - fps(Multi Thread)
1	resnet50	cf_resnet50_imagenet_224_224_7.7G	247.5	802.46
2	resnet18	cf_resnet18_imagenet_224_224_3.65G	247.5	1934.48
3	Inception_v1	cf_inceptionv1_imagenet_224_224_3.16G	247.5	1536.64
4	Inception_v2	cf_inceptionv2_imagenet_224_224_4G	247.5	1313.99
5	SqueezeNet	cf_squeeze_imagenet_227_227_0.76G	247.5	3451.05
6	ssd_pedestrian_pruned_0_97	cf_ssdpedestrian_coco_360_640_0.97_5.9G	247.5	755.24
7	refinedet_pruned_0_8	cf_refinedet_coco_360_480_0.8_25G	247.5	273.79
8	refinedet_pruned_0_92	cf_refinedet_coco_360_480_0.92_10.10G	247.5	574.76
9	refinedet_pruned_0_96	cf_refinedet_coco_360_480_0.96_5.08G	247.5	795.12
10	ssd_adas_pruned_0_95	cf_ssdadas_bdd_360_480_0.95_6.3G	247.5	818.22
11	ssd_traffic_pruned_0_9	cf_ssdtraffic_360_480_0.9_11.6G	247.5	570.84
12	VPGnet_pruned_0_99	cf_VPGnet_caltechlane_480_640_0.99_2.5G	275	658.99
13	FPN	cf_fpn_cityscapes_256_512_8.9G	247.5	552.17
14	SP_net	cf_SPnet_aichallenger_224_128_0.54G	275	1706.95
15	Openpose_pruned_0_3	cf_openpose_aichallenger_368_368_0.3_189.7G	220	39.68

Vitis-Al tutorials

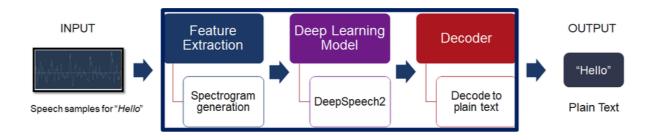
- Examples that show complete flow from training to running on an eval board
 - Written by Xilinx ML Specialists

Vitis-Al training course

- Online or instructor-led
- 16 hours of training with 5 handson labs
- Covers entire Vitis-AI design flow:

https://xilinxprod-catalog.netexam.com/Certification/45382/developing-ai-inference-solutions-with-the-vitis-ai-platform

- ▶ How are We Different?
- Vitis and Vitis-Al
- Vitis-Al design flow
- Deployment
 - Edge
 - Cloud
- Getting started
- Not just CNNs..



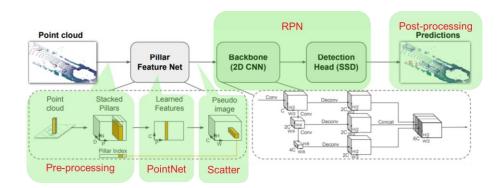
Vitis Data Analytics library

- ▶ New library in Vitis 2020.1
- Introduces ML algorithms other than just convolutional neural networks:
 - Decision Trees
 - Random Forest
 - Logistic Regression
 - Linear Support Vector Machine
 - Naïve Bayes
 - K-Means clustering

DeepSpeech2 model on Zynq

- Xilinx Engineering have implemented DeepSpeech2 on Zynq MPSoC
- Software-only and hardwareaccelerated versions available
- Conversion time is faster than speech duration time.
 - Allows for realtime speech-to-text

Vitis AI for Point Cloud 3D Detection - PointPillars


Demo specification

- > Model: Pointpillars
- > Framework: Pytorch
- > Dataset: Kitti, 64-channel, 1~2Mpoints/sec
- > 25fps (40ms latency), 1x DPU B4096 @ 300MHz on ZCU102
- > Demo available for early access customers
- > General access in Vitis AI 1.3

Features highlight

- Algorithm & SW optimized for better performance acceleration
 - Pruning applied and optimized in model structure
 - 7X computing reduced: 70Gops float → 10Gops pruned
 - 13X end-to-end performance speed-up
- > Detect multiple classes: vehicle, bicycle and people

Demo Video

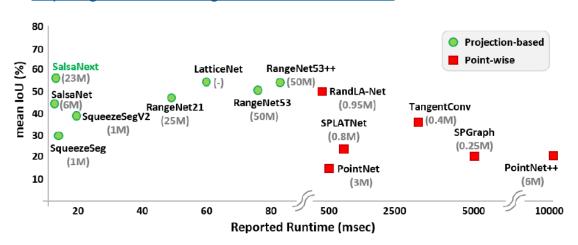
Real-time Multi-class 3D Point Cloud Object Detection - Powered by Vitis Al

Vitis Al for Point Cloud 3D Segmentation - SalsaNext

Point cloud Segmentation

Model: SalsaNext

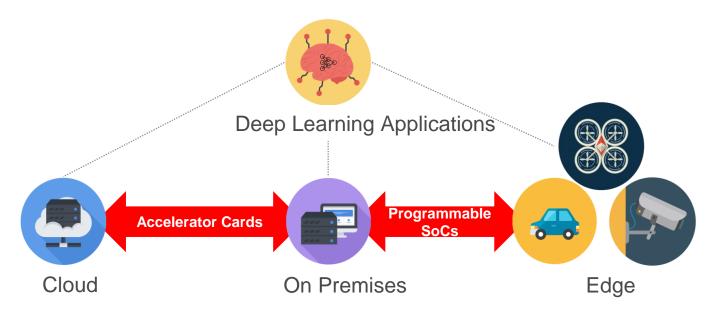
> Framework: Pytorch


> Dataset: Semantic Kitti, 64-channel

> DPU for SalsaNext: DPU supports all layers; post-processing on CPU

> General access in Vitis AI 1.3

https://arxiv.org/abs/2003.03653 https://github.com/TiagoCortinhal/SalsaNext



Summary

- Xilinx provides an easy path to machine learning inference
 - Complete toolset to go from trained neural network to deployment
 - Network compression via pruning and quantization
 - Hardware accelerator DPU IP
 - Software stack, APIs, examples, tutorials
- Programmable logic provides the perfect solution to whole application acceleration
 - ..its not just the ML network that needs to be accelerated
- Easy to scale up/down between Edge and Cloud/DC with our unified design flow and hardware platforms
 - Chip-down and Accelerator cards

Thank You

