
Vivado Design Suite
User Guide

Programming and Debugging

UG908 (v2014.4) November 19, 2014

Vivado Programming and Debugging www.xilinx.com 2
UG908 (v2014.4) November 19, 2014

Revision History
The following table shows the revision history for this document.

Date Version Revision

11/19/2014 2014.4 • Added new sections for Using Advanced Encryption Standard (AES-256) Keys with
the Battery-Backed sRAM (BBR) Register.

10/01/2014 2014.3 • Added new sections for the following:

° Readback and Verify

° eFUSE Operations

° System Monitor

° Renaming Debug Probes

° Partial Buffer Capture

° Trigger at Startup
• Added new table for Setting the Number of Capture Windows
• Added new table for Description of hw_sysmon Tcl Commands
• Added new properties for UltraScale bitstream settings
• Updated section on Auto Re-Trigger

05/30/2014 2014.1 Fixed linking targets. No content changes.

04/23/2014 2014.1 New sections have been added for the following.
• Changing Device Configuration Bitstream Settings
• Programming the FPGA Device
• Viewing ILA Probe Data in the Waveform Viewer
• Configuration Memory Support

The following sections have been updated.
• Enabling Trigger In and Out Ports
• Programming Configuration Memory Devices
• Setting the Number of Capture Windows
• Using Auto Re-Trigger
• Connecting to a Remote hw_server Running on a Lab Machine

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Introduction
Getting Started. 6
Debug Terminology . 7

Chapter 2: Programming the Device
Introduction . 9
Generating the Bitstream . 9
Changing the Bitstream File Format Settings. 10
Changing Device Configuration Bitstream Settings . 11
Programming Configuration Memory Devices. 13
Programming the FPGA Device . 19
Using a Vivado Hardware Manager to Program an FPGA Device . 20
Readback and Verify . 27
eFUSE Operations . 30
Using Advanced Encryption Standard (AES-256) Keys with the Battery-Backed sRAM (BBR) Register

30
FUSE_DNA: Unique Device DNA . 33
System Monitor . 39

Chapter 3: Debugging the Design
Introduction . 41
RTL-level Design Simulation . 41
Post-Implemented Design Simulation . 42
In-System Logic Design Debugging . 42
In-System Serial I/O Design Debugging . 42

Chapter 4: In-System Logic Design Debugging Flows
Introduction . 43
Probing the Design for In-System Debugging. 43
Using the Netlist Insertion Debug Probing Flow . 44
HDL Instantiation Debug Probing Flow Overview . 56
Vivado Programming and Debugging www.xilinx.com 3
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=3

Using the HDL Instantiation Debug Probing Flow . 57
Implementing the Design Containing the Debug Cores . 61

Chapter 5: Debugging Logic Designs in Hardware
Introduction . 62
Using Vivado® Logic Analyzer to Debug the Design. 62
Connecting to the Hardware Target and Programming the FPGA Device . 62
Setting up the ILA Core to Take a Measurement . 63
Writing ILA Probes Information . 83
Reading ILA Probes Information . 84
Viewing Captured Data from the ILA Core in the Waveform Viewer. 84
Saving and Restoring Captured Data from the ILA Core . 84
Setting Up the VIO Core to Take a Measurement . 85
Viewing the VIO Core Status . 87
Interacting with VIO Core Output Probes . 92
Hardware System Communication Using the JTAG-to-AXI Master Debug Core 94
Using Vivado Logic Analyzer in a Lab Environment . 96
Description of Hardware Manager Tcl Objects and Commands. 98
Using Tcl Commands to Interact with a JTAG-to-AXI Master Core. 102
Using Tcl Commands to Take an ILA Measurement . 103
Trigger At Startup. 104

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
Introduction . 106
Customizing the Configuration . 110
Renaming Objects . 115
Bus Radixes. 117
Viewing Analog Waveforms . 118
Zoom Gestures . 121

Chapter 7: In-System Serial I/O Debugging Flows
Introduction . 122
Generating an IBERT Core using the Vivado IP Catalog. 122
Generating and Implementing the IBERT Example Design . 123

Chapter 8: Debugging the Serial I/O Design in Hardware
Introduction . 125
Using Vivado® Serial I/O Analyzer to Debug the Design . 125
Vivado Programming and Debugging www.xilinx.com 4
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=4

Appendix A: Device Configuration Bitstream Settings

Appendix B: Trigger State Machine Language Description
States . 148
Goto Action . 148
Conditional Branching . 149
Counters . 149
Flags . 150
Conditional Statements . 150

Appendix C: Configuration Memory Support
Artix®-7 Configuration Memory Devices . 156
Kintex®-7 Configuration Memory Devices . 158
Virtex®-7 Configuration Memory Devices . 160
Kintex® UltraScale™ Configuration Memory Devices . 162
Virtex® UltraScale™ Configuration Memory Devices . 164
Zynq®-7000 Configuration Memory Devices . 166

Appendix D: Additional Resources and Legal Notices
Xilinx Resources . 168
Solution Centers. 168
References . 168
Training Courses. 169
Please Read: Important Legal Notices . 169
Vivado Programming and Debugging www.xilinx.com 5
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=5

Chapter 1

Introduction

Getting Started
After successfully implementing your design, the next step is to run it in hardware by
programming the FPGA device and debugging the design in-system. All of the necessary
commands to perform programming of FPGA devices and in-system debugging of the
design are in the Program and Debug section of the Flow Navigator window in the
Vivado® Integrated Design Environment (IDE) (see Figure 1-1)
X-Ref Target - Figure 1-1

Figure 1-1: Program and Debug section of the Flow Navigator panel
Vivado Programming and Debugging www.xilinx.com 6
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=6

Chapter 1: Introduction
Debug Terminology
ILA: The Integrated Logic Analyzer (ILA) feature allows you to perform in-system
debugging of post-implemented designs on an FPGA device. This feature should be used
when there is a need to monitor signals in the design. You can also use this feature to
trigger on hardware events and capture data at system speeds.

The ILA core can be instantiated in your RTL code or inserted post synthesis in the Vivado
design flow. Chapter 4 and Chapter 5 of this guide have more details on the ILA core and its
usage methodology in the Vivado Design Suite. Detailed documentation on the ILA core IP
can be found in the LogiCORE IP Integrated Logic Analyzer Product Guide (PG172) [Ref 16].

VIO: The Virtual Input/Output (VIO) debug feature can both monitor and drive internal
FPGA signals in real time. In the absence of physical access to the target hardware, you can
use this debug feature to drive and monitor signals that are present on the real hardware.

This debug core needs to be instantiated in the RTL code, hence you need to know up-front,
what nets to drive. The IP Catalog lists this core under the Debug category. Chapter 5 of this
guide has more details on the VIO core and its usage methodology in the Vivado Design
Suite. Detailed documentation on the ILA core IP can be found in the LogiCORE IP Virtual
Input/Output Product Guide (PG 159)[Ref 12].

IBERT: The IBERT (Integrated Bit Error Ratio Tester) Serial Analyzer design enables
in-system serial I/O validation and debug. This allows you to measure and optimize your
high-speed serial I/O links in your FPGA-based system. Xilinx recommends using the IBERT
Serial Analyzer design when you are interested in addressing a range of in-system debug
and validation problems from simple clocking and connectivity issues to complex margin
analysis and channel optimization issues.

Xilinx recommends using the IBERT Serial Analyzer design when you are interested in
measuring the quality of a signal after a receiver equalization has been applied to the
received signal. This ensures that you are measuring at the optimal point in the TX-to-RX
channel thereby ensuring real and accurate data. Users can access this design by selecting,
configuring, and generating the IBERT core from the IP Catalog and selecting the Open
Example Design feature of this core. Chapter 7 and Chapter 8 of this guide have more
details on the IBERT core and its usage methodology in the Vivado Design Suite. Detailed
documentation on the IBERT design can be found in the LogiCORE IP IBERT for 7 Series GTX
Transceivers (PG132) [Ref 13], LogiCORE IP IBERT for 7 Series GTP Transceivers (PG133)
[Ref 14], and LogiCORE IP IBERT for 7 Series GTH Transceivers (PG152) [Ref 15].

JTAG-to-AXI Master: JTAG-to-AXI Master debug feature is used to generate AXI
transactions that interact with various AXI full and AXI lite slave cores in a system that is
running in hardware. Xilinx recommends that you use this core to generate AXI transactions
and debug/drive AXI signals internal to an FPGA at run time. This core can be used in
designs without processors as well.
Vivado Programming and Debugging www.xilinx.com 7
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=7

Chapter 1: Introduction
The IP Catalog lists this core under the Debug category. Chapter 5 of this guide has more
details on the JTAG-to-AXI Master core and its usage methodology in the Vivado Design
Suite. Detailed documentation on the JTAG-to-AXI IP core can be found in the LogiCORE IP
JTAG to AXI Master v1.0 Product Guide (PG174) [Ref 17].
Vivado Programming and Debugging www.xilinx.com 8
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=8

Chapter 2

Programming the Device

Introduction
The basic hardware programming phase has two steps for FPGA devices:

1. Generating the bitstream data programming f ile from the implemented design.

2. Connecting to hardware and downloading the programming file to the target FPGA
device.

For more information on how to perform advanced hardware programming, refer to
Programming Configuration Memory Devices, page 13.

Generating the Bitstream
Before generating the bitstream data f ile, it is important to review the bitstream settings to
make sure they are correct for your design.

There are two types of bitstream settings in Vivado® IDE:

1. Bitstream file format settings.

2. Device configuration settings.

The Bitstream Settings button in the Vivado flow navigator and the Flow > Bitstream
Settings menu selection opens the Bitstream section in the Project Settings popup
window (see Figure 2-1). Once the bitstream settings are correct, the bitstream data file can
be generated using the write_bistream Tcl command or by using the Generate Bitstream
button in the Vivado flow navigator.
Vivado Programming and Debugging www.xilinx.com 9
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=9

Chapter 2: Programming the Device

Changing the Bitstream File Format Settings
By default, the write_bitstream Tcl command generates a binary bitstream (.bit) f ile only.
You can optionally change the f ile formats written out by the write_bitstream Tcl command
by using the following command switches:

• -raw_bitf ile: (Optional) This switch causes write_bitstream to write a raw bit f ile (.rbt),
which contains the same information as the binary bitstream file, but is in ASCII format.
The output file is named filename.rbt

• -mask_file: (Optional) Write a mask f ile (.msk), which has mask data where the
configuration data is in the bitstream file. This f ile determines which bits in the
bitstream should be compared to readback data for verif ication purposes. If a mask bit
is 0, that bit should be verif ied against the bitstream data. If a mask bit is 1, that bit
should not be verif ied. The output file is named file.msk .

• -no_binary_bitfile: (Optional) Do not write the binary bitstream file (.bit). Use this
command when you want to generate the ASCII bitstream or mask f ile, or to generate a
bitstream report, without generating the binary bitstream file.

X-Ref Target - Figure 2-1

Figure 2-1: Bitstream settings panel
Vivado Programming and Debugging www.xilinx.com 10
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=10

Chapter 2: Programming the Device
• -logic_location_file: (Optional) Creates an ASCII logic location f ile (.ll) that shows the
bitstream position of latches, flip-flops, LUTs, Block RAMs, and I/O block inputs and
outputs. Bits are referenced by frame and bit number in the location f ile to help you
observe the contents of FPGA registers.

• -bin_file: (Optional) Creates a binary f ile (.bin) containing only device programming
data, without the header information found in the standard bitstream file (.bit).

• -reference_bitf ile <arg>: (Optional) Read a reference bitstream file, and output an
incremental bitstream file containing only the differences from the specified reference
f ile. This partial bitstream file can be used for incrementally programming an existing
device with an updated design.

Changing Device Configuration Bitstream Settings
The most common configuration settings that you can change fall into the device
configuration settings category. These settings are properties on the device model and you
change them by using the Edit Device Properties dialog for the selected synthesized or
implemented design netlist. The following steps describe how to set various bitstream
properties using this method:

1. Select Tools > Edit Device Properties.

2. In the Edit Device Properties dialog, select one of the categories in the left-hand
column (see Figure 2-2).

TIP: You can type a property in the Search field. For example, type jtag into the Search text field to find
and select properties related to JTAG programming.
Vivado Programming and Debugging www.xilinx.com 11
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=11

Chapter 2: Programming the Device
3. Set the properties to the desired values, and click OK.

4. Select File > Save Constraints to save the updated properties to the target XDC file.

You can also set the bitstream properties using the set_property command in an XDC file.
For instance, here is an example on how to change the start-up DONE cycle property:

set_property BITSTREAM.STARTUP.DONE_CYCLE 4 [current_design]

Additional examples and templates are provided in the Vivado Templates. Appendix A,
Device Configuration Bitstream Settings describes all of the device configuration settings.

X-Ref Target - Figure 2-2

Figure 2-2: Edit Device Properties
Vivado Programming and Debugging www.xilinx.com 12
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=12

Chapter 2: Programming the Device
Programming Configuration Memory Devices
The Vivado device programmer feature enables you to directly program Xilinx® FPGA
devices via JTAG. Vivado can also indirectly program Flash-based configuration memory
devices via JTAG. Do this by first programming the Xilinx FPGA device with a special
configuration that provides a data path between JTAG and the Flash device interface
followed by programming the configuration memory device contents using this data path.

The Vivado device configuration feature enables you to directly configure Xilinx® FPGAs or
Memory Devices using either Xilinx or Digilent cables. See Connecting to a Hardware Target
Using hw_server, page 21 for a list of appropriate cables. Operating in Boundary-Scan
mode, Vivado can configure or program Xilinx FPGAs, and Configuration Memory Devices.

Refer to Appendix C, Configuration Memory Support for a complete list of configuration
memory devices supported by Vivado.

To program and boot from a Configuration Memory Device in Vivado follow the steps
below.

1. Generate bitstreams for use with configuration memory devices.

2. Create a Configuration Memory File (.mcs).

3. Connect to the Hardware target in Vivado.

4. Add the configuration memory device.

5. Program the configuration memory device using the Vivado IDE.

6. Boot the FPGA device (optional).

Generate Bitstreams for use with Configuration Memory
Devices
On the synthesized or implemented design select Tools->Edit Device Properties to open
the Edit Device Properties dialog as shown below.
Vivado Programming and Debugging www.xilinx.com 13
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=13

Chapter 2: Programming the Device
Use the search f ield in the upper left of the dialog box to search for all SPI or BPI related
f ields and select the appropriate option settings. See Appendix A, Device Configuration
Bitstream Settings for the device configuration settings.

Creating a Configuration Memory File
Use the write_cfgmem Tcl command to create the .mcs programming f ile. This f ile will be
used in programming the configuration memory device.

X-Ref Target - Figure 2-3

Figure 2-3: Edit Device Properties: Search Field
Vivado Programming and Debugging www.xilinx.com 14
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=14

Chapter 2: Programming the Device
For example, to generate an .mcs f ile for a single 1Gbit BPI configuration memory device:

write_cfgmem -format mcs -interface bpix16 -size 128 /
-loadbit "up 0x0 design.bit"-file design.mcs

Note: The –size argument to write_cfgmem is in Mbytes, different from flash device capacity
which is based on Mbits. Hence, a 1Gbit sized flash device is provided as 128 Mbytes to
write_cfgmem in the example above. Note that write_cfgmem automatically sizes the
configuration memory f ile to the size of the bitstream.

Vivado IDE supports the ability to chain multiple .bit f iles together using the
write_cfgmem command. To generate an .mcs f ile for a single 1Gbit BPI configuration
memory device containing multiple bitstreams:

write_cfgmem -format mcs -interface bpix16 -size 128 /
-loadbit "up 0 design1.bit up 0xFFFFF design2.bit" /
-file design1_design2.mcs

For more information on write_cfgmem command refer to the Vivado Design Suite Tcl
Command Reference (UG835) [Ref 7].

Connect to the Hardware Target in Vivado
To connect to a hardware target in Vivado, do the following:

1. Ensure the appropriate configuration mode (Master SPI or Master BPI) is selected on the
FPGA mode pins of the hardware target to configure the FPGA from a configuration
memory device.

For more information, see the appropriate Configuration User Guide for the device you
are targeting.

2. Follow the steps in section Programming the FPGA Device, page 19 to connect to the
hardware target.

Adding a Configuration Memory Device
To add the configuration memory device to a hardware target in Vivado device
programmer, do the following:

1. After connecting to the hardware target as outlined above, add the configuration
memory device by right-clicking the hardware target as shown below and selecting Add
Configuration Memory Device.
Vivado Programming and Debugging www.xilinx.com 15
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=15

Chapter 2: Programming the Device
On clicking on this menu item the Add Configuration Memory Device dialog box opens.

X-Ref Target - Figure 2-4

Figure 2-4: Add Configuration Memory Device Menu Item

X-Ref Target - Figure 2-5

Figure 2-5: : Add Configuration Memory Device part selector
Vivado Programming and Debugging www.xilinx.com 16
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=16

Chapter 2: Programming the Device
2. Select the appropriate configuration memory part and click OK.

TIP: Use the Search field to pare down the list using Vendor, Density, or Type information.

The configuration memory device is now added to the hardware target device.

Programming a Configuration Memory Device
1. After creating the configuration memory device, Vivado device programmer prompts

"Do you want to program the configuration memory device now?" as shown below.

Click OK to open the Program Configuration Memory Device dialog box.

X-Ref Target - Figure 2-6

Figure 2-6: Configuration Memory Device Added to Hardware Target

X-Ref Target - Figure 2-7

Figure 2-7: Prompt to Program Configuration Memory Device
Vivado Programming and Debugging www.xilinx.com 17
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=17

Chapter 2: Programming the Device
2. Set all the f ields in this dialog box appropriately.

• Configuration file (.mcs) - Specifies the file to use for programming the configuration
memory device. The memory configuration f ile is created with the write_cfgmem Tcl
command. See Creating a Configuration Memory File, page 14 for more information.

