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Abstract—Many emerging high performance embedded SoCs 
are based on accelerators ... This presents the unique problem with 
multiple peer processes and achieving the highest 
Performance/Power ... We will discuss a fitting architecture, and 
over a dozen techniques for increasing Performance/Power by 
using Power Management ... The examples will center around the 
Xilinx Zynq UltraScale+ MPSoC and Versal ACAP parts.  
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I.  INTRODUCTION 

The topic deals with Performance/Power, and reveals over a 
dozen methods to achieve it … 16 methods to be exact. 

Why didn’t you mention my favorite Power Management 
feature (e.g. Linux Driver Runtime Power Management or DDR 
Self-Refresh)? In a 30-minute talk, the purpose is not to discuss 
an exhaustive list, but a selection chosen to spark your own 
innovation, and to highlight a few clever solutions. 

So, why Performance/Power? Certainly, there are some edge 
applications that require it for considerations such as battery, 
power over Ethernet, and Energy Star compliance. But have you 
also considered Automotive, where air cooling demands low 
power modes when parked? Or considered the PCIe and other 
limits to the power spec? Or considered the total cost of 
ownership of a cloud server that includes the total power 
consumed and cooling costs? 

Performance/Power is stated to be important to our users … 
In a survey of Xilinx customers, performance/power was the #3 
reason why they chose Xilinx (Fig. 1) … 

A modern SoC can be composed of a group of processors 
and a group of accelerators. This system can already have an 
inherent Performance/Power advantage due to its optimized 
accelerators. But to increase this advantage, the challenge can be 
management of shared resources (memory, clocks, I/O) (Fig. 2). 
Which processor should be aware of the state of all the others, 
and does that one master need to stay “On” to manage? This 
challenge  

will be addressed during the discussion of the various 
Performance/Power optimization methods. 

 

 
Fig. 1. Performance/Power one of the top customer reasons for choosing 

 

 
Fig. 2. Modern SoC needs to manage shared resources 
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We will start with 11 Processing Unit (PU) methods, 
followed by 5 Programmable Logic (PL) methods, and finally 
one “bonus” method. 

II. ELEVEN PROCESSING UNIT (PU) METHODS 

A. Method 1 - Turn off what you are not using 

Ideally this can be done automatically. Your Linux drivers 
can be written so that the driver “probe” would inform the 
system that the hardware should automatically be turned on.   

https://github.com/torvalds/linux/blob/master/drivers/soc/xi 
linx/zynqmp_pm_domains.c 

B. Method 2 - Consolidate decision making 

By having one unit aware of the states of all other units, this 
simplifies the task for all the others. But that one unit must be 
“on” to control the others, so your system has that minimum 
power. Additionally, the reliability of that unit should match the 
required reliability of the system. Therefore, it makes sense to 
dedicate a low-power and triple-redundant processor to the task, 
a Platform Management Unit (PMU) (Fig 3). 

C. Method 3 - “Suspend” How far off is “Off” 

By having an external unit manage the switching, we can 
achieve a lower processor power than its Wait For Interrupt 
(WFI). In this lower power “suspend” state, we can also turn off 
peripheral devices. Additionally, we do not need to worry about 
the processor receiving an interrupt. It can be fully turned off, 
with the PMU receiving the interrupt. On interrupt, the PMU 
would power the processor back “On” and inform it that it has 
received a “Resume” rather than a “Boot” (Fig 4). 

 

 

D. Method 4 - Domain Switching saves static power 

So how do you save static power? If an entire logical block 
(processor and peripherals) is not used, and that logical block 
can be turned off at its Voltage Regulators (e.g. PMICs) it can 
be considered a Power Domain (Fig 5). This requires some 
foresight in the partitioning into Power Domains, but can save 
significant power. 

E. Method 5 - Heterogeneous Architecture 

A Heterogeneous Architecture means that a task can be 
accomplished by dissimilar Processors and/or Accelerators. This 
allows the designer to mix-and-match performance according to 
the optimum type for each sub-task. The innovation here is to 
architect the SoC so the processors and accelerators use the same 
multi-ported DDR. By sharing the same DDR, the data does not 
need to be buffer-copied when we wish to “hand off” the sub-
tasks between Processors and Accelerators (Fig 6). 

F. Method 6 - CPU Hotplug 

Multi-core processors can shut down unused cores. This 
familiar CPU concept has a place on an SoC. The SoC can also 
take advantage of the Linux “CPU Idle” feature that 
automatically turns “Off” cores when they are not in use (Fig 7). 

 
 

 

 

Fig. 5.  Platform Managemen Unit (PMU) consolidates decision making 

 
Fig. 3. “Suspend” lets PMU receive interrupt, a lower power solution 

 
Fig. 4. Power Domains can be turned off at the voltage regulators to save 
static power 
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G. Method 7 - Frequency Scaling 

Frequency scaling slows the processors when performance 
is not needed. The innovation here is to design your dividers to 
be glitch-less, so switching frequencies can be safely done while 
processing (Fig 8). 

 

H. Method 8 - Wait For Interrupt (WFI) 

This needs to be mentioned, since it is often missed in coding 
corner cases. In general, plan for the power management features 
you need, and remember to code their corner cases. 

I. Method 9 - Duty Cycle 

Does your use case allow you to turn off the processor 
between processing? A process that is “Off” 90% of the time can 
save considerable power. The platform should be architected to 
minimize the suspend and resume latencies (Fig 9). 

J. Method 10 - Consolidate PLLs 

Complex SoCs can have several PLLs for design flexibility. 
If you can design with multiples of the same frequencies, you 
can use fewer PLLs. Each PLL saved can be 12 mW to 20 mW  
(Fig 10). Switching PLLs can be architected to be glitch-less, but 
changing PLL frequencies requires settling, so is not inherently 
glitch-less. The PLL frequency can still be changed while 
processing by switching all users to a stable clock source while 
the PLL frequency is settling. 