• Program Operations (performed on the configuration memory device):

° Address Range - Specif ies the address range of the configuration memory device
to program. The address range values can be:

- Configuration File Only - Use only the address space required by the memory
configuration f ile to erase, blank check, program, and verify.

- Entire Configuration Memory Device - Erase, blank check, program, and verify
will be performed on the entire device.

• RS Pins - Optional. Revision Select Pin Mapping that is used with BPI configuration
memory devices only (where the upper two FPGA address pins on the flash are tied to
the FPGA RS[1:0]). When the option is enabled, Vivado drives the FPGA RS[1:0] for
programming. Refer to the appropriate FPGA Configuration User Guide on application
usage.

• Erase - Erases the contents of the configuration memory device.

• Blank Check - Checks the configuration memory device to make sure the device is void
of data prior to programming.

X-Ref Target - Figure 2-8

Figure 2-8: Program Configuration Memory Device Dialog
Vivado Programming and Debugging www.xilinx.com 18
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=18

Chapter 2: Programming the Device
• Program - Program the configuration memory device with the specified Configuration
File (.mcs).

• Verify - Verify that the configuration memory device contents match the Configuration
File (.mcs) after programming.

3. Click OK to start the Erase, Blank Check, Program, and Verify operations on the
configuration memory device per the selections in this dialog box. Vivado notif ies you
as each operation f inishes..

Booting the Device
After programming the configuration memory device, you can issue a soft boot operation
(ie. JPROGRAM) to initiate the FPGA configuration from the attached configuration memory
device. If you want to perform a Boot operation on the target FPGA device select the target
device and right-click and select Boot Device.

Programming the FPGA Device
The next step after generating the bitstream data programming f ile is to download it into
the target FPGA device. The Vivado tool has native in-system device programming
capabilities built in.

X-Ref Target - Figure 2-9

Figure 2-9: Boot FPGA Device
Vivado Programming and Debugging www.xilinx.com 19
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=19

Chapter 2: Programming the Device
Using a Vivado Hardware Manager to Program an
FPGA Device
The Vivado IDE tool includes functionality that allows you to connect to hardware
containing one or more FPGA devices to program and interact with those FPGA devices.
Connecting to hardware can be done from either the Vivado IDE graphical user interface or
by using Tcl commands. In either case, the steps to connect to hardware and program the
target FPGA device are the same:

1. Open the hardware manager.

2. Open a hardware target that is managed by a hardware server running on a host
computer.

3. Associate the bitstream data programming f ile with the appropriate FPGA device.

4. Program or download the programming f ile into the hardware device.

Opening the Hardware Manager
Opening the Hardware Manager is the f irst step in programming and/or debugging your
design in hardware. To open the Hardware Manager, do one of the following:

• If you have a project open, click the Open Hardware Manager button in the Program
and Debug section of the Vivado flow navigator.

• Select Flow > Open Hardware Manager.

• In the Tcl Console window, run the open_hw command

Opening Hardware Target Connections
The next step in opening a hardware target (for instance, a hardware board containing a
JTAG chain of one or more FPGA devices) is connecting to the hardware server that is
managing the connection to the hardware target. You can do this one of three ways:
Vivado Programming and Debugging www.xilinx.com 20
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=20

Chapter 2: Programming the Device
• Use the Open Target selection under Hardware Manager in the Program and Debug
section of the Vivado flow navigator to open new or recent hardware targets (see
Figure 2-10).

• Use the Open recent target or Open a new hardware target selections on the green
user assistance banner across the top of the Hardware Manager window to open
recent or new hardware targets, respectively (see Figure 2-11).

• Use Tcl commands to open a connection to a hardware target.

TIP: Use the Auto Connect selection to automatically connect to a local hardware target.

Connecting to a Hardware Target Using hw_server
The list of compatible JTAG download cables and devices that are supported by hw_server
are:

• Xilinx Platform Cable USB II (DLC10)

• Xilinx Platform Cable USB (DLC9G, DLC9LP, DLC9)

• Digilent JTAG-HS2

• Digilent JTAG-SMT2

• Digilent JTAG-HS1

X-Ref Target - Figure 2-10

Figure 2-10: Using the Flow Navigator to Open a Hardware Target

X-Ref Target - Figure 2-11

Figure 2-11: Using the User Assistance Bar to Open a Hardware Target
Vivado Programming and Debugging www.xilinx.com 21
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=21

Chapter 2: Programming the Device
• Digilent JTAG-SMT1

The hw_server is automatically started by Vivado when connecting to targets on the local
machine. However, you can also start the hw_server manually on either local or remote
machines. For instance, in a full Vivado installation on a Windows platform, at a cmd prompt
run the following command:

C:\Xilinx\Vivado\<Vivado_version>\bin\hw_server.bat

If you are using a Hardware Server (Standalone) installation on a Windows platform, at a
cmd prompt run the following command:

c:\Xilinx\HWSRVR\<Vivado_version>\bin\hw_server.bat

Follow the steps in the next section to open a connection to a new hardware target using
this agent.

Opening a New Hardware Target
The Open New Hardware Target wizard provides an interactive way for you to connect to
a hardware server and target. The wizard process has the following steps:

1. Select a local or remote server, depending on what machine your hardware target is
connected to:

• Local server: Use this setting if your hardware target is connected to the same machine
on which you are running the Vivado IDE (See Figure 2-12). The Vivado software
automatically starts the Vivado hardware server (hw_server) application on the local
machine.

• Remote server: Use this setting if your hardware target is connected to a different
machine on which you are running the Vivado IDE. Specify the host name or IP address
of the remote machine and the port number for the hardware server (hw_server)
application that is running on that machine (see Figure 2-13). Refer to Connecting to a
Remote hw_server Running on a Lab Machine in Chapter 5 for more details on remote
debugging.

IMPORTANT: When using remote server, you need to manually start the Vivado hardware server
(hw_server) application of the same or later version of Vivado software that you will use to connect
to the hardware server.

TIP: If you only want to connect to your lab machine remotely, you do not need to install the full
Vivado design suite on that remote machine. Instead, you can install the light-weight Vivado Hardware
Server (Standalone) tool on the remote machine.
Vivado Programming and Debugging www.xilinx.com 22
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=22

Chapter 2: Programming the Device

X-Ref Target - Figure 2-12

Figure 2-12: Using a Local Hardware Server
X-Ref Target - Figure 2-13

Figure 2-13: Using a Remote Hardware Server
Vivado Programming and Debugging www.xilinx.com 23
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=23

Chapter 2: Programming the Device
2. Select the appropriate hardware target from the list of targets that are managed by the
hardware server. Note that when you select a target, you see the various hardware
devices that are available on that hardware target (see Figure 2-14).

Troubleshooting a Hardware Target
You might run into issues when trying to connect to a hardware target. Here are some
common issues and recommendations on how to resolve them:

• If you are not able to correctly identify the hardware devices on your target, it might
mean that your hardware is not capable of running at the default target frequency. You
can adjust the frequency of the TCK pin of the hardware target or cable (see
Figure 2-14). Note that each type of hardware target may have different properties.
Refer to the documentation of each hardware target for more information about these
properties.

• While the Vivado hardware server will attempt to automatically determine the
instruction register (IR) length of all devices in the JTAG chain, in some rare
circumstances it might not be able to correctly do so. You should check the IR length
for each unknown device to make sure it is correct. If you need to specify the IR length,
you can do so directly in the Hardware Devices table of the Open New Hardware
Target wizard (see Figure 2-14).

X-Ref Target - Figure 2-14

Figure 2-14: Selecting a Hardware Target
Vivado Programming and Debugging www.xilinx.com 24
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com/tools/feature/plugin_support.pdf
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=24

Chapter 2: Programming the Device
Opening a Recent Hardware Target
The Open New Hardware Target wizard is also what populates a list of previously
connected hardware targets. Instead of connecting to a hardware target by going through
the wizard, you can re-open a connection to a previously connected hardware target by
selecting the Open recent target link in the Hardware Manager window and selecting one
of the recently connected hardware server/target combinations in the list. You can also
access this list of recently used targets through the Open Target selection under Hardware
Manager in the Program and Debug section of the Vivado flow navigator.

Opening a Hardware Target Using Tcl Commands
You can also use Tcl commands to connect to a hardware server/target combination. For
instance, to connect to the digilent_plugin target (serial number 210203339395A) that is
managed by the hw_server running on localhost 3121, use the following Tcl commands:

connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */xilinx_tcf/Digilent/210203339395A]
set_property PARAM.FREQUENCY 15000000 [get_hw_targets
*/xilinx_tcf/Digilent/210203339395A]
open_hw_target

Once you finish opening a connection to a hardware target, the Hardware window is
populated with the hardware server, hardware target, and various hardware devices for the
open target (see Figure 2-15).

Associating a Programming File with the Hardware Device
After connecting to the hardware target and before you program the FPGA device, you need
to associate the bitstream data programming f ile with the device. Select the hardware

X-Ref Target - Figure 2-15

Figure 2-15: Hardware View after Opening a Connection to the Hardware Target
Vivado Programming and Debugging www.xilinx.com 25
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=25

Chapter 2: Programming the Device
device in the Hardware window and make sure the Programming file property in the
Properties window is set to the appropriate bitstream data (.bit) f ile.

Note: As a convenience, Vivado IDE automatically uses the .bit f ile for the current implemented
design as the value for the Programming File property of the f irst matching device in the open
hardware target. This feature is only available when using the Vivado IDE in project mode. When
using the Vivado IDE in non-project mode, you need to set this property manually.

You can also use the set_property Tcl command to set the PROGRAM.FILE property of the
hardware device:

set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]

Programming the Hardware Device
Once the programming f ile has been associated with the hardware device, you can program
the hardware device using by right-clicking on the device in the Hardware window and
selecting the Program Device menu option. You can also use the program_hw_device Tcl
command. For instance, to program the f irst device in the JTAG chain, use the following Tcl
command:

program_hw_devices [lindex [get_hw_devices] 0]

Once the progress dialog has indicated that the programming is 100% complete, you can
check that the hardware device has been programmed successfully by examining the DONE
status in the Hardware Device Properties view (see Figure 2-16).

X-Ref Target - Figure 2-16

Figure 2-16: Checking the DONE status of an FPGA device
Vivado Programming and Debugging www.xilinx.com 26
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=26

Chapter 2: Programming the Device
You can also use the get_property Tcl command to check the DONE status. For instance, to
check the DONE status of a Kintex®-7 device that is the first device in the JTAG chain, use
the following Tcl command:

get_property REGISTER.IR.BIT5_DONE [lindex [get_hw_devices] 0]

If you use another means to program the hardware device (for instance, a flash device or
external device programmer such as the iMPACT tool), you can also refresh the status of a
hardware device by right-clicking the Refresh Device menu option or by running the
refresh_hw_device Tcl command. This refreshes the various properties for the device,
including but not limited to the DONE status.

Closing the Hardware Target
You can close a hardware target by right-clicking on the hardware target in the Hardware
window and selecting Close Target from the popup menu. You can also close the hardware
target using a Tcl command. For instance, to close the xilinx_platformusb/USB21 target on
the localhost server, use the following Tcl command:

close_hw_target {localhost/xilinx_tcf/Digilent/210203339395A}

Closing a Connection to the Hardware Server
You can close a hardware server by right-clicking on the hardware server in the Hardware
window and selecting Close Server from the popup menu. You can also close the hardware
server using a Tcl command. For instance, to close the connection to the localhost server,
use the following Tcl command:

disconnect_hw_server localhost

Readback and Verify

Bitstream Verify and Readback
Vivado IDE can verify and/or readback the configuration data (i.e., .bit f ile) downloaded
into an FPGA. When using write_bitstream to generate the .bit f ile, use the
-mask_file option to create a corresponding mask (.msk) f ile. Run write_bitstream
-help in the Vivado IDE Tcl Console for details on bitstream generation options.

When performing a verify operation, the verify_hw_devices Tcl command reads data
back from the FPGA and uses the .msk f ile to determine which readback data bits to skip
and which ones to compare against the corresponding bits in the .bit f ile.

Following is an example of a bitstream verify Tcl command sequence (the .bit and .msk
f iles were generated by a previous call to write_bitstream):
Vivado Programming and Debugging www.xilinx.com 27
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=27

Chapter 2: Programming the Device
create_hw_bitstream -hw_device [current_hw_device] \
-mask kcu105_cnt_ila_uncmpr.msk kcu105_cnt_ila_uncmpr.bit

verify_hw_devices [current_hw_device]

Use the readback_hw_device Tcl command with at least one of the following options to
read back the FPGA configuration data:

• To save readback data in ASCII format:

-readback_file <filename.rbd>

• To saves readback data in binary format:

-bin_file <filename.bin>

Example: Readback FPGA configuration data in both ASCII and binary formats

readback_hw_device [current_hw_device] \
 -readback_file kcu105_cnt_ila_uncmpr_rb.rbd \
 -bin_file kcu105_cnt_ila_uncmpr_rb.bin

Notes:

1. For the 2014.3 release, bitstream, verify, and readback operations are done through the
Tcl Console.

2. Verify and readback operations do not work for FPGAs programmed with encrypted
bitstreams. Encrypted bitstreams contain commands that disable readback. Readback is
re-enabled by pulsing the FPGA PROG pin, or if the FPGA/board is powered down and
powered back up again.

3. The data readback using readback_hw_device contains configuration data only (no
configuration commands are included).

For more information on these features, see the Ultrascale Architecture Configuration:
Advance Specification User Guide (UG570) [Ref 10] or the 7 Series FPGAs Configuration User
Guide (UG470) [Ref 8]

Configuration Memory Verify and Readback
You can convert a bitstream file (.bit) to an .mcs f ile and then program it into a
configuration memory device, such as serial/SPI or parallel/BPI flash, via the
write_cfgmem command. See the Vivado Design Suite Tcl Command Reference
(UG835)[Ref 7] for details.
Vivado Programming and Debugging www.xilinx.com 28
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=28

Chapter 2: Programming the Device
Verify the configuration memory device through the Vivado IDE Hardware Manager as
shown in Figure 2-17.

You can also verify the configuration memory device by setting the appropriate
HW_CFGMEM properties and calling program_hw_cfgmem as shown in the following
code:

set_property PROGRAM.ADDRESS_RANGE {use_file} [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.FILES [list "H:/projects/k7_led/k7_led_325t_afx_x16_33v.mcs"] [get_property PROGRAM.HW_CFGMEM
[lindex [get_hw_devices] 0]]
set_property PROGRAM.BPI_RS_PINS {none} [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.UNUSED_PIN_TERMINATION {pull-none} [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0
]]
set_property PROGRAM.BLANK_CHECK 0 [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.ERASE 0 [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.CFG_PROGRAM 0 [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
set_property PROGRAM.VERIFY 1 [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
startgroup
if {![string equal [get_property PROGRAM.HW_CFGMEM_TYPE [lindex [get_hw_devices] 0]] [get_property MEM_TYPE
[get_property CFGMEM_PART [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]]]] } { create_hw_bitstream
-hw_device [lindex [get_hw_devices] 0] [get_property PROGRAM.HW_CFGMEM_BITFILE [lindex [get_hw_devices] 0]];
program_hw_devices [lindex [get_hw_devices] 0]; };
program_hw_cfgmem -hw_cfgmem [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]
endgroup

The contents of the configuration memory can be readback through the Vivado IDE Tcl
Console using the following command sequence:

readback_hw_cfgmem -file test.bin -hw_cfgmem \
 [get_property PROGRAM.HW_CFGMEM [lindex [get_hw_devices] 0]]

Notes:

1. For the 2014.3 release, the only readback format supported is binary (.bin).

2. For the 2014.3 release you can only perform configuration memory readback through
the Tcl Console.

X-Ref Target - Figure 2-17

Figure 2-17: Configuration Memory Verification
Vivado Programming and Debugging www.xilinx.com 29
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=29

Chapter 2: Programming the Device
For more information on these features, see the Ultrascale Architecture Configuration:
Advance Specification User Guide (UG570) [Ref 10] or the 7 Series FPGAs Configuration User
Guide (UG470) [Ref 8]

eFUSE Operations
7 Series® and UltraScale® devices have one-time programmable bits called eFUSE bits that
perform specif ic functions. The different eFUSE bit types are as follows:

• FUSE_DNA - Unique device identif ier bits.

• FUSE_USER - Stores a 32-bit user-defined code.

• FUSE_KEY - Stores a key for use by AES bitstream decryptor.

• FUSE_CNTL - Controls key use and read/write access to eFUSE registers.

• FUSE_SEC - Controls special device security settings in Ultrascale devices.

IMPORTANT: Programming eFUSE register bits is a one-time only operation. Once eFUSE register bits
are programmed, they cannot be reset and/or programmed again. You should take great care to
double-check your settings before programming any eFUSE registers.

Using Advanced Encryption Standard (AES-256)
Keys with the Battery-Backed sRAM (BBR) Register
You can protect IP in bitstreams by encrypting the bitstreams with a 256-bit Advanced
Encryption Standard (AES) key. Do this in authorized FPGAs, by loading this 256-bit key into
the FPGA Battery-Backed sRAM (BBR) before downloading the encrypted bitstream.
Vivado Programming and Debugging www.xilinx.com 30
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=30

Chapter 2: Programming the Device
Generating an Encrypted Bitstream
To generate an encrypted bitstream that works with the BBR, open an implemented design
in Vivado IDE. Select Bitstream Settings > Bitstream, then click Configure Additional
Bitstream Settings.

In the Edit Device Properties dialog box, select Encryption in the left-hand pane, and
specify the following encryption and key settings:

• Encryption Settings

° Set Enable Bitstream Encryption to YES.

° Set Select location of encryption key to either BBRAM or EFUSE.

- The key location will be embedded in the encrypted bitstream.

X-Ref Target - Figure 2-18

Figure 2-18: Configure Additional Bitstream Settings
Vivado Programming and Debugging www.xilinx.com 31
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=31

Chapter 2: Programming the Device
- When the encrypted bitstream is downloaded to the device, it instructs the
FPGA to use the key loaded into the BBR or the eFUSE key register to decrypt
the encrypted bitstream.

• Key Settings

° Specify the 256-bit AES key to use when encrypting the bitstream.

- The key will be written to a file with the .nky f ile extension. Use this f ile when
loading the key into the BBR or when programming the key into the eFUSE key
register.

° Specify HMAC authentication key and Starting cipher block chaining (CBC)
value.

- If these values are unspecif ied, Vivado generates a random value for you.

- These values will be embedded in the encrypted bitstream and do not have to
be programmed or loaded into the FPGA.

° Specify Input encryption file.

- Specify an existing .nky f ile to obtain the encryption key settings.

Programming the AES Key
To program the AES key into the BBR, right-click the FPGA device in the Hardware window,
select Program BBR Key, and specify the AES key (.nky) f ile. When you click OK, the
Hardware Manager programs/loads the key into the BBR. You can now program the FPGA
with an encrypted bitstream that:

• was encrypted using the same AES key as was loaded into BBR.

• had BBRAM selected as the specif ied encryption key location.

IMPORTANT: For UltraScale devices, if you attempt to download an encrypted bitstream (which uses
the BBR as the key source) before the key is programmed into the BBR register, the FPGA device will lock
up and you will not be able to load the BBR key. You can still download unecrypted bitstreams, but you
will not be able to download encrypted bitstreams because the FPGA device will prevent you from
downloading a key into BBR. You must power-cycle the board to unlock the UltraScale device and then
reload the BBR key.

eFUSE Bits
UltraScale FPGAs have a security feature that allows you to program two eFUSE bits that
force the FPGA device to only allow encrypted bitstreams. These eFUSE bits can be set by
clicking Program eFUSE Registers and following the prompts.

Note: The 7 Series devices only restrict the use of encrypted bitstreams with the AES key in the
FUSE_KEY register.
Vivado Programming and Debugging www.xilinx.com 32
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=32

Chapter 2: Programming the Device
• Set FUSE_SEC[1:0] to "11" to allow only encrypted bitstreams that use the AES key in
the FUSE_KEY register.

• Set FUSE_SEC[1:0] to "10" to allow only encrypted bitstreams, but the AES key can be in
the BBR or FUSE_KEY.

Clearing Keys from the BBR Register
To clear the key from the UltraScale or 7 Series FPGA BBR register:

• Right-click the FPGA device name and select Clear BBR Key.

• Do not connect the Vbatt pins and power-cycle the board.

Note: Pressing or pulsing the PROG pin when the board/FPGA is powered up will not clear the BBR
register.

FUSE_DNA: Unique Device DNA
Each 7 Series and UltraScale device has a unique device ID called a DNA that has already
been programmed into it by Xilinx. 7 Series devices have a 64-bit DNA, while UltraScale
devices have a 96-bit DNA. You can read these by running the following Tcl command in the
Vivado IDE Tcl Console:

report_property [lindex [get_hw_device] 0] REGISTER.EFUSE.FUSE_DNA
Vivado Programming and Debugging www.xilinx.com 33
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=33

Chapter 2: Programming the Device
You can also access the device DNA by viewing the eFUSE registers in the Hardware Device
Properties window in Vivado I DE as shown in Figure 2-19:

For more information on these features, see the Ultrascale Architecture Configuration:
Advance Specification User Guide (UG570) [Ref 10] or the 7 Series FPGAs Configuration User
Guide (UG470) [Ref 8]

FUSE_USER
The FUSE_USER eFUSEs are provided to allow users to program their own special 32-bit
pattern. The FUSE_USER bits are programmed using the Vivado eFUSE programming wizard.
For 7 Series devices, the lower eight FUSE_USER bit are programmed at the same time as the
256-bit Advanced Encryption Engine (AES) key. The upper 24 FUSE_USER bits can be
programmed then or at a later time using the same wizard.

Access the Vivado eFUSE programming wizard by right-clicking the target device in the
Hardware Manager window, and selecting the Program eFUSE Registers... option.
Figure 2-20 shows the Program eFUSE Registers page of the Vivado eFUSE programming
wizard.

X-Ref Target - Figure 2-19

Figure 2-19: eFUSE DNA
Vivado Programming and Debugging www.xilinx.com 34
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=34

Chapter 2: Programming the Device
For UltraScale devices, all 32 bits of the 32-bit FUSE_USER are programmed at the same
time, and independently of the AES key in the Program eFUSE Registers page as shown in
Figure 2-21.

X-Ref Target - Figure 2-20

Figure 2-20: Program eFUSE Registers-AES

X-Ref Target - Figure 2-21

Figure 2-21: Program eFUSE Registers-ctrl-reg-ultrascale
Vivado Programming and Debugging www.xilinx.com 35
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=35

Chapter 2: Programming the Device
After programming the FUSE_USER eFUSEs, the pattern can be read in several ways:

• Using the Tcl command.

report_property [lindex [get_hw_device] 0] REGISTER.EFUSE.FUSE_USER

• Through the Vivado Hardware Device Properties window after running a
refresh_hw_device operation.

• Running the FUSE_USER command through the JTAG interface.

FUSE_KEY
The FUSE_KEY eFUSE bits are used to store a 256-bit AES key. The FPGA configuration logic
uses this key to decrypt bitstreams that were encrypted by write_bitstream Tcl
command using the same AES key. The encrypted bitstreams are sent to the FPGA through
the JTAG interface, or through the BPI/SPI configuration interface via configuration
memories.

When creating the encrypted bitstream, the correct key location must be specif ied (i.e.,
select EFUSE) to instruct the FPGA configuration logic to decrypt the incoming encrypted
bitstream using the AES key from the FUSE_KEY eFUSEs and not from the volatile BBRAM
key register. In the Vivado IDE, click Implemented Design, then click Bitstream Settings to
see the following window:
X-Ref Target - Figure 2-22

Figure 2-22: Bitstream Settings
Vivado Programming and Debugging www.xilinx.com 36
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=36

Chapter 2: Programming the Device
Click Configure additional bitstream settings to open the Edit Device Properties dialog
box. There you can set the encryption options as shown in Figure 2-23.

FUSE_CNTL
The FUSE_CNTL eFUSEs control access to special device features.

For 7 Series devices use the dialog shown in Figure 2-24 to specify the FUSE_CNTL eFUSEs.

X-Ref Target - Figure 2-23

Figure 2-23: Edit Device Properties
Vivado Programming and Debugging www.xilinx.com 37
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=37

Chapter 2: Programming the Device

For UltraScale devices use the dialog box shown in Figure 2-25 to specify the FUSE_CNTL
eFUSEs.

X-Ref Target - Figure 2-24

Figure 2-24: Program eFUSE Registers-ctrl-reg-7series

X-Ref Target - Figure 2-25

Figure 2-25: Program eFUSE Registers-ctrl-reg-ultrascale_optional
Vivado Programming and Debugging www.xilinx.com 38
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=38

Chapter 2: Programming the Device
FUSE_SEC (UltraScale FPGAs only)
The FUSE_SEC eFUSEs control special device security settings in Ultrascale devices. There
are six eFUSE bits controlling the security features shown in Figure 2-26. For details refer to
the Ultrascale Architecture Configuration: Advance Specification User Guide (UG570) [Ref 10]

IMPORTANT: If the JTAG Disable bit is programmed, the JTAG interface will be disabled, preventing
future test and configuration access to the device. This bit should only be programmed if JTAG access
to the device is no longer required.

For information on these configuration features, see the Ultrascale Architecture
Configuration: Advance Specification User Guide (UG570) [Ref 10] or the 7 Series FPGAs
Configuration User Guide (UG470) [Ref 8]

System Monitor
The System Monitor (SYSMON) Analog-to-Digital Converter (ADC) measures die
temperature and voltage on the hardware device. The SYSMON monitors the physical
environment via on-chip temperature and supply sensors. The ADC provides a
high-precision analog interface for a range of applications.

The ADC can access up to 17 external analog input channels. Refer to UltraScale
Architecture System Monitor Advance Specification User Guide (UG580) [Ref 11], or 7 Series

X-Ref Target - Figure 2-26

Figure 2-26: Program eFUSE Registers-sec-reg-ultrascale_optional
Vivado Programming and Debugging www.xilinx.com 39
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=39

Chapter 2: Programming the Device
FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital
Converter User Guide (UG480) [Ref 9] for more information on a specif ic device architecture.

The hw_sysmon data is stored in dedicated registers called status registers accessible
through the hw_sysmon_reg object. You can get the contents of the System Monitor
registers by using the get_hw_sysmon_reg command.

Every device that supports the System Monitor automatically has one or more hw_sysmon
objects created when refresh_hw_device is called. When the hw_sysmon object is
created, it is assigned a property for all the temperature and voltage registers, as well as the
control registers. On the hw_sysmon object, the values assigned to the temperature and
voltage registers are already translated to Celsius/Fahrenheit and Volts.

Although you can use the get_hw_sysmon_reg command to access the hex values stored in
registers of a System Monitor, you can also retrieve values of certain registers as formatted
properties of the hw_sysmon object. For example, the following code retrieves the
TEMPERATURE property of the specif ied hw_sysmon object rather than directly accessing
the hex value of the register:

set opTemp [get_property TEMPERATURE [lindex [get_hw_sysmons] 0]

Complete list of all the System Monitor commands can be found in Table 5-16, page 102.

X-Ref Target - Figure 2-27

Figure 2-27: System Monitor
Vivado Programming and Debugging www.xilinx.com 40
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=40

Chapter 3

Debugging the Design

Introduction
Debugging an FPGA design is a multistep, iterative process. Like most complex problems, it
is best to break the FPGA design debugging process down into smaller parts by focusing on
getting smaller sections of the design working one at a time rather than trying to get the
whole design to work at once. Iterating through the design flow by adding one module at
a time and getting it to function properly in the context of the whole design is one example
of a proven design and debug methodology. You can use this design and debug
methodology in any combination of the following design flow stages:

• RTL-level design simulation

• Post-implemented design simulation

• In-system debugging

RTL-level Design Simulation
The design can be functionally debugged during the simulation verif ication process. Xilinx
provides a full design simulation feature in the Vivado® IDE. The Vivado design simulator
can be used to perform RTL simulation of your design. The benefits of debugging your
design in an RTL-level simulation environment include full visibility of the entire design and
ability to quickly iterate through the design/debug cycle. The limitations of debugging your
design using RTL-level simulation includes the diff iculty of simulating larger designs in a
reasonable amount of time in addition to the diff iculty of accurately simulating the actual
system environment. For more information about using the Vivado simulator, refer to the
Vivado Design Suite User Guide: Logic Simulation (UG937) [Ref 1].
Vivado Programming and Debugging www.xilinx.com 41
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=41

Chapter 3: Debugging the Design
Post-Implemented Design Simulation
The Vivado simulator can also be used to simulate the post-implemented design. One of
the benefits of debugging the post-implemented design using the Vivado simulator
includes having access to a timing-accurate model for the design. The limitations of
performing post-implemented design simulation include those mentioned in the previous
section: long run-times and system model accuracy.

In-System Logic Design Debugging
The Vivado IDE also includes a logic analysis feature that enables you to perform in-system
debugging of the post-implemented design an FPGA device. The benefits for debugging
your design in-system include debugging your timing-accurate, post-implemented design
in the actual system environment at system speeds. The limitations of in-system debugging
includes somewhat lower visibility of debug signals compared to using simulation models
and potentially longer design/implementation/debug iterations, depending on the size and
complexity of the design.

In general, the Vivado tool provides several different ways to debug your design. You can
use one or more of these methods to debug your design, depending on your needs.
Chapter 4, In-System Logic Design Debugging Flows focuses on the in-system logic
debugging capabilities of the Vivado IDE.

In-System Serial I/O Design Debugging
To enable in-system serial I/O validation and debug, the Vivado IDE includes a serial I/O
analysis feature. This allows you to measure and optimize your high-speed serial I/O links in
your FPGA-based system. The Vivado serial I/O analyzer features are designed to help you
address a range of in-system debug and validation problems from simple clocking and
connectivity issues to complex margin analysis and channel optimization issues. The main
benefit of using the Vivado serial I/O analyzer over some other external instrumentation
techniques is that you are measuring the quality of the signal after the receiver equalization
has been applied to the received signal. This ensures that you are measuring at the optimal
point in the TX-to-RX channel thereby ensuring real and accurate data.

The Vivado tool provides the means to generate the design used to exercise the gigabit
transceiver endpoints as well as the run-time software to take measurements and help you
optimize your high-speed serial I/O channels. Chapter 7, In-System Serial I/O Debugging
Flows guides you through the process of generating the IBERT design. Chapter 8,
Debugging the Serial I/O Design in Hardware guides you through the use of the run time
Vivado serial I/O analyzer feature.
Vivado Programming and Debugging www.xilinx.com 42
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=42

Chapter 4

In-System Logic Design Debugging Flows

Introduction
The Vivado® tool provides many features to debug a design in-system in an actual
hardware device. The in-system debugging flow has three distinct phases:

1. Probing phase: Identifying what signals in your design you want to probe and how you
want to probe them.

2. Implementation phase: Implementing the design that includes the additional debug IP
that is attached to the probed nets.

3. Analysis phase: Interacting with the debug IP contained in the design to debug and
verify functional issues.

This in-system debug flow is designed to work using the iterative design/debug flow
described in the previous section. If you choose to use the in-system debugging flow, it is
advisable to get a part of your design working in hardware as early in the design cycle as
possible. The rest of this chapter describes the three phases of the in-system debugging
flow and how to use the Vivado logic debug feature to get your design working in hardware
as quickly as possible.

Probing the Design for In-System Debugging
The probing phase of the in-system debugging flow is split into two steps:

1. Identifying what signals or nets you want to probe

2. Deciding how you want to add debug cores to your design

In many cases, the decision you make on what signals to probe or how to probe them can
affect one another. It helps to start by deciding if you want to manually add the debug IP
component instances to your design source code (called the HDL instantiation probing
flow) or if you want the Vivado tool to automatically insert the debug cores into your
post-synthesis netlist (called the netlist insertion probing flow). Table 4-1 describes some of
the advantages and trade-offs of the different debugging approaches.
Vivado Programming and Debugging www.xilinx.com 43
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=43

Chapter 4: In-System Logic Design Debugging Flows
Using the Netlist Insertion Debug Probing Flow
Insertion of debug cores in the Vivado tool is presented in a layered approach to address
different needs of the diverse group of Vivado users:

• The highest level is a simple wizard that creates and configures Integrated Logic
Analyzer (ILA) cores automatically based on the selected set of nets to debug.

• The next level is the main Debug window allowing control over individual debug cores,
ports and their properties. The Debug window can be displayed when the Synthesized
Design is open by selecting the Debug layout from the Layout Selector or the Layout
menu, or can be opened directly using Window > Debug.

• The lowest level is the set of Tcl XDC debug commands that you can enter manually
into an XDC constraints f ile or replay as a Tcl script.

You can also use a combination of the modes to insert and customize debug cores.

Marking HDL Signals for Debug
You can identify signals for debugging at the HDL source level prior to synthesis by using
the mark_debug constraint. Nets corresponding to signals marked for debug in HDL are
automatically listed in the Debug window under the Unassigned Debug Nets folder.

Note: In the Debug window, the Debug Nets view is a more net-centric view of nets that you have
selected for debug. The Debug Cores view is a more core-centric view where you can view and set
core properties.

Table 4-1: Debugging Strategies

Debugging Goal Recommended Debug Programming Flow

Identify debug signals in the HDL
source code while retaining
flexibility to enable/disable
debugging later in the flow.

• Use mark_debug property to tag signals for debugging in HDL.
• Use the Set up Debug wizard to guide you through the Netlist

Insertion probing flow.

Identify debug nets in synthesized
design netlist without having to
modify the HDL source code.

• Use the Mark Debug right-click menu option to select nets for
debugging in the synthesized design netlist.

• Use the Set up Debug wizard to guide you through the Netlist
Insertion probing flow.

Automated debug probing flow
using Tcl commands.

• Use set_property Tcl command to set the mark_debug property on
debug nets.

• Use Netlist Insertion probing flow Tcl commands to create debug
cores and connect to them to debug nets.

Explicitly attach signals in the HDL
source to an ILA debug core
instance.

• Identify HDL signals for debugging.
• Use the HDL Instantiation probing flow to generate and instantiate an

Integrated Logic Analyzer (ILA) core and connect it to the debug
signals in the design.
Vivado Programming and Debugging www.xilinx.com 44
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=44

Chapter 4: In-System Logic Design Debugging Flows
The procedure for marking nets for debug depends on whether you are working with an RTL
source-based project or a synthesized netlist-based project. For an RTL netlist-based
project:

• Using the Vivado synthesis feature you can optionally mark HDL signals for debug
using the mark_debug constraint in VHDL and Verilog source f iles. The valid values for
the mark_debug constraint are “TRUE” or “FALSE”. The Vivado synthesis feature does
not support the “SOFT” value.

• Using Xilinx Synthesis Technology (XST) you can optionally mark nets for debug using
the mark_debug constraint in VHDL and Verilog sources. In addition to the boolean
string values of, “TRUE” or “FALSE,” a value of “SOFT” allows the software to optimize
the specified net, if possible.

For a synthesized netlist-based project:

• Using the Synopsys® Synplify® synthesis tool, you can optionally mark nets for debug
using the mark_debug and syn_keep constraints in VHDL or Verilog, or using the
mark_debug constraint alone in the Synopsys Design Constraints (SDC) f ile. Synplify
does not support the “SOFT” value, as this behavior is controlled by the syn_keep
attribute.

• Using the Mentor Graphics® Precision® synthesis tool, you can optionally mark nets
for debug using the mark_debug constraint in VHDL or Verilog.