 
Fig. 7. Heterogeneous systems sharing the DDR can avoid buffer copies 
when performing parts of the same task 

 

 
Fig. 8. Idle processor cores can be turned off manually or automatically 

 
Fig. 6. Glitch-less dividers for switching frequencies while processing 

 

 

 
Fig. 9. Duty cycle possible by minimizing suspend and resume latencies 

 

 
Fig. 10. Multiple PLLs can be configured while processing with glitch-less 
switching 

 



 

© Copyright 2020 Xilinx 
 

K. Method 11 - Interconnect performance 

Advanced SoCs have multiple clock domains. Interconnects 
allow data to communicate between clock domains. These 
interconnects use a moderate amount of power just for clocking, 
even when no data is flowing. If your system state requires little 
data flow, the interconnect clocks can be scaled down until 
needed. If the interconnect clock is scaled down during suspend, 
it can be scaled up again during the process of resume. This 
trades off a good suspend power with a good resume latency (Fig 
11).  

To conclude the Processing Unit (PU) methods, we have a 
table of typical PU power states. Note the variable power 
benefit, and resume latency times. 

TABLE I.  TYPICAL PU POWER STATES 

PU State 
Parameters 

Power Undo Latency 

Full Performance ZU9 3240mW 100%  

Turn off Unused Cores 1920mW 81% 86ms 

Frequency Scaling 1800mW 75% 70us 

APU Suspend 955mW 40% 15ms 

FPD Off 345mW 14% 79ms 

RPU Suspend 325mW 13% 
immeasurably 

small time 

Deep Sleep 30mW 1% 129us 

a. Note: Measurements taken on a single ZCU102 board running the example code 

  

Here is a link to a pre-built design example with source code. 
“Generated binaries for reference … Petalinux 2019.1 generated 
images” 

https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841757/ZU+Example
+-+Typical+Power+States 

III. FIVE PROGRAMMABLE LOGIC (PL) METHODS 

A. Method 12 - Partial Reconfiguration Dynamic Function 
eXchange (DFX) 

DFX allows you to change your Programmable Logic (PL) 
design. This can be beneficial if you can (1) fit into a smaller 
part and benefit from the lower static power, or (2) swap a design 
to a lower power “standby design” (e.g. less resolution), or (3) 
eliminate an entire module by repurposing an existing module. 
The innovation with DFX is the ability to switch out a portion of 
the design while the rest of the design continues to run (Fig 12). 

B. Method 13 - Hardened Cores 

Optimized “Hardened Cores” can save power over new 
designs if the generic solution is good enough. The dynamic 
power is dependent on switching so it may be like the dynamic 
power of a good custom design (Fig 13). 

C. Method 14 - PL Clock (Frequency) Scaling 

If full performance is not needed, dynamic power can be 
saved by reducing the clock frequency. This can be implemented 
by having a clock divider in PL. The control bits of the clock 
divider can then be mapped to the bits of an Advanced 
eXtensible Interface (AXI) so they can be controlled by a 
processor (Fig 14). 

D. Method 15 - Clock Gating 

You can switch clocks to portions of your circuit. Dynamic 
power is saved if that portion of the design is not being clocked 
and is not switching. Typical applications include uni-
directional data only requiring half the design, or lower 

 
Fig. 13. Clock domain interconnects can be scaled down if maximum  
throughput is not needed 

 

 
Fig. 11. DFX allows reprogramming a portion of PL while the rest 
continues to run 

 
Fig. 12. Optimized hardened cores can save a little 
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resolution requiring a narrowed bit width. Again, this clock 
gating can be controlled by a processor and the bits of an AXI 
(Fig 15). 

To conclude the Programmable Logic (PL) methods, we 
have a table of typical PL power states. Note the variable power 
benefit, and the implied scaling of the performance. 

TABLE II.  TYPICAL PL POWER STATES 

PL State 
Parameters 

Power Notes 

Full Performance ECC 1970mW 100% 200MHz 

Hardened Cores 1840mW 93% Few seconds DFX 

Frequency Scaling 1120mW 57% 50MHz 

Clock Gating 994mW 50% ¼ being clocked 

Idle 770mW 39% Static PL power 

PLD Off 0mW 0% 
Can reload from 

RAM 
b. Note: Measurements taken on a single ZCU102 board running the example code 

 

Here is a link to a pre-built design example with source code. 
Section 4.1: 2019.1 ZCU102 (PL) Download 

https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841681/Zynq+UltraS
cale+MPSoC+Power+Advantage+Tool+part+1+-
+Introduction+to+the+Power+Advantage+Tool 

IV. ONE “BONUS” METHOD 

A. Method 16 - New performance/power modes reached  

The final method is to architect a specific design for a family 
of applications. Moore’s Law is slowing down the benefit of 

shrinking silicon, so there is an increased focus on squeezing 
more performance by design. The following example of the 
Xilinx Versal ACAP AI Engine (AIE) solves significant vector 
processing problems with 6x – 10x performance and with an 
incremental improvement to performance/power (Fig 16). 

AIE achieves these benchmarks by being an optimized 
Vector Processing System (all memory local), and by being 
adjacent to Programmable Logic (PL). This allows the bulk of a 
problem to be efficiently solved by the AIE, and its corner cases 
solved efficiently by PL (Fig 17). 

 

 
Fig. 14. New accelerators to achieve 6x-10x existing performance with 
incremental improvement to power 

 

 
Fig. 16. PL clock divider controlled by AXI 

 
Fig. 17. PL clock gating controlled by AXI 