The following subsections provide syntactical examples for Vivado synthesis, XST, Synplify,
and Precision source files.

Vivado Synthesis mark_debug Syntax Examples
The following are examples of VHDL and Verilog syntax when using Vivado synthesis.

• VHDL Syntax Example

attribute mark_debug : string;
attribute mark_debug of char_fifo_dout: signal is "true";

• Verilog Syntax Example

(* mark_debug = "true" *) wire [7:0] char_fifo_dout;

XST mark_debug Syntax Examples
The following are examples of VHDL and Verilog syntax when using XST.

• VHDL Syntax Example

attribute mark_debug : string;
attribute mark_debug of char_fifo_dout: signal is "true";
Vivado Programming and Debugging www.xilinx.com 45
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=45

Chapter 4: In-System Logic Design Debugging Flows
• Verilog Syntax Example

(* mark_debug = "true" *) wire [7:0] char_fifo_dout;

Synplify mark_debug Syntax Examples
The following are examples of Synplify syntax for VHDL, Verilog, and SDC.

• VHDL Syntax Example

attribute syn_keep : boolean;
attribute mark_debug : string;
attribute syn_keep of char_fifo_dout: signal is true;
attribute mark_debug of char_fifo_dout: signal is "true";

• Verilog Syntax Example

(* syn_keep = "true", mark_debug = "true" *) wire [7:0] char_fifo_dout;

• SDC Syntax Example

define_attribute {n:char_fifo_din[*]} {mark_debug} {"true"}
define_attribute {n:char_fifo_din[*]} {syn_keep} {"true"}

IMPORTANT: Net names in an SDC source must be prefixed with the “n:” qualifier.

Note: Synopsys Design Constraints (SDC) is an accepted industry standard for communicating
design intent to tools, particularly for timing analysis. A reference copy of the SDC specif ication is
available from Synopsys by registering for the TAP-in program at:
http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx

Precision mark_debug Syntax Examples
The following are examples of VHDL and Verilog syntax when using Precision.

• VHDL Syntax Example

attribute mark_debug : string;
attribute mark_debug of char_fifo_dout: signal is "true";

• Verilog Syntax Example

(* mark_debug = "true" *) wire [7:0] char_fifo_dout;

Synthesizing the Design
The next step is to synthesize the design containing the debug cores by clicking Run
Synthesis in the Vivado IDE or by running the following Tcl commands:

launch_runs synth_1
wait_on_run synth_1
Vivado Programming and Debugging www.xilinx.com 46
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=46

Chapter 4: In-System Logic Design Debugging Flows
You can also use the synth_design Tcl command to synthesize the design. Refer to the
Vivado Design Suite User Guide: Synthesis (UG901) [Ref 2] for more details on the various
ways you can synthesize your design.

Marking Nets for Debug in the Synthesized Design
Open the synthesized design by clicking Open Synthesized Design in the Flow Navigator
and select the Debug window layout to see the Debug window. Any nets that correspond
to HDL signals that were marked for debugging are shown in the Unassigned Debug Nets
folder in the Debug window (see Figure 4-1).

• Selecting a net in any of the design views (such as the Netlist or Schematic windows),
then right-click select the Mark Debug option.

• Selecting a net in any of the design views, then dragging and dropping the nets into
the Unassigned Debug Nets folder.

• Using the net selector in the Set up Debug wizard (see Using the Set Up Debug Wizard
to Insert Debug Cores for details).

Using the Set Up Debug Wizard to Insert Debug Cores
The next step after marking nets for debugging is to assign them to debug cores. The
Vivado IDE provides an easy to use Set up Debug wizard to help guide you through the
process of automatically creating the debug cores and assigning the debug nets to the
inputs of the cores.

To use the Set up Debug wizard to insert the debug cores:

1. Optionally, select a set of nets for debugging either using the unassigned nets list or
direct net selection.

2. Select Tools > Set up Debug from the Vivado IDE main menu, or click Set up Debug in
the Flow Navigator under the Synthesized Design section.

X-Ref Target - Figure 4-1

Figure 4-1: Unassigned Debug Nets
Vivado Programming and Debugging www.xilinx.com 47
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=47

Chapter 4: In-System Logic Design Debugging Flows
3. Click Next to get to the Specify Nets to Debug panel (see Figure 4-2).

4. Optionally, click Find Nets to Add... to add more nets or remove existing nets from the
table. You can also right-click a debug net and select Remove Nets to remove nets from
the table.

IMPORTANT: You can also select nets in the Netlist or other windows, then drag them to the list of Nets
to Debug.

5. Right-click a debug net and select Select Clock Domain to change the clock domain to
be used to sample value on the net.

Note: The Set up Debug wizard attempts to automatically select the appropriate clock domain for
the debug net by searching the path for synchronous elements. Use the Select Clock Domain dialog
window to modify this selection as needed, but be aware that each clock domain present in the table
results in a separate ILA core instance.

6. Once you are satisfied with the debug net selection, click Next.

Note: The Set up Debug wizard inserts one ILA core per clock domain. The nets that were selected
for debug are assigned automatically to the probe ports of the inserted ILA cores. The last wizard
screen shows the core creation summary displaying the number of clocks found and ILA cores to be
created and/or removed.

7. If you want to enable either advanced trigger mode or basic capture mode, use the
corresponding check boxes to do so. Click Next to move to the last panel.

Note: The advanced trigger mode and basic capture mode features are described in more detail in
Chapter 5, Debugging Logic Designs in Hardware .

8. If you are satisfied with the results, click Finish to insert and connect the ILA cores in
your synthesized design netlist.

X-Ref Target - Figure 4-2

Figure 4-2: Set Up Debug Wizard
Vivado Programming and Debugging www.xilinx.com 48
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=48

Chapter 4: In-System Logic Design Debugging Flows
9. Configure the ILA core general options such as ILA data depth (C_DATA_DEPTH),
number of input pipe stages (C_INPUT_PIPE_STAGES), enabling the capture control
feature (C_EN_STRG_QUAL), and enabling the advanced trigger feature
(C_ADV_TRIGGER). Refer to Table 4-2, page 52 for descriptions of these options.

10. The debug nets are now assigned to the ILA debug core, as shown in Figure 4-4.

Using the Debug Window to Add and Customize Debug Cores
The Debug Cores tab in the Debug window provides more fine-grained control over ILA
core and debug core hub insertion than what is available in the Set up Debug wizard. The
controls available in this window allow core creation, core deletion, debug net connection,
and core parameter changes.

X-Ref Target - Figure 4-3

Figure 4-3: Configuring ILA General Options

X-Ref Target - Figure 4-4

Figure 4-4: Assigned Debug Nets
Vivado Programming and Debugging www.xilinx.com 49
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=49

Chapter 4: In-System Logic Design Debugging Flows
The Debug Cores tab of the Debug window:

• Shows the list of debug cores that are connected to the Debug Hub (dbg_hub) core.

• Maintains the list of unassigned debug nets at the bottom of the window.

You can manipulate debug cores and ports from the popup menu or the toolbar buttons on
the top of the window.

Creating and Removing Debug Cores
To create debug cores in the Debug window, click Create Debug Core. Using this interface
(see Figure 4-5), you can change the parent instance, debug core name, and set parameters
for the core. To remove an existing debug core, right-click the core in the Debug window
and select Delete. Refer to Table 4-2, page 52 for a description of the ILA core options
found in the Create Debug Core dialog.

Adding, Removing, and Customizing Debug Core Ports
In addition to adding and removing debug cores, you can also add, remove, and customize
ports of each debug core to suit your debugging needs. To add a new debug port:

1. Select the debug core in the Debug window.

2. Click Create Debug Port to open the dialog shown in Figure 4-6.

3. Select or type in the port width

4. Click OK.

5. To remove a debug port, f irst select the port on the core in the Debug window, then
select Delete.

X-Ref Target - Figure 4-5

Figure 4-5: Creating a New Debug Core
Vivado Programming and Debugging www.xilinx.com 50
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=50

Chapter 4: In-System Logic Design Debugging Flows

Connecting and Disconnecting Nets to Debug Cores

You can select, drag, and drop nets and buses (also called bus nets) from the Schematic or
Netlist windows onto the debug core ports. This expands the debug port as needed to
accommodate the net selection. You can also right-click any net or bus, and select Assign
to Debug Port.

To disconnect nets from the debug core port, select the nets that are connected to the
debug core port, and click Disconnect Net.

Modifying Properties on the Debug Cores
Each debug core has properties you can change to customize the behavior of the core. To
learn how to change properties on the debug_core_hub debug core, refer to Changing
the BSCAN User Scan Chain of the Debug Core Hub, page 60.

You can also change properties on the ILA debug core. For instance, to change the number
of samples captured by the ILA debug core (see Figure 4-7), do the following:

1. In the Debug window, select the desired ILA core (such as u_ila_0).

2. In the Cell Properties window, select the Debug Core Options view.

3. Using the C_DATA_DEPTH pull-down list, select the desired number of samples to be
captured.

X-Ref Target - Figure 4-6

Figure 4-6: Creating a New Debug Port
Vivado Programming and Debugging www.xilinx.com 51
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=51

Chapter 4: In-System Logic Design Debugging Flows

A full description of all ILA core properties can be found in Table 4-2.

X-Ref Target - Figure 4-7

Figure 4-7: Changing the Data Depth of the ILA Core

Table 4-2: ILA Debug Core Properties

Debug Core Property Description Possible Values

C_DATA_DEPTH Maximum number of data samples that can be
stored by the ILA core. Increasing this value causes
more block RAM to be consumed by the ILA core
and can adversely affect design performance.

1024 (Default)
2048
4096
8192
16384
32768
65536
131072

C_TRIGIN_EN Enables the TRIG_IN and TRIG_IN_ACK ports of the
ILA core. Note that you need to use the advanced
netlist change commands to connect these ports
to nets in your design. If you wish to use the ILA
trigger input or output signals, you should
consider using the HDL instantiation method of
adding ILA cores to your design.

false (Default)
true

C_TRIGOUT_EN Enables the TRIG_OUT and TRIG_OUT_ACK ports of
the ILA core. Note that you need to use the
advanced netlist change commands to connect
these ports to nets in your design. If you wish to
use the ILA trigger input or output signals, you
should consider using the HDL instantiation
method of adding ILA cores to your design.

false (Default)
true
Vivado Programming and Debugging www.xilinx.com 52
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=52

Chapter 4: In-System Logic Design Debugging Flows
Using XDC Commands to Insert Debug Cores
In addition to using the Set up Debug wizard, you can also use XDC commands to create,
connect, and insert debug cores into your synthesized design netlist. Follow the these steps
by typing the XDC commands in the Tcl Console:

1. Open the synthesized design netlist from the synthesis run called synth_1.

open_run synth_1

C_ADV_TRIGGER Enables the advanced trigger mode of the ILA core.
Refer to Chapter 5 for more details on this feature.

false (Default)
true

C_INPUT_PIPE_STAGES Enables extra levels of pipe stages (for example,
flip-flop registers) on the PROBE inputs of the ILA
core. This feature can be used to improve timing
performance of your design by allowing the
Vivado tools to place the ILA core away from
critical sections of the design.

0 (Default)
1
2
3
4
5
6

C_EN_STRG_QUAL Enables the basic capture control mode of the ILA
core. Refer to Chapter 5 for more details on this
feature.

false (Default)
true

C_ALL_PROBE_SAME_MU Enables all PROBE inputs of the ILA core to have
the same number of comparators (also called
"match units”). This property should always be set
to true.

true (Default)
false (not
recommended)

C_ALL_PROBE_SAME_MU_CNT The number of comparators (or match units) per
PROBE input of the ILA core. The number of
comparators that are required depends on the
settings of the C_ADV_TRIGGER and
C_EN_STRG_QUAL properties:
If C_ADV_TRIGGER is false and C_EN_STRG_QUAL is
false, then set to 1
• If C_ADV_TRIGGER is false and

C_EN_STRG_QUAL is true, then set to 2.
• If C_ADV_TRIGGER is true and C_EN_STRG_QUAL

is false, then set to 1 through 4 (4 is
recommended in this case).

• If C_ADV_TRIGGER is true and C_EN_STRG_QUAL
is true, then set to 2 through 4 (4 is
recommended in this case).

IMPORTANT: if you do not follow the rules above,
you will encounter an error during implementation
when the ILA core is generated.

1
2
3
4

Table 4-2: ILA Debug Core Properties

Debug Core Property Description Possible Values
Vivado Programming and Debugging www.xilinx.com 53
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=53

Chapter 4: In-System Logic Design Debugging Flows
IMPORTANT: The XDC commands in the following steps are only valid when a synthesized design
netlist is open.

2. Create the ILA core black box.

create_debug_core u_ila_0 ila

3. Set the various properties of the ILA core.

set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
set_property C_INPUT_PIPE_STAGES 0 [get_debug_cores u_ila_0]
set_property C_EN_STRG_QUAL false [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU true [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU_CNT 1 [get_debug_cores u_ila_0]

4. Set the width of the clk port of the ILA core to 1 and connect it to the desired clock net.

set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect_debug_port u_ila_0/clk [get_nets [list clk]]

Note: You do not have to create the clk port of the ILA core because it is automatically created
by the create_debug_core command.

IMPORTANT: All debug port names of the debug cores are lower case. Using upper-case or mixed-case
debug port names will result in an error.

5. Set the width of the probe0 port to the number of nets you plan to connect to the port.

set_property port_width 1 [get_debug_ports u_ila_0/probe0]

Note: You do not have to create the f irst probe port (probe0) of the ILA core because it is
automatically created by the create_debug_core command.

6. Connect the probe0 port to the nets you want to attach to that port.

connect_debug_port u_ila_0/probe0 [get_nets [list A_or_B]]

7. Optionally, create more probe ports, set their width, and connect them to the nets you
want to debug.

create_debug_port u_ila_0 probe
set_property port_width 2 [get_debug_ports u_ila_0/probe1]
connect_debug_port u_ila_0/probe1 [get_nets [list {A[0]} {A[1]}]]

For more information on these and other related Tcl commands, type help –category
ChipScope in the Tcl Console of the Vivado IDE.
Vivado Programming and Debugging www.xilinx.com 54
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=54

Chapter 4: In-System Logic Design Debugging Flows
Saving Constraints After Running Debug XDC Commands
You need to save constraints after using the Set up Debug wizard, using Vivado IDE to
create debug cores or ports, and/or running the following XDC commands:

• create_debug_core

• create_debug_port

• connect_debug_port

• set_property (on any debug_core or debug_port object)

The corresponding XDC commands are saved to the target constraints f ile and are used
during implementation to insert and connect the debug cores.

IMPORTANT: Saving constraints to the target constraints file while in project mode may cause the
synthesis and implementation steps to go out-of-date. However, you do not need to re-synthesize the
design since the debug XDC constraints are only used during implementation. You can force the
synthesis step up-to-date by selecting the Design Runs window, right-clicking the synthesis run (e.g.,
synth_1), and selecting Force up-to-date.

Implementing the Design
After inserting, connecting and customizing your debug cores, you are now ready for
implementing your design (refer to Implementing the Design Containing the Debug Cores).

Debug Core Insertion in Non-Project Mode
Debug cores can be inserted in either Project Mode or Non-Project Mode. The following
sample Tcl script shows how to create the debug core, set debug core attributes, and
connect the debug core probes to the signals in the design being probed. In Non-Project
Mode, the insertion of the debug core needs to happen after synthesizing the design, and
prior to the opt_design step as shown below.

IMPORTANT: Debug core insertion is only supported for ILA cores.

The following Tcl script is an example of using the debug core insertion commands in a
Non-Project flow.

#read relevant design source files
read_vhdl ./*.vhdl
read_verilog [glob ./Sources/*.v]
read_xdc ./target.xdc

#Synthesize Design

synth_design -top top -part xc7k325tffg900-2
Vivado Programming and Debugging www.xilinx.com 55
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=55

Chapter 4: In-System Logic Design Debugging Flows
#Create the debug core
create_debug_core u_ila_0 ila

#set debug core properties
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
set_property C_INPUT_PIPE_STAGES 0 [get_debug_cores u_ila_0]
set_property C_EN_STRG_QUAL false [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU true [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU_CNT 1 [get_debug_cores u_ila_0]

#connect the probe ports in the debug core to the signals being probed in the design
set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect_debug_port u_ila_0/clk [get_nets [list clk]]
set_property port_width 1 [get_debug_ports u_ila_0/probe0]
connect_debug_port u_ila_0/probe0 [get_nets [list A_or_B]]
create_debug_port u_ila_0 probe
#Optionally, create more probe ports, set their width,
and connect them to the nets you want to debug

#Implement design

opt_design
place_design
route_design
write_bitstream

HDL Instantiation Debug Probing Flow Overview
The HDL instantiation probing flow involves the manual customization, instantiation, and
connection of various debug core components directly in the HDL design source. The new
debug cores that are supported in this flow in the Vivado tool are shown in table Table 4-3.
Vivado Programming and Debugging www.xilinx.com 56
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=56

Chapter 4: In-System Logic Design Debugging Flows
The new ILA core has two distinct advantages over the legacy
ILA v1.x core:
• Works with the integrated Vivado logic analyzer feature (refer to Debugging Logic

Designs in Hardware, page 62).

• No ICON core instance or connection is required.

Using the HDL Instantiation Debug Probing Flow
The steps required to perform the HDL instantiation flow are:

1. Customize and generate the ILA and/or VIO debug cores that have the right number of
probe ports for the signals you want to probe.

2. (Optional) Customize and generate the JTAG-to-AXI Master debug core and connect it
to an AXI slave interface of an AXI peripheral or interconnect core in your design.

3. Synthesize the design containing the debug cores.

4. (Optional) Modify debug hub core properties.

5. Implement the design containing the debug cores.

Table 4-3: Debug Cores in Vivado IP Catalog available for use in the HDL Instantiation Probing
Flow

Debug Core Version Description Run Time Analyzer Tool

ILA (Integrated
Logic Analyzer)

v5.0 Debug core that is used to
trigger on hardware events
and capture data at system
speeds.

 Vivado logic analyzer

VIO (Virtual
Input/Output)

v3.0 Debug core that is used to
monitor or control signals in
a design at JTAG chain scan
rates.

 Vivado logic analyzer

JTAG-to-AXI Master v1.0 Debug core that is used to
generate AXI transactions to
interact with various AXI full
and AXI lite slave cores in a
system that is running in
hardware.

Vivado logic analyzer
Vivado Programming and Debugging www.xilinx.com 57
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=57

Chapter 4: In-System Logic Design Debugging Flows
Customizing and Generating the Debug Cores
Use the IP Catalog button in the Project Manager to locate, select, and customize the
desired debug core. The debug cores are located in the Debug & Verification > Debug
category of the IP Catalog (see Figure 4-8). You can customize the debug core by
double-clicking on the IP core or by right-click selecting the Customize IP menu selection.

• For more information on customizing the ILA core, refer to LogiCORE IP Integrated
Logic Analyzer (ILA) v4.0 Datasheet (PG172) [Ref 16].

• For more information on customizing the VIO core, refer to LogiCORE IP Virtual
Input/Output (VIO) v3.0 Product Guide (PG159) [Ref 12].

• For more information on customizing the JTAG-to-AXI Master core, refer to LogiCORE
IP JTAG to AXI Master v1.0 Product Guide (PG174) [Ref 17].

After customizing the core, click the Generate button in the IP customization wizard. This
generates the customized debug core and add it to the Sources view of your project.
X-Ref Target - Figure 4-8

Figure 4-8: Debug Cores in the IP Catalog
Vivado Programming and Debugging www.xilinx.com 58
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=58

Chapter 4: In-System Logic Design Debugging Flows
Instantiating the Debug Cores
After generating the debug core, instantiate it in your HDL source code and connect it to
the signals that you wish to probe for debugging purposes. Following is an example of the
ILA instance in a Verilog HDL source file:

u_ila_0
(
 .clk(clk),
 .probe0(counterA),
 .probe1(counterB),
 .probe2(counterC),
 .probe3(counterD),
 .probe4(A_or_B),
 .probe5(B_or_C),
 .probe6(C_or_D),
 .probe7(D_or_A)
);

Note: Unlike the legacy VIO and ILA v1.x cores, the new ILA core instance does not require a connection to
an ICON core instance. Instead, a debug core hub (dbg_hub) is automatically inserted into the synthesized
design netlist to provide connectivity between the new ILA core and the JTAG scan chain.

Synthesizing the Design Containing the Debug Cores
In the next step, synthesize the design containing the debug cores by clicking Run
Synthesis in the Vivado IDE or by running the following Tcl commands:

launch_runs synth_1
wait_on_run synth_1

You can also use the synth_design Tcl command to synthesize the design. Refer to Vivado
Design Suite User Guide: Synthesis (UG901) [Ref 2] for more details on the various ways you
can synthesize your design.

Viewing the Debug Cores in the Synthesized Design
After synthesizing your design, you can open the synthesized design to view the debug
cores and modify their properties. Open the synthesized design by clicking Open
Synthesized Design in the Flow Navigator, and select the Debug window layout to see the
Debug window that shows your ILA debug cores connected to the debug hub core
(dbg_hub) (see Figure 4-9).
Vivado Programming and Debugging www.xilinx.com 59
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=59

Chapter 4: In-System Logic Design Debugging Flows
Changing the BSCAN User Scan Chain of the Debug Core Hub
You can view and change the BSCAN user scan chain index of the debug core hub by
selecting the dbg_hub in the Debug window, selecting the Debug Core Options view in
the Properties window, then changing the value of the C_USER_SCAN_CHAIN property
(see Figure 4-10).

IMPORTANT: The default values for C_USER_SCAN_CHAIN are 1 or 3 for the debug hub core. If using a
scan chain value other than 1 or 3 for the debug hub core, you must manually launch hw_server. To
detect the debug hub at User Scan Chain of 2 or 4, use the following command:

-e "set xsdb-user-bscan <C_USER_SCAN_CHAIN scan_chain_number>"

IMPORTANT: If you plan to use the Microprocessor Debug Module (MDM) or other IP that uses the
BSCAN primitive with the Vivado logic debug cores, you need to set the C_USER_SCAN_CHAIN property
of the dbg_hub to a user scan chain that does not conflict with the other IP's Boundary Scan Chain
setting. Failure to do so results in errors later in the implementation flow.

X-Ref Target - Figure 4-9

Figure 4-9: Debug Window Showing ILA Core and Debug Core Hub
Vivado Programming and Debugging www.xilinx.com 60
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=60

Chapter 4: In-System Logic Design Debugging Flows
Implementing the Design Containing the Debug
Cores
The Vivado software creates the debug core hub initially a black box. This core must be
implemented prior to running the placer and router.

Implementing the Design
Implement the design containing the debug core by clicking Run Implementation in the
Vivado IDE or by running the following Tcl commands:

launch_runs impl_1
wait_on_run impl_1

You can also implement the design using the implementation commands opt_design,
place_design, and route_design. Refer to the Vivado Design Suite User Guide:
Implementation (UG904) [Ref 3] for more details on the various ways you can implement
your design.

X-Ref Target - Figure 4-10

Figure 4-10: Changing the User Scan Chain Property of the Debug Core Hub
Vivado Programming and Debugging www.xilinx.com 61
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=61

Chapter 5

Debugging Logic Designs in Hardware

Introduction
Once you have the debug cores in your design, you can use the run time logic analyzer
features to debug the design in hardware.

Using Vivado® Logic Analyzer to Debug the Design
The Vivado® logic analyzer feature is used to interact with new ILA, VIO, and JTAG-to-AXI
Master debug cores that are in your design. To access the Vivado logic analyzer feature,
click the Open Hardware Manager button in the Program and Debug section of the Flow
Navigator.

The steps to debug your design in hardware using an ILA debug core are:

1. Connect to the hardware target and program the FPGA device with the .bit f ile

2. Set up the ILA debug core trigger and capture controls.

3. Arm the ILA debug core trigger.

4. View the captured data from the ILA debug core in the Waveform window.

5. Use the VIO debug core to drive control signals and/or view design status signals.

6. Use the JTAG-to-AXI Master debug core to run transactions to interact with various AXI
slave cores in your design.

Connecting to the Hardware Target and
Programming the FPGA Device
Programming an FPGA device prior to debugging are exactly the same steps described in
Using a Vivado Hardware Manager to Program an FPGA Device in Chapter 2 . After
programming the device with the .bit f ile that contains the new ILA, VIO, and
Vivado Programming and Debugging www.xilinx.com 62
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=62

Chapter 5: Debugging Logic Designs in Hardware
JTAG-to-AXI Master debug cores, the Hardware window now shows the debug cores that
were detected when scanning the device (see Figure 5-1).

For more information on using the ILA core, refer to Setting up the ILA Core to Take a
Measurement, page 63. For more information on using the VIO core, refer to Setting Up the
VIO Core to Take a Measurement, page 85.

Setting up the ILA Core to Take a Measurement
The ILA cores that you add to your design appear in the Hardware window under the target
device. If you do not see the ILA cores appear, right-click the device and select Refresh
Device. This re-scans the FPGA device and refreshes the Hardware window.

Note: If you still do not see the ILA core after programming and/or refreshing the FPGA device,
check to make sure the device was programmed with the appropriate .bit f ile and check to make
sure the implemented design contains an ILA core. Also, check to make sure the appropriate .ltx
probes f ile that matches the .bit f ile is associated with the device.

Click the ILA core (called hw_ila_1 in Figure 5-1) to see its properties in the ILA Core
Properties window. By selecting the ILA core, you should also see the probes
corresponding to the ILA core in the Debug Probes window as well as the corresponding
ILA Dashboard in the Vivado IDE workspace (see Figure 5-2, page 64).

X-Ref Target - Figure 5-1

Figure 5-1: Hardware Window Showing Debug Cores
Vivado Programming and Debugging www.xilinx.com 63
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=63

Chapter 5: Debugging Logic Designs in Hardware
Viewing ILA Cores in the Debug Probes Window
The Debug Probes window is used to view all of the debug probes that belong to an ILA or
VIO core (see Figure 5-3, page 65). The ILA debug probes can be added to an existing
waveform viewer for the ILA core or can be added to the various trigger and/or capture
windows of the ILA Dashboard. To perform these operations, right-click an ILA core's
debug probe(s) and select one of the following:

• Add Probes to Waveform: adds selected probes to the waveform window
corresponding to the ILA core to which the probe belongs.

• Add Probes to Basic Trigger Setup: adds selected probes to the Basic Trigger Setup
window of the dashboard corresponding to the ILA core to which the probe belongs.
Note that the ILA core's Trigger mode should be set to "BASIC_ONLY" or
"BASIC_OR_TRIG_IN" for this selection to be enabled.

• Add Probes to Basic Capture Setup: adds selected probes to the Basic Capture Setup
window of the dashboard corresponding to the ILA core to which the probe belongs.
Note that the ILA core's Capture mode should be set to "BASIC" for this selection to be
enabled.

X-Ref Target - Figure 5-2

Figure 5-2: Selection of the ILA Core in Various Views
Vivado Programming and Debugging www.xilinx.com 64
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=64

Chapter 5: Debugging Logic Designs in Hardware
TIP: Tip: if you right-click the ILA core object in the Debug Probes or Hardware window and select
one of the Add Probes… options, the selection option will apply to all probes that belong to that ILA
core.

Writing Debug Probes Information

The Debug Probes window contains information about the nets that you probed in your
design using the ILA and/or VIO cores. This debug probe information is extracted from your
design and is stored in a data f ile that typically has an .ltx f ile extension.

Normally, the debug probes f ile is automatically created during the implementation
process. However, you can also use the write_debug_probes Tcl command to write out
the debug probes information to a f ile:

1. Open the Synthesized or Netlist Design.

2. Run the write_debug_probes filename.ltx Tcl command.

X-Ref Target - Figure 5-3

Figure 5-3: ILA Debug Probes
Vivado Programming and Debugging www.xilinx.com 65
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=65

Chapter 5: Debugging Logic Designs in Hardware
IMPORTANT: If you are using non-project mode, you must manually call the write_debug_probes
command immediately following the opt_design command (or place_design command, if you do
not use the opt_design command in your script).

Reading Debug Probes Information

The debug probes file is automatically associated with the hardware device if the Vivado
IDE is in project mode and a probes f ile is called debug_nets.ltx is found in the same
directory as the bitstream programming (.bit) f ile that is associated with the device.

You can also specify the location of the probes f ile:

1. Select the hardware device in the Hardware window.

2. Set the Probes f ile location in the Hardware Device Properties window.

3. Right-click the hardware device in the Hardware window and select Refresh Device to
read the contents of the debug probes f ile and associate and validate the information
with the debug cores found in the design running in the hardware device.

You can also set the location using the following Tcl commands to associate a debug probes
f ile called C:\myprobes.ltx with the f irst device on the target board:

% set_property PROBES.FILE {C:/myprobes.ltx} [lindex [get_hw_devices] 0]
% refresh_hw_device [lindex [get_hw_devices] 0]

Renaming Debug Probes

You can use the Debug Probes window to rename debug probes that belong to an ILA or
VIO core (see Figure 5-3, page 65). You can rename the debug probes and add them to an
existing Waveform Viewer for the core, or you can add them to the various trigger and/or
capture windows of the ILA Dashboard. These names could be the custom, long or short
name associated with the debug probe.

To perform these operations, right-click an ILA/VIO core's debug probe(s) and select one of
the following:

• Rename: Prompts you to rename the probe to a custom name.

• Name: Allows you to select the long, short, or custom name of the debug probe.
Subsequent references to the debug probe in the Vivado IDE window will use the name
that you selected.

° Long - Displays the full hierarchical name of the signal or bus being probed.

° Short - Displays the name of the signal or bus being probed.

° Custom - Displays the custom name given to the signal or bus when renamed.
Vivado Programming and Debugging www.xilinx.com 66
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=66

Chapter 5: Debugging Logic Designs in Hardware
Using the ILA Dashboard
The ILA Dashboard (see Figure 5-4, page 67) is a central location for all status and control
information pertaining to a given ILA core. When an ILA core is f irst detected upon
refreshing a hardware device, the ILA Dashboard for the core is automatically opened. If
you need to manually open or re-open the dashboard, just right-click the ILA core object in
either the Hardware or Debug Probes windows and select Open Dashboard.

You can use the ILA Dashboard to interact with the ILA debug core in several ways:

• Set the trigger mode to trigger on various events in hardware:

° BASIC_ONLY: The ILA Basic Trigger Mode can be used to trigger the ILA core when a
basic AND/OR functionality of debug probe comparison result is satisfied.

° ADVANCED_ONLY: The ILA Advanced Trigger Mode can be used to trigger the ILA
core as specif ied by a user defined state machine.

° TRIG_IN_ONLY: The ILA TRIG_IN Trigger Mode can be used to trigger the ILA core
when the TRIG_IN pin of the ILA core transitions from a low to high.

° BASIC_OR_TRIG_IN: The ILA BASIC_OR_TRIG_IN Trigger Mode can be used to trigger
the ILA core when a logical OR-ing of the TRIG_IN pin of the ILA core and
BASIC_ONLY trigger mode is desired.

X-Ref Target - Figure 5-4

Figure 5-4: ILA Dashboard
Vivado Programming and Debugging www.xilinx.com 67
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=67

Chapter 5: Debugging Logic Designs in Hardware
° ADVANCED_OR_TRIG_IN: The ILA ADVANCED_OR_TRIG_IN Trigger Mode can be
used to trigger the ILA core when a logical OR-ing of the TRIG_IN pin of the ILA
core and ADVANCED_ONLY trigger mode is desired.

• Set the trigger output mode.

• Use ALWAYS and BASIC capture modes to control f iltering of data to be captured.

• Set the number of ILA capture windows.

• Set the data depth of the ILA capture window.

• Set the trigger position to any sample within the capture window.

• Monitor the trigger and capture status of the ILA debug core.

Using Basic Trigger Mode
Use the basic trigger mode to describe a trigger condition that is a global Boolean equation
of participating debug probe comparators. Basic trigger mode is enabled when the Trigger
Mode is set to either BASIC_ONLY or BASIC_OR_TRIG_IN. Use the Basic Trigger Setup
window (see Figure 5-5) to create this trigger condition and debug probe compare values.

You can also use the set_property Tcl command to change the trigger mode of the ILA
core. For instance, to change the trigger mode of ILA core hw_ila_1 to BASIC_ONLY, use
the following command:

set_property CONTROL.TRIGGER_MODE BASIC_ONLY [get_hw_ilas hw_ila_1]

Adding Probes to Basic Trigger Setup Window

The first step in using the basic trigger mode is to decide what ILA debug probes you want
to participate in the trigger condition. Do this by selecting the desired ILA debug probes
from the Debug Probes window and either right-click selecting Add Probes to Basic
Trigger Setup or by dragging and dropping the probes into the Basic Trigger Setup
window.

Note: You can drag-and-drop the f irst probe anywhere in the Basic Trigger Setup window, but you
must drop the second and subsequent probes on top of the f irst probe. The new probe is always
added above the previously added probe in the table. You can also use drag-and-drop operations in
this manner to re-arrange probes in the table.

X-Ref Target - Figure 5-5

Figure 5-5: ILA Basic Trigger Setup Window
Vivado Programming and Debugging www.xilinx.com 68
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=68

Chapter 5: Debugging Logic Designs in Hardware
IMPORTANT: Only probes that are in the Basic Trigger Setup window participate in the trigger
condition. Any probes that are not in the window are set to "don't care" values and are not used as part
of the trigger condition.

You can remove probes from the Basic Trigger Setup window by selecting the probe and
hitting the Delete key or by right-click selecting the Remove option.

Setting Basic Trigger Compare Values

Use the ILA debug probe trigger comparators to detect specif ic equality or inequality
conditions on the probe inputs to the ILA core. The trigger condition is the result of a
Boolean "AND", "OR", "NAND", or "NOR" calculation of each of the ILA probe trigger
comparator results. To specify the compare values for a given ILA probe, select the Compare
Value cell in for a given ILA debug probe in the Basic Trigger Setup window to open the
Compare Value dialog box (see Figure 5-6).

ILA Probe Compare Value Settings

The Compare Value dialog box contains three f ields that you can configure:

1. Operator : This is the comparison operator that you can set to the following values:

° == (equal)

° != (not equal)

° < (less than)

° <= (less than or equal)

° > (greater than)

° >= (greater than or equal)

X-Ref Target - Figure 5-6

Figure 5-6: ILA Probe Compare Value Dialog Box
Vivado Programming and Debugging www.xilinx.com 69
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=69

Chapter 5: Debugging Logic Designs in Hardware
2. Radix: This is the radix or base of the Value that you can set to the following values:

° [B] Binary

° [H] Hexadecimal

° [O] Octal

° [A] ASCII

° [U] Unsigned Decimal

° [S] Signed Decimal

3. Value: This is the comparison value that will be compared (using the Operator) with the
real-time value on the net(s) in the design that are connected to the probe input of the
ILA debug core. Depending on the Radix settings, the Value string is as follows:

° Binary

- 0: logical zero

- 1: logical one

- X: don't care

- R: rising or low-to-high transition

- F: falling or high-to-low transition

- B: either low-to-high or high-to-low transitions

- N: no transition (current sample value is the same as the previous value)

° Hexadecimal

- X: All bits corresponding to the value string character are "don't care" values

- 0-9: Values 0 through 9

- A-F: Values 10 through 15

° Octal

- X: All bits corresponding to the value string character are "don't care" values

- 0-7: Values 0 through 7

° ASCII

- Any string made up of ASCII characters

° Unsigned Decimal

- Any non-negative integer value

° Signed Decimal

- Any integer value
Vivado Programming and Debugging www.xilinx.com 70
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=70

Chapter 5: Debugging Logic Designs in Hardware
Setting Basic Trigger Condition

You can set up the trigger condition using the toolbar button on the left side of the Basic
Trigger Setup window that has an icon the shape of a logic gate on it (see Figure 5-7). You
can also use the set_property Tcl command to change the trigger condition of the ILA
core:

set_property CONTROL.TRIGGER_CONDITION AND [get_hw_ilas hw_ila_1]

The meaning of the four possible values is shown in Table 5-1.

IMPORTANT: If the ILA core has two or more debug probes that concatenated together to share a single
physical probe port of the ILA core, then only the "Global AND" (AND) and "Global NAND" (NAND)
trigger condition settings are supported. The "Global OR" (OR) and "Global NOR" (NOR) functions are

X-Ref Target - Figure 5-7

Figure 5-7: Setting the Basic Trigger Condition

Table 5-1: Basic Trigger Condition Setting Descriptions

Trigger Condition
Setting in GUI

CONTROL.TRIGGER_CONDITION
property value Trigger Condition Output

Global AND AND Trigger condition is “true” if all
participating probe comparators
evaluate “true”, otherwise trigger
condition is “false.”

Global OR OR Trigger condition is "true" if at least
one participating probe comparator
evaluates "true", otherwise trigger
condition is "false."

Global NAND NAND Trigger condition is “true” if at least
one participating probe comparator
evaluates “false”, otherwise trigger
condition is “false.”

Global NOR NOR Trigger condition is "true" if all
participating probe comparators
evaluate "false", otherwise trigger
condition is "false."
Vivado Programming and Debugging www.xilinx.com 71
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=71

Chapter 5: Debugging Logic Designs in Hardware
not supported due to limitations of the probe port comparator logic. If you want to use the "Global OR"
(OR) or "Global NOR" (NOR) trigger condition settings, then make sure you assign each unique net or
bus net to separate probe ports of the ILA core.

Using Advanced Trigger Mode
The ILA core can be configured at core generation or insertion time to have advanced
trigger capabilities that include the following features:

• Trigger state machine consisting of up to 16 states.

• Each state can consist of one-, two-, or three-way conditional branching.

• Up to four counters can be used in a trigger state machine program to keep track of
multiple events.

• Up to four flags can be used in a trigger state machine program to indicate when
certain branches are taken.

• The state machine can execute "goto", "trigger", and various counter- and flag-related
actions.

If the ILA core in the design that is running in the hardware device has advanced trigger
capabilities, the advanced trigger mode features can be enabled by setting the Trigger
mode control in the ILA Properties window of the ILA Dashboard to ADVANCED_ONLY or
ADVANCED_OR_TRIG_IN.

Specifying the Trigger State Machine Program File

When you set the Trigger mode to ADVANCED_ONLY or ADVANCED_OR_TRIG_IN, two
changes happen in the ILA Dashboard:

1. A new control called Trigger State Machine appears in the ILA Properties window

2. The Basic Trigger Setup window is replaced by a Trigger State Machine code editor
window.

If you are specifying an ILA trigger state machine program for the first time, the Trigger
State Machine code editor window will appear as the one shown in Figure 5-8.

X-Ref Target - Figure 5-8

Figure 5-8: Creating or Opening a Trigger State Machine Program File
Vivado Programming and Debugging www.xilinx.com 72
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=72

Chapter 5: Debugging Logic Designs in Hardware
To create a new trigger state machine, click the Create new trigger state machine link,
otherwise click the Open existing trigger state machine link to open a trigger state
machine program file (.tsm extension). You can also open an existing trigger state machine
program file using the Trigger state machine text f ield and/or browse button in the ILA
Properties window of the ILA Dashboard.

Editing the Trigger State Machine Program

If you created a new trigger state machine program file, the Trigger State Machine code
editor window will be populated with a simple trigger state machine by default (see
Figure 5-9).

The simple default trigger state machine program is designed to be valid for any ILA core
configuration regardless of debug probe or trigger settings. This means that you can click
the Run Trigger for the ILA core without modifying the trigger state machine program.

However, it is likely that you will want to modify the trigger state machine program to
implement some advanced trigger condition. The comment block at the top of the simple
state machine shown in Figure 5-9 gives some instructions on how to use the built-in
language templates in the Vivado IDE to construct a trigger state machine program (see
Figure 5-10, page 74). A full description of the ILA trigger state machine language,
including examples, is found in the section of this document called Appendix B, Trigger
State Machine Language Description.

X-Ref Target - Figure 5-9

Figure 5-9: Simple Default Trigger State Machine Program
Vivado Programming and Debugging www.xilinx.com 73
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=73

Chapter 5: Debugging Logic Designs in Hardware
Compiling the Trigger State Machine

The trigger state machine is compiled every time you run the ILA trigger. If you would like
to compile the trigger state machine without running or arming the ILA trigger, click the
Compile trigger state machine button in the ILA Dashboard (see Figure 5-11, page 75).

X-Ref Target - Figure 5-10

Figure 5-10: Trigger State Machine Language Templates
Vivado Programming and Debugging www.xilinx.com 74
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=74

Chapter 5: Debugging Logic Designs in Hardware
Enabling Trigger In and Out Ports
The ILA core can be configured at core generation-time to have dedicated trigger input
ports (TRIG_IN and TRIG_IN_ACK) and dedicated trigger output ports (TRIG_OUT and
TRIG_OUT_ACK). If the ILA core has trigger input ports enabled, then you can use the
following Trigger Mode settings to trigger on events on the TRIG_IN port:

• BASIC_OR_TRIG_IN: used to trigger the ILA core when a logical OR-ing of the TRIG_IN
pin of the ILA core and BASIC_ONLY trigger mode is desired.

• ADVANCED_OR_TRIG_IN: used to trigger the ILA core when a logical OR-ing of the
TRIG_IN pin of the ILA core and ADVANCED_ONLY trigger mode is desired.

• TRIG_IN_ONLY: used to trigger the ILA core when the TRIG_IN pin of the ILA core
transitions from a low to high.

If the ILA core has trigger output ports enabled, then you can use the following TRIG_OUT
Mode to control the propagation of trigger events to the TRIG_OUT port:

• DISABLED: disables the TRIG_OUT port.

• TRIGGER_ONLY: enables the result of the basic/advanced trigger condition to
propagate to the TRIG_OUT port.

• TRIG_IN_ONLY: propagates the TRIG_IN port to the TRIG_OUT port.

• TRIGGER_OR_TRIG_IN: enables the result of a logical OR-ing of the basic/advanced
trigger condition and TRIG_IN port to propagate to the TRIG_OUT port.

X-Ref Target - Figure 5-11

Figure 5-11: Compiling the Trigger State Machine without Arming the Trigger
Vivado Programming and Debugging www.xilinx.com 75
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=75

Chapter 5: Debugging Logic Designs in Hardware
Configuring Capture Mode Settings
The ILA core can capture data samples when the core status is Pre-Trigger, Waiting for
Trigger, or Post-Trigger (refer to the section called Viewing Trigger and Capture Status,
page 81 for more details). The Capture mode control is used to select what condition is
evaluated before each sample is captured:

• ALWAYS: store a data sample during a given clock cycle regardless of any capture
conditions

• BASIC: store a data sample during a given clock cycle only if the capture condition
evaluates "true"

You can also use the set_property Tcl command to change the capture mode of the ILA
core. For instance, to change the capture mode of ILA core hw_ila_1 to BASIC, use the
following command:

set_property CONTROL.CAPTURE_MODE BASIC [get_hw_ilas hw_ila_1]

Using BASIC Capture Mode

Use the basic capture mode to describe a capture condition that is a global Boolean
equation of participating debug probe comparators. Use the Basic Capture Setup window
(see Figure 5-12) to create this capture condition and debug probe compare values.

Configuring the Basic Capture Setup Window

The process for configuring debug probes and basic capture condition in the Basic Capture
window is very similar to working with debug probes in the Basic Trigger Setup window:

• For information on adding probes to the Basic Capture Setup window, refer to the
section called Adding Probes to Basic Trigger Setup Window, page 68.

• For information on setting the compare values on each probe in the Basic Capture
Setup window, refer to the section called ILA Probe Compare Value Settings, page 69

X-Ref Target - Figure 5-12

Figure 5-12: Setting the Basic Capture Condition
Vivado Programming and Debugging www.xilinx.com 76
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=76

Chapter 5: Debugging Logic Designs in Hardware
• For information on setting the basic capture condition in the Basic Capture Setup
window, refer to the section called Setting Basic Trigger Condition, page 71. One key
difference is the ILA core property used to control the capture condition is called
CONTROL.CAPTURE_CONDITION.

Setting the Number of Capture Windows

The ILA capture data buffer can be subdivided into one or more capture windows, the depth
each of which is a power of 2 number of samples from 1 to (((buffer size) / (number of
windows)) - 1). For example, if the ILA data buffer is 1024 samples deep and is segmented
into four capture windows, then each window can be up to 256 samples deep. Each capture
window has its own trigger mark corresponding to the trigger event that caused the capture
window to f ill.

TIP: Clicking Stop Trigger before the entire ILA data capture buffer is full will upload and display all
capture windows that have been filled. For example, if the ILA data buffer is segmented into four
windows and three of them have filled with data, clicking Stop Trigger will halt the ILA core and
upload and display the three filled capture windows.

The table below illustrates the interaction between the Vivado runtime software and
hardware when a you set the Number of Capture Windows to more than 1 and the
Trigger Position to 0.

Table 5-2: Number of Capture Windows > 1 and Trigger Position = 0

Software Hardware

User Runs Trigger on the ILA core • Window 0: ILA is armed
• Window 0: ILA triggers
• Window 0: ILA fills capture window 0
• Window 1: ILA is rearmed
• Window 1: ILA triggers
• Window 1: ILA fills capture window 1
• …
• Window n-1: ILA is rearmed
• Window n-1: ILA triggers
• Window n-1: ILA f ills capture window n
Entire ILA Capture Buffer is Full

Data is uploaded and displayed The ILA core is rearmed such that it is ready to trigger
on the clock cycle immediately following the last sample
captured of the previous window.
Vivado Programming and Debugging www.xilinx.com 77
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=77

Chapter 5: Debugging Logic Designs in Hardware
The table below illustrates the interaction between the Vivado runtime software and
hardware when a you set the Number of Capture Windows to more than 1 and the
Trigger Position to greater than 0.

Setting the Trigger Position in the Capture Window

Use the Trigger position control in the Capture Mode Settings window (or the Trigger
Position property in the ILA Core Properties window) to set the position of the trigger
marker in the captured data window. You can set the trigger position to any sample number
in the captured data windnow. For instance, in the case of a captured data window that is
1024 samples deep:

• Sample number 0 corresponds to the f irst (left-most) sample in the captured data
window.

• Sample number 1023 corresponds to the last (right-most) sample in the captured data
window.

• Samples numbers 511 and 512 correspond to the two "center" samples in the captured
data window.

You can also use the set_property Tcl command to change the ILA core trigger position:

Table 5-3: Number of Capture Windows > 1 and Trigger Position > 0

Software Hardware

User Runs Trigger on the ILA core • Window 0: ILA is armed
• Window 0: ILA fills capture buffer up to trigger

position
• Window 0: ILA triggers
• Window 0: ILA fills the rest of capture window 0
• Window 1: ILA is rearmed
• Window 1: ILA fills capture buffer up to trigger

position
• Window 1: ILA triggers
• Window 1: ILA fills capture buffer
• Window 1: ILA fills window 1
• …
• Window n-1: ILA is rearmed
• Window n-1: ILA f ills capture buffer up to trigger

position
• Window n-1: ILA triggers
• Window n-1: ILA f ills capture buffer
• Window n-1: ILA f ills window n
Entire ILA Capture Buffer is Full

Data is uploaded and displayed Triggers could be missed between two windows since
the ILA now has to f ill the capture data up to the trigger
position.
Vivado Programming and Debugging www.xilinx.com 78
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=78

Chapter 5: Debugging Logic Designs in Hardware
set_property CONTROL.TRIGGER_POSITION 512 [get_hw_ilas hw_ila_1]

Setting the Data Depth of the Capture Window

Use the Data Depth control in the Capture Mode Settings window (or the Capture data
depth property in the ILA Core Properties window) to set the data depth of the ILA core's
captured data window. You can set the data depth to any power of two from 1 to the
maximum data depth of the ILA core (set during core generation or insertion time).

Note: Refer to the section called Modifying Properties on the Debug Cores, page 51 for more details
on how to set the maximum capture buffer data depth on ILA cores that are added to the design
using the Netlist Insertion probing flow.

You can also use the set_property Tcl command to change the ILA core data depth:

set_property CONTROL.DATA_DEPTH 512 [get_hw_ilas hw_ila_1]

Running the Trigger
You can run or arm the ILA core trigger in two different modes:

• Run Trigger : Selecting the ILA core(s) to be armed followed by clicking the Run
Trigger button on the ILA Dashboard or Hardware window toolbar arms the ILA core
to detect the trigger event that is defined by the ILA core basic or advanced trigger
settings.

• Run Trigger Immediate: Selecting the ILA core(s) to be armed followed by clicking the
Run Trigger Immediate button on the ILA Dashboard or Hardware window toolbar
arms the ILA core to trigger immediately regardless of the ILA core trigger settings.
This command is useful for detecting the "aliveness" of the design by capturing any
activity at the probe inputs of the ILA core.

You can also arm the trigger by selecting and right-clicking on the ILA core and selecting
Run Trigger or Run Trigger Immediate from the popup menu (see Figure 5-13).
Vivado Programming and Debugging www.xilinx.com 79
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=79

Chapter 5: Debugging Logic Designs in Hardware
TIP: You can run or stop the triggers of multiple ILA cores by selecting the desired ILA cores, then using
the Run Trigger, Run Trigger Immediate, or Stop Trigger buttons in the Hardware window toolbar.
You can also run or stop the triggers of all ILA cores in a given device by selecting the device in the
Hardware window and click the appropriate button in the Hardware window toolbar.

Stopping the Trigger
You can stop the ILA core trigger by selecting the appropriate ILA core followed by clicking
on the Stop Trigger button on the ILA Dashboard or Hardware window toolbar. You can
also stop the trigger by selecting and right-clicking on the appropriate ILA core(s) and
selecting Stop Trigger from the popup menu (see Figure 5-13).

Using Auto Re-Trigger
Select the Enable Auto Re-Trigger right-click menu option (or corresponding button on
the ILA Dashboard toolbar) on the ILA core to enable Vivado IDE to automatically re-arm
the ILA core trigger after a successful trigger+upload+display operation has completed.
The captured data displayed in the waveform viewer corresponding to the ILA core will be
overwritten upon each successful trigger event. The Auto Re-Trigger option can be used
with the Run Trigger and Run Trigger Immediate operations. Click Stop Trigger to stop
the trigger currently in progress.

X-Ref Target - Figure 5-13

Figure 5-13: ILA Core Trigger Commands
Vivado Programming and Debugging www.xilinx.com 80
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=80

Chapter 5: Debugging Logic Designs in Hardware
The table below illustrates the interaction between the Vivado IDE runtime software and
hardware when you invoke the Auto Re-Trigger option.

IMPORTANT: As there is a delay between the time the ILA data is full and the data is uploaded and
displayed in the GUI, there is a very high probability of missing cycles between these events where the
ILA could have triggered.

Viewing Trigger and Capture Status
The ILA debug core trigger and capture status is displayed in two places in Vivado IDE:

• In the Hardware window Status column of the row(s) corresponding to the ILA debug
core(s).

• In the Trigger Capture Status window of the ILA Dashboard.

The Status column in the Hardware window indicates the current state or status of each ILA
core (see Table 5-5, page 82).

Table 5-4: Auto Re-Trigger

Software Hardware

Click the Auto Re-trigger option on
the ILA core

• ILA is armed
• ILA triggers
• ILA f ills capture buffer
• ILA is full

Data is uploaded and displayed • ILA is rearmed
• ILA triggers
• ILA f ills capture buffer
• ILA is full
Lots of cycles are missed between the ILA "full"
event and display of the ILA data
Vivado Programming and Debugging www.xilinx.com 81
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=81

Chapter 5: Debugging Logic Designs in Hardware
The contents of the Trigger Capture Status window in the ILA Dashboard depend on the
Trigger Mode setting of the ILA core.

Partial Buffer Capture

Clicking Stop Trigger before the entire ILA data capture buffer is full uploads and displays
all capture windows that have been filled. For example, if the ILA data buffer is segmented
into four windows and three of them have f illed with data, clicking Stop Trigger halts the
ILA core and uploads and displays the three f illed capture windows. In addition, clicking
Stop Trigger will halt the ILA core and display a partially f illed capture window so long as
the trigger event occurred in that capture window.

Basic Trigger Mode Trigger and Capture Status

The Trigger Capture Status window contains two status indicators when the Trigger Mode
is set to BASIC (see Figure 5-14):

• Core status: indicates the status of the ILA core trigger/capture engine (see Table 5-5
for a description of the status indicators)

• Capture status: indicates the current capture window, the current number of samples
captured in the current capture window, and the total number of samples captured by
the ILA core. These values are all reset to 0 once the ILA core status is Idle.

Table 5-5: ILA Core Status Description

ILA Core
Status Description

Idle The ILA core is idle and waiting for its trigger to be run. If the trigger position is
0, then the ILA core will transition to the Waiting for Trigger status once the
trigger is run, otherwise the ILA core will transition to the Pre-Trigger status.

Pre-Trigger The ILA core is capturing pre-trigger data into its data capture window. Once the
pre-trigger data has been captured, the ILA core will transition to the Waiting for
Trigger status.

Waiting for
Trigger

The ILA core trigger is armed and is waiting for the trigger event to occur as
described by the basic or advanced trigger settings. Once the trigger occurs, the
ILA core will transition to the Full status if the trigger position is set to the last
data sample in the capture window, otherwise it will transition to the Post-Trigger
status.

Post-Trigger The ILA core is capturing post-trigger data into its data capture window. Once the
post-trigger data has been captured, the ILA core will transition to the Full status.

Full The ILA core capture buffer is full and is being uploaded to the host for display.
The ILA core will transition to the Idle status once the data has been uploaded
and displayed.
Vivado Programming and Debugging www.xilinx.com 82
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=82

Chapter 5: Debugging Logic Designs in Hardware
Advanced Trigger Mode Trigger and Capture Status

The Trigger Capture Status window contains four status indicators when the Trigger
Mode is set to ADVANCED (see Figure 5-15):

• Core status: indicates the status of the ILA core trigger/capture engine (see Table 5-5,
page 82 for a description of the status indicators)

• Trigger State Machine Flags: indicates the current state of the four trigger state
machine flags.

• Trigger State: when the core status is Waiting for Trigger, this f ield indicates the
current state of the trigger state machine.

• Capture status: indicates the current capture window, the current number of samples
captured in the current capture window, and the total number of samples captured by
the ILA core. These values are all reset to 0 once the ILA core status is Idle.

Writing ILA Probes Information
The ILA Cores tab view in the Debug Probes window contains information about the nets
that you probed in your design using the ILA core. This ILA probe information is extracted
from your design and is stored in a data file that typically has an .ltx f ile extension.

X-Ref Target - Figure 5-14

Figure 5-14: Basic Trigger Mode Trigger Capture Status Window

X-Ref Target - Figure 5-15

Figure 5-15: Advanced Trigger Mode Trigger Capture Status Window
Vivado Programming and Debugging www.xilinx.com 83
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=83

Chapter 5: Debugging Logic Designs in Hardware
Normally, the ILA probe file is automatically created during the implementation process.
However, you can also use the write_debug_probes Tcl command to write out the debug
probes information to a f ile:

1. If you are in project mode, open the Synthesized or Netlist Design. If you are in
non-project mode, open the synthesized design checklist.

2. Run the write_debug_probes filename.ltx Tcl command.

Reading ILA Probes Information
The ILA probe f ile is automatically associated with the FPGA hardware device if the probes
f ile is called debug_nets.ltx and is found in the same directory as the bitstream
programming (.bit) f ile that is associated with the device.

You can also specify the location of the probes f ile:

1. Select the FPGA device in the Hardware window.

2. Set the Probes file location in the Hardware Device Properties window.

3. Click Apply to apply the change.

 You can also set the location using the set_property Tcl command:

set_property PROBES.FILE {C:/myprobes.ltx} [lindex [get_hw_devices] 0]

Viewing Captured Data from the ILA Core in the
Waveform Viewer
Once the ILA core captured data has been uploaded to the Vivado IDE, it is displayed in the
Waveform Viewer. See Chapter 6, Viewing ILA Probe Data in the Waveform Viewer for
details on using the Waveform Viewer to view captured data from the ILA core.

Saving and Restoring Captured Data from the ILA
Core
In addition to displaying the captured data that is directly uploaded from the ILA core, you
can also write the captured data to a f ile then read the data from a f ile and display it in the
waveform viewer.
Vivado Programming and Debugging www.xilinx.com 84
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=84

Chapter 5: Debugging Logic Designs in Hardware
Saving Captured ILA Data to a File
Currently, the only way to upload captured data from an ILA core and save it to a f ile is to
use the following Tcl command:

write_hw_ila_data my_hw_ila_data_file.ila [upload_hw_ila_data hw_ila_1]

This Tcl command sequence uploads the captured data from the ILA core and writes it to an
archive file called my_hw_ila_data_file.ila. The archive f ile contains the waveform
database f ile, the waveform configuration f ile, a waveform comma separated value file, and
a debug probes file.

Restoring Captured ILA Data from a File
Currently, the only way to restore captured data from a file and display it in the waveform
viewer is to use the following Tcl command:

display_hw_ila_data [read_hw_ila_data my_hw_ila_data_file.ila]

This Tcl command sequence reads the previously saved captured data from the ILA core and
displays it in the waveform window.

Note: The waveform configuration settings (dividers, markers, colors, probe radices, etc.) for the ILA
data waveform window is also saved in the ILA captured data archive f ile. Restoring and displaying
any previously saved ILA data uses these stored waveform configuration settings.

IMPORTANT: Do NOT use the open_wave_config command to open a waveform created from ILA
captured data. This is a simulator-only command and will not function correctly with ILA captured data
waveforms.

Setting Up the VIO Core to Take a Measurement
The VIO cores that you add to your design appear in the Hardware window under the
target device. If you do not see the VIO cores appear, right-click the device and select
Refresh Hardware. This re-scans the FPGA device and refreshes the Hardware window.

Note: If you still do not see the VIO core after programming and/or refreshing the FPGA device,
check to make sure the device was programmed with the appropriate .bit f ile and check to make
sure the implemented design contains an VIO core. Also, check to make sure the appropriate .ltx
probes f ile that matches the .bit f ile is associated with the device.

Click the VIO core (called hw_vio_1 in Figure 5-16) to see its properties in the VIO Core
Properties window. By selecting the VIO core, you should also see the probes
corresponding to the VIO core in the Debug Probes window as well as the corresponding
VIO Dashboard in the Vivado IDE workspace (see Figure 5-17).
Vivado Programming and Debugging www.xilinx.com 85
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=85

Chapter 5: Debugging Logic Designs in Hardware

The VIO core can become out-of-sync with the Vivado IDE. Refer to Viewing the VIO Core
Status, page 87 for more information on how to interpret the VIO status indicators.

The VIO core operates on an object property-based set/commit and refresh/get model:

• To read VIO input probe values, f irst refresh the hw_vio object with the VIO core values.
Observe the input probe values by getting the property values of the corresponding
hw_probe object. Refer to the section called Interacting with VIO Core Input Probes,
page 89 for more information.

X-Ref Target - Figure 5-16

Figure 5-16: VIO Core in the Hardware Window

X-Ref Target - Figure 5-17

Figure 5-17: Selection of the VIO Core in Various Views
Vivado Programming and Debugging www.xilinx.com 86
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=86

Chapter 5: Debugging Logic Designs in Hardware
• To write VIO output probe values, f irst set the desired value as a property on the
hw_probe object. These property values are then committed to the VIO core in
hardware in order to write these values to the output probe ports of the core. Refer to
the section called Interacting with VIO Core Output Probes, page 92 for more
information.

Viewing the VIO Core Status
The VIO core can have zero or more input probes and zero or more output probes (note
that the VIO core must have at least one input or output probe). The VIO core status shown
in the Hardware window is used to indicate the current state of the VIO core output probes.
The possible status values and any action that you need to take are described in Table 5-6.

Viewing VIO Cores in the Debug Probes Window
The Debug Probes window is used to view all of the debug probes that belong to an ILA or
VIO core (see Figure 5-18). The VIO debug probes can be added to VIO Probes windows of
the VIO Dashboard. To perform these operations, right-click a VIO core's debug probes and
select Add Probes to VIO Window. You can also use drag and drop mouse gestures to add
VIO Probes to the VIO Dashboard window and re-arrange VIO Probes within the VIO
Dashboard window.

Table 5-6: VIO Core Status and Required User Action

VIO Status Description Required User Action

OK – Outputs Reset The VIO core outputs are in sync
with the Vivado IDE and the
outputs are in their initial or
"reset” state.

None

OK The VIO core outputs are in sync
with the Vivado IDE, however, the
outputs are not in their initial or
“reset” state.

None

Outputs out-of-sync The VIO core outputs are not in
sync with the Vivado IDE.

You must choose one of two user actions:
• Write the values from the Vivado IDE to the VIO

core by right-clicking the VIO core in the
Hardware window and selecting the Commit
VIO Core Outputs option.

• Update the Vivado IDE with the current values of
the VIO core output probe ports by right-clicking
the VIO core in the Hardware window and
selecting the Refresh Input and Output Values
from VIO Core option.
Vivado Programming and Debugging www.xilinx.com 87
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=87

Chapter 5: Debugging Logic Designs in Hardware
TIP: If you right-click the VIO core object in the Debug Probes or Hardware window and select the
Add Probes to VIO Window option, the selection option will apply to all probes that belong to that
VIO core.

Using the VIO Dashboard
The VIO Dashboard (see Figure 5-19) is a central location for all status and control
information pertaining to a given VIO core. When a VIO core is f irst detected upon
refreshing a hardware device, the VIO Dashboard for the core is automatically opened. If
you need to manually open or re-open the dashboard, right-click the VIO core object in
either the Hardware or Debug Probes windows and select Open Dashboard.

X-Ref Target - Figure 5-18

Figure 5-18: VIO Debug Probes
Vivado Programming and Debugging www.xilinx.com 88
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=88

Chapter 5: Debugging Logic Designs in Hardware
Interacting with VIO Core Input Probes
The VIO core input probes are used to read values from a design that is running in an FPGA
in actual hardware. The VIO input probes are typically used as status indicators for a
design-under-test. VIO debug probes need to be added manually to the VIO Probes
window in the VIO Dashboard. Refer to the section called Viewing VIO Cores in the Debug
Probes Window, page 87 on how to do this. An example of what VIO input probes look like
in the VIO Probes window of the VIO Dashboard is shown in Figure 5-20.

Reading VIO Inputs Using the VIO Cores View
The VIO input probes can be viewed using the VIO Probes window of the VIO Dashboard
window. Each input probe is viewed as a separate row in the table. The value of the VIO
input probes are shown in the Value column of the table (see Figure 5-20). The VIO core
input values are periodically updated based on the value of the refresh rate of the VIO core.
You can set the refresh rate by changing the Refresh Rate (ms) in the VIO Properties
window or by running the following Tcl command:

X-Ref Target - Figure 5-19

Figure 5-19: VIO Dashboard

X-Ref Target - Figure 5-20

Figure 5-20: Core Input Probes
Vivado Programming and Debugging www.xilinx.com 89
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=89

Chapter 5: Debugging Logic Designs in Hardware
set_property CORE_REFRESH_RATE_MS 1000 [get_hw_vios hw_vio_1]

Note: Setting the refresh rate to 0 causes all automatic refreshes from the VIO core to stop. Also
note that very small refresh values may cause your Vivado IDE to become sluggish. Xilinx
recommends a refresh rate of 500 ms or longer.

If you want to manually read a VIO input probe value, you can use Tcl commands to do so.
For instance, if you wanted to refresh and get the value of the input probe called
BUTTON_IBUF of the VIO core hw_vio_1, run the following Tcl commands:

refresh_hw_vio [get_hw_vios {hw_vio_1}]
get_property INPUT_VALUE [get_hw_probes BUTTON_IBUF]

Setting the VIO Input Display Type and Radix
The display type of VIO input probes can be set by right-clicking a VIO input probe in the
VIO Probes window of the VIO Dashboard window and selecting:

• Text to display the input as a text f ield. This is the only display type for VIO input probe
vectors (more than one bit wide).

• LED to display the input as a graphical representation of a light-emitting diode (LED).
This display type is only applicable to VIO input probe scalars and individual elements
of VIO input probe vectors. You can set the high and low values to one of four colors:

° Gray (off)

° Red

° Green

° Blue

When the display type of the VIO input probe is set to Text, you can change the radix by
right-clicking a VIO input probe in the VIO Probes window of the VIO Dashboard window
and selecting:

• Radix > Binary to change the radix to binary.

• Radix > Octal to change the radix to octal.

• Radix > Hex to change the radix to hexadecimal.

• Radix > Unsigned to change the radix to unsigned decimal.

• Radix > Signed to change the radix to signed decimal.

You can also set the radix of the VIO input probe using a Tcl command. For instance, to
change the radix of a VIO input probe called “BUTTON_IBUF”, run the following Tcl
command:

set_property INPUT_VALUE_RADIX HEX [get_hw_probes BUTTON_IBUF]
Vivado Programming and Debugging www.xilinx.com 90
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=90

Chapter 5: Debugging Logic Designs in Hardware
Observing and Controlling VIO Input Activity
In addition to reading values from the VIO input probes, you can also monitor the activity
of the VIO input probes. The activity detectors are used to indicate when the values on the
VIO inputs have changed in between periodic updates to the Vivado IDE.

The VIO input probe activity values are shown as arrows in the activity column of the VIO
Probes window of the VIO Dashboard window:

• An up arrow indicates that the input probe value has transitioned from a 0 to a 1 during
the activity persistence interval.

• A down arrow indicates that the input probe value has transitioned from a 1 to a 0
during the activity persistence interval.

• A double-sided arrow indicates that the input probe value has transitioned from a 1 to
a 0 and from a 0 to a 1 at least once during the activity persistence interval.

The persistence of how long the input activity status is displayed can be controlled by
right-clicking a VIO input probe in the VIO Probes window of the VIO Dashboard window
and selecting:

• Activity Persistence > Infinite to accumulate and retain the activity value until you
reset it.

• Activity Persistence > Long (80 samples) to accumulate and retain the activity for a
longer period of time.

• Activity Persistence > Short (8 samples) to accumulate and retain the activity for a
shorter period of time.

You can also set the activity persistence using a Tcl command. For instance, to change the
activity persistence on the VIO input probe called BUTTON_IBUF to a long interval, run the
following Tcl command:

set_property ACTIVITY_PERSISTENCE LONG [get_hw_probes BUTTON_IBUF]

The activity for all input probes for a given core can be reset by right-clicking the VIO core
in the Hardware window and selecting Reset All Input Activity. You can also do this by
running the following Tcl command:

reset_hw_vio_activity [get_hw_vios {hw_vio_1}]

TIP: You can change the type, radix, and/or activity persistence of multiple scalar members of a VIO
input probe vector by right-clicking the whole probe or multiple members of the probe, then making a
menu choice. The menu choice applies to all selected probe scalars.
Vivado Programming and Debugging www.xilinx.com 91
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=91

Chapter 5: Debugging Logic Designs in Hardware
Interacting with VIO Core Output Probes
The VIO core output probes are used to write values to a design that is running in an FPGA
device in actual hardware. The VIO output probes are typically used as low-bandwidth
control signals for a design-under-test. VIO debug probes need to be added manually to
the VIO Probes window in the VIO Dashboard. Refer to the section called Viewing VIO
Cores in the Debug Probes Window, page 87 on how to do this. An example of what VIO
output probes look like in the VIO Probes window of the VIO Dashboard is shown in
Figure 5-21.

Writing VIO Outputs Using the VIO Cores View
The VIO output probes can be set using the VIO Probes window of the VIO Dashboard
window. Each output probe is viewed as a separate row in the table. The value of the VIO
output probes are shown in the Value column of the table (see Figure 5-21). The VIO core
output values are updated whenever a new value is entered into the Value column. Clicking
on the Value column causes a pull-down dialog to appear. Type the desired value into the
Value text f ield and click OK.

You can also write out a new value to the VIO core using Tcl commands. For instance, if you
wanted to write a binary value of “11111” to the VIO output probe called
vio_slice5_fb_2 whose radix is already set to BINARY, run the following Tcl commands:

set_property OUTPUT_VALUE 11111 [get_hw_probes vio_slice5_fb_2]
commit_hw_vio [get_hw_probes {vio_slice5_fb_2}]

Setting the VIO Output Display Type and Radix
The display type of VIO output probes can be set by right-clicking a VIO output probe in the
VIO Probes window of the VIO Dashboard window and selecting:

• Text to display the output as a text f ield. This is the only display type for VIO input
probe vectors (more than one bit wide).

X-Ref Target - Figure 5-21

Figure 5-21: VIO Outputs in the VIO Probes window of the VIO Dashboard
Vivado Programming and Debugging www.xilinx.com 92
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=92

Chapter 5: Debugging Logic Designs in Hardware
• Toggle Button to display the output as a graphical representation of a toggle button.
This display type is only applicable to VIO output probe scalars and individual elements
of VIO input probe vectors.

When the display type of the VIO output probe is set to “Text”, you can change the radix by
right-clicking a VIO output probe in the VIO Cores tabbed view of the Debug Probes
window and selecting:

• Radix > Binary to change the radix to binary.

• Radix > Octal to change the radix to octal.

• Radix > Hex to change the radix to hexadecimal.

• Radix > Unsigned to change the radix to unsigned decimal.

• Radix > Signed to change the radix to signed decimal.

You can also set the radix of the VIO output probe using a Tcl command. For instance, to
change the radix of a VIO output probe called “vio_slice5_fb_2” to hexadecimal, run the
following Tcl command:

set_property OUTPUT_VALUE_RADIX HEX [get_hw_probes vio_slice5_fb_2]

Resetting the VIO Core Output Values
The VIO v2.0 core has a feature that allows you to specify an initial value for each output
probe port. You can reset the VIO core output probe ports to these initial values by
right-clicking the VIO core in the Hardware window and selecting the Reset VIO Core
Outputs option. You can also reset the VIO core outputs using a Tcl command:

reset_hw_vio_outputs [get_hw_vios {hw_vio_1}]

Note: Resetting the VIO output probes to their initial values may cause the output probe values to
become out-of-sync with the Vivado IDE. Refer to the section called Synchronizing the VIO Core
Output Values to the Vivado IDE on how to handle this situation.

 Synchronizing the VIO Core Output Values to the Vivado IDE
The output probes of a VIO core can become out-of-sync with the Vivado IDE after resetting
the VIO outputs, re-programming the FPGA, or by another Vivado tool instance setting
output values before the current instance has started. In any case, if the VIO status indicates
“Outputs out-of-sync”, you need to take one of two actions:

• Write the values from the Vivado IDE to the VIO core by right-clicking the VIO core in
the Hardware window and selecting the Commit VIO Core Outputs option. You can
also do this running a Tcl command:

commit_hw_vio [get_hw_vios {hw_vio_1}]
Vivado Programming and Debugging www.xilinx.com 93
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=93

Chapter 5: Debugging Logic Designs in Hardware
• Update the Vivado IDE with the current values of the VIO core output probe ports by
right-clicking the VIO core in the Hardware window and selecting the Refresh Input
and Output Values from VIO Core option. You can also do this running a Tcl
command:

refresh_hw_vio -update_output_values 1 [get_hw_vios {hw_vio_1}]

Hardware System Communication Using the
JTAG-to-AXI Master Debug Core
The JTAG-to-AXI Master debug core is a customizable core that can generate the AXI
transactions and drive the AXI signals internal to an FPGA at run time. The core supports all
memory mapped AXI and AXI-Lite interfaces and can support 32- or 64-bit wide data
interfaces.

The JTAG-to-AXI Master (JTAG-AXI) cores that you add to your design appear in the
Hardware window under the target device. If you do not see the JTAG-AXI cores appear,
right-click the device and select Refresh Hardware. This re-scans the FPGA device and
refreshes the Hardware window.

Note: If you still do not see the ILA core after programming and/or refreshing the FPGA device,
check to make sure the device was programmed with the appropriate .bit f ile and check to make
sure the implemented design contains an ILA core.

Click to select the JTAG-AXI core (called hw_axi_1 in Figure 5-22) to see its properties in the
AXI Core Properties window.

Interacting with the JTAG-to-AXI Master Debug Core in
Hardware
The JTAG-to-AXI Master debug core can only be communicated with using Tcl commands.
You can create and run AXI read and write transactions using the create_hw_axi_txn
and run_hw_axi commands, respectively.

X-Ref Target - Figure 5-22

Figure 5-22: JTAG-to-AXI Master Core in the Hardware Window
Vivado Programming and Debugging www.xilinx.com 94
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=94

Chapter 5: Debugging Logic Designs in Hardware
Resetting the JTAG-to-AXI Master Debug Core
Before creating and issuing transactions, it is important to reset the JTAG-to-AXI Master
core using the following Tcl command:

reset_hw_axi [get_hw_axis hw_axi_1]

Creating and Running a Read Transaction
The Tcl command used to create an AXI transaction is called create_hw_axi_txn. For
more information on how to use this command, type "help create_hw_axi_txn" at the
Tcl Console in the Vivado IDE. Here is an example on how to create a 4-word AXI read burst
transaction from address 0:

create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type READ -address 00000000 -len 4

where:

• read_txn is the user-defined name of the transaction

• [get_hw_axis hw_axi_1] returns the hw_axi_1 object

• -address 00000000 is the start address

• -len 4 sets the AXI burst length to 4 words

The next step is to run the transaction that was just created using the run_hw_axi
command. Here is an example on how to do this:

run_hw_axi [get_hw_axi_txns read_txn]

The last step is to get the data that was read as a result of running the transaction. You can
use either the report_hw_axi_txn or report_property commands to print the data to the
screen or you can use the get_property to return the value for use elsewhere.

report_hw_axi_txn [get_hw_axi_txns read_txn]

0 00000000 00000000
8 00000000 00000000

report_property [get_hw_axi_txns read_txn]

Property Type Read-only Visible Value
CLASS string true true hw_axi_txn
CMD.ADDR string false true 00000000
CMD.BURST enum false true INCR
CMD.CACHE int false true 3
CMD.ID int false true 0
CMD.LEN int false true 4
CMD.SIZE enum false true 32
DATA string false true 00000000000000000000000000000000
HW_AXI string true true hw_axi_1
NAME string true true read_txn
TYPE enum false true READ
Vivado Programming and Debugging www.xilinx.com 95
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=95

Chapter 5: Debugging Logic Designs in Hardware
Creating and Running a Write Transaction
Here is an example on how to create a 4-word AXI write burst transaction from address 0:

create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type WRITE -address 00000000 /
-len 4 -data {11111111_22222222_33333333_44444444}

where:

• write_txn is the user-defined name of the transaction

• [get_hw_axis hw_axi_1] returns the hw_axi_1 object

• -address 00000000 is the start address

• -len 4 sets the AXI burst length to 4 words

• -data {11111111_22222222_33333333_44444444}- The -data direction is LSB
to the left (i.e., address 0) and MSB to the right (i.e., address 3).

The next step is to run the transaction that was just created using the run_hw_axi
command. Here is an example on how to do this:

run_hw_axi [get_hw_axi_txns write_txn]

Using Vivado Logic Analyzer in a Lab Environment
The Vivado logic analyzer feature is integrated into the Vivado IDE. To use Vivado logic
analyzer feature to debug a design that is running on a target board that is in a lab
environment, you need to do one of two things:

• Install and run the full Vivado IDE on your lab machine.

• Install latest version of the Vivado Design Suite or Vivado Hardware Server
(Standalone) on your remote lab machine, and use the Vivado logic analyzer feature on
your local machine to connect to a remote instance of the Vivado Hardware Server
(hw_server).

Installing and Running the Full Vivado IDE on a Lab Machine
The requirements for installing the Vivado IDE on your lab machine are found in Vivado
Design Suite: Release Notes, Installation and Licensing (UG973) [Ref 4].
Vivado Programming and Debugging www.xilinx.com 96
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=96

Chapter 5: Debugging Logic Designs in Hardware
IMPORTANT: The Vivado logic analyzer only needs two files from the original project: the bitstream
programming (.bit) file and the probes (.ltx) file.

Here are the steps to use the Vivado logic analyzer feature on a lab machine.

1. Install the Vivado IDE on your lab machine.

2. Copy the bitstream programming (.bit) f ile and the probes (.ltx) f ile to the lab
machine.

3. Start Vivado IDE in GUI mode.

4. Open the Hardware Manager by selecting the Flow > Open Hardware Manager menu
option or typing "open_hw" in the Tcl Console window.

5. Follow the steps in the Connecting to the Hardware Target and Programming the FPGA
Devices section to open a connection to the target board that is connected to your lab
machine. Use the bitstream programming (.bit) f ile that you copied to the lab machine
to program target FPGA device.

6. Follow the steps in the Setting up the ILA Core to Take a Measurement section and
beyond to debug your design in hardware. Use the probes (.ltx) f ile that you copied to
the lab machine when you get to the Reading ILA Probes Information section.

Connecting to a Remote hw_server Running on a Lab Machine
If you have a network connection to your lab machine, you can also connect to the target
board by connecting to a Hardware Server that is running on that remote lab machine. Here
are the steps to using the Vivado logic analyzer feature to connect to a Vivado Hardware
Server (hw_server.bat on Windows platforms or hw_server on Linux platforms) that is
running on the lab machine:

1. Install the latest version of the Vivado Design Suite or Vivado Hardware Server
(Standalone) on the lab machine.

IMPORTANT: You do NOT need to install the full Vivado Design Suite on the lab machine to only use
the remote hardware server feature. However, if you do want to use the Vivado Hardware Manager
features (such as the Vivado logic analyzer or Vivado serial I/O analyzer) on the lab machine, then you
will need to install the full Vivado Design Suite on the lab machine. Also, You do NOT need any
software licenses to run the Hardware Server or any of the Hardware Manager features of the Vivado
tools.

2. Start up the hw_server application on the remote lab machine. Assuming you installed
the Vivado Hardware Server (Standalone) to the default location and your lab machine
is a 64-bit Windows machine, here is the command line:

C:\Xilinx\VivadoHWSRV\vivado_release.version\bin\hw_server.bat

3. Start Vivado IDE in GUI mode on a different machine than your lab machine.
Vivado Programming and Debugging www.xilinx.com 97
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=97

Chapter 5: Debugging Logic Designs in Hardware
4. Follow the steps in the Connecting to the Hardware Target and Programming the FPGA
Device section to open a connection to the target board that is connected to your lab
machine. However, instead of connecting to a Vivado CSE server running on localhost,
use the host name of your lab machine.

5. Follow the steps in the Setting up the ILA Core to Take a Measurement section and
beyond to debug your design in hardware.

Description of Hardware Manager Tcl Objects and
Commands
You can use Tcl commands to interact with your hardware under test. The hardware is
organized in a set of hierarchical f irst class Tcl objects (see Table 5-7).

For more information about the hardware manager commands, run the help –category
hardware Tcl command in the Tcl Console.

Table 5-7: Hardware Manager Tcl Objects

Tcl Object Description

hw_server Object referring to hardware server. Each hw_server can
have one or more hw_target objects associated with it.

hw_target Object referring to JTAG cable or board. Each hw_target can
have one or more hw_device objects associated with it.

hw_device Object referring to a device in the JTAG chain, including
Xilinx FPGA devices. Each hw_device can have one or more
hw_ila objects associated with it.

hw_ila Object referring to an ILA core in the Xilinx FPGA device.
Each hw_ila object can have only one hw_ila_data object
associated with it. Each hw_ila object can have one or more
hw_probe objects associated with it.

hw_ila_data Object referring to data uploaded from an ILA debug core.

hw_probe Object referring to the probe input of an ILA debug core.

hw_vio Object referring to a VIO core in the Xilinx FPGA device.
Vivado Programming and Debugging www.xilinx.com 98
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=98

Chapter 5: Debugging Logic Designs in Hardware
Description of hw_server Tcl Commands
Table 5-8 contains descriptions of all Tcl commands used to interact with hardware servers.

Description of hw_target Tcl Commands
Table 5-9 contains descriptions of all Tcl commands used to interact with hardware targets.

Description of hw_device Tcl Commands
Table 5-10 Descriptions of hw_device Tcl Commands contains descriptions of all Tcl
commands used to interact with hardware devices.

Table 5-8: Descriptions of hw_server Tcl Commands

Tcl Command Description

connect_hw_server Open a connection to a hardware server.

current_hw_server Get or set the current hardware server.

disconnect_hw_server Close a connection to a hardware server.

get_hw_servers Get list of hardware server names for the hardware servers.

refresh_hw_server Refresh a connection to a hardware server.

Table 5-9: Descriptions of hw_target Tcl Commands

Tcl Command Description

close_hw_target Close a hardware target.

current_hw_target Get or set the current hardware target.

get_hw_targets Get list of hardware targets for the hardware servers.

open_hw_target Open a connection to a hardware target on the hardware
server.

refresh_hw_target Refresh a connection to a hardware target.

Table 5-10: Descriptions of hw_device Tcl Commands

Tcl Command Description

current_hw_device Get or set the current hardware device.

get_hw_devices Get list of hardware devices for the target.

program_hw_device Program Xilinx FPGA devices.

refresh_hw_device Refresh a hardware device.
Vivado Programming and Debugging www.xilinx.com 99
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=99

Chapter 5: Debugging Logic Designs in Hardware
Description of hw_ila Tcl Commands
Table 5-11 Descriptions of hw_ila Tcl Commands contains descriptions of all Tcl commands
used to interact with ILA debug cores.

Description of hw_ila_data Tcl Commands
Table 5-12 Descriptions of hw_ila_data Tcl Commands contains descriptions of all Tcl
commands used to interact with captured ILA data.

Description of hw_probe Tcl Commands
Table 5-13 contains descriptions of all Tcl commands used to interact with captured ILA
data.

Table 5-11: Descriptions of hw_ila Tcl Commands

Tcl Command Description

current_hw_ila Get or set the current hardware ILA.

get_hw_ilas Get list of hardware ILAs for the target.

reset_hw_ila Reset hw_ila control properties to default values.

run_hw_ila Arm hw_ila triggers.

wait_on_hw_ila Wait until all data has been captured.

Table 5-12: Descriptions of hw_ila_data Tcl Commands

Tcl Command Description

current_hw_ila_data Get or set the current hardware ILA data

display_hw_ila_data Display hw_ila_data in waveform viewer

get_hw_ila_data Get list of hw_ila_data objects

read_hw_ila_data Read hw_ila_data from a f ile

upload_hw_ila_data Stop the ILA core from capturing data and upload any
captured data.

write_hw_ila_data Write hw_ila_data to a file.

Table 5-13: Descriptions of hw_probe Tcl Commands

Tcl Command Description

get_hw_probes Get list of hardware probes.
Vivado Programming and Debugging www.xilinx.com 100
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=100

Chapter 5: Debugging Logic Designs in Hardware
Description of hw_vio Tcl Commands
Table 5-14 contains descriptions of all Tcl commands used to interact with VIO cores.

Description of hw_axi and hw_axi_txn Tcl Commands
Table 5-15 contains descriptions of all Tcl commands used to interact with JTAG-to-AXI
Master cores.

Description of hw_sysmon Tcl Commands
Table 5-16 contains descriptions of all Tcl commands used to interact with System Monitor
core.

Table 5-14: Descriptions of hw_vio Tcl Commands

Tcl Command Description

commit_hw_vio Write hw_probe OUTPUT_VALUE properties values to VIO
cores.

get_hw_vios Get a list of hw_vios

refresh_hw_vio Update hw_probe INPUT_VALUE and ACTIVITY_VALUE
properties with values read from VIO cores.

reset_hw_vio_activity Reset VIO ACTIVITY_VALUE properties, for hw_probes
associated with specified hw_vio objects.

reset_hw_vio_outputs Reset VIO core outputs to initial values.

Table 5-15: Description of hw_axi and hw_axi_txn Tcl Commands

Tcl Command Description

create_hw_axi_txn Creates hardware AXI transaction object.

delete_hw_axi_txn Deletes hardware AXI transaction objects.

get_hw_axi_txns Gets a list of hardware AXI transaction objects.

get_hw_axis Gets a list of hardware AXI objects.

refresh_hw_axi Refreshes hardware AXI object status.

report_hw_axi_txn Reports formatted hardware AXI transaction data.

reset_hw_axi Resets hardware AXI core state.

run_hw_axi Runs hardware AXI read/write transactions and update transaction
status in the corresponding hw_axi object.
Vivado Programming and Debugging www.xilinx.com 101
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=101

Chapter 5: Debugging Logic Designs in Hardware
Note: Detailed help for each of these commands can be obtained by typing <command name>
-help on the Vivado TCL Console.

Using Tcl Commands to Interact with a JTAG-to-AXI
Master Core
Below is an example Tcl command script that interacts with the following example system:

• One KC705 board's Digilent JTAG-SMT1 cable (serial number 12345) accessible via a
Vivado hw_server running on localhost:3121.

• Single JTAG-to-AXI Master core in a design running in the XC7K325T device on the
KC705 board.

• JTAG-to-AXI Master core is in an AXI-based system that has an AXI BRAM Controller
Slave core in it.

Example Tcl Command Script
Connect to the Digilent Cable on localhost:3121
connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */xilinx_tcf/Digilent/12345]
open_hw_target

Program and Refresh the XC7K325T Device
current_hw_device [lindex [get_hw_devices] 0]
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices] 0]
set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]
set_property PROBES.FILE {C:/design.ltx} [lindex [get_hw_devices] 0]

Table 5-16: Descriptions of hw_sysmon Tcl commands

Tcl Command Description

commit_hw_sysmon Commits the current property values defined on a
hw_sysmon object to the System Monitor registers
on the hardware device.

get_hw_sysmon_reg Returns the hex value of the System Monitor
register defined at the specif ied address of the
specif ied hw_sysmon object.

get_hw_sysmons Returns the list of Sysmon debug core objects
defined on the current hardware device.

refresh_hw_sysmon Refreshes the properties of the hw_sysmon object
with the values on the System Monitor from the
current hw_device.

set_hw_sysmon_reg Sets the System Monitor register at the specif ied
address to the hex value specified.
Vivado Programming and Debugging www.xilinx.com 102
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=102

Chapter 5: Debugging Logic Designs in Hardware
program_hw_devices [lindex [get_hw_devices] 0]
refresh_hw_device [lindex [get_hw_devices] 0]

Reset the JTAG-to-AXI Master core
reset_hw_axi [get_hw_axis hw_axi_1]

Create a read transaction bursts 128 words starting from address 0
create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type read \
-address 00000000 -len 128

Create a write transaction bursts 128 words starting at address 0
using a repeating fill value of 11111111_22222222_33333333_44444444
(where LSB is to the left)
create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type write \
-address 00000000 -len 128 -data {11111111_22222222_33333333_44444444}

Run the write transaction
run_hw_axi [get_hw_axi_txns wrte_txn]

Run the read transaction
run_hw_axi [get_hw_axi_txns read_txn]

Using Tcl Commands to Take an ILA Measurement
Below is an example Tcl command script that interacts with the following example system:

• One KC705 board’s Digilent JTAG-SMT1 cable (serial number 12345) accessible via a
Vivado CSE server running on localhost:3121.

• Single ILA core in a design running in the XC7K325T device on the KC705 board.

• ILA core has a probe called counter[3:0].
Vivado Programming and Debugging www.xilinx.com 103
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=103

Chapter 5: Debugging Logic Designs in Hardware
Example Tcl Command Script
Connect to the Digilent Cable on localhost:3121
connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */xilinx_tcf/Digilent/12345]
open_hw_target

Program and Refresh the XC7K325T Device
current_hw_device [lindex [get_hw_devices] 0]
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices] 0]
set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]
set_property PROBES.FILE {C:/design.ltx} [lindex [get_hw_devices] 0]
program_hw_devices [lindex [get_hw_devices] 0]
refresh_hw_device [lindex [get_hw_devices] 0]

Set Up ILA Core Trigger Position and Probe Compare Values
set_property CONTROL.TRIGGER_POSITION 512 [get_hw_ilas hw_ila_1]
set_property COMPARE_VALUE.0 eq4'b0000 [get_hw_probes counter]

Arm the ILA trigger and wait for it to finish capturing data
run_hw_ila hw_ila_1
wait_on_hw_ila hw_ila_1

Upload the captured ILA data, display it, and write it to a file
current_hw_ila_data [upload_hw_ila_data hw_ila_1]
display_hw_ila_data [current_hw_ila_data]
write_hw_ila_data my_hw_ila_data [current_hw_ila_data]

Trigger At Startup
The Trigger at Startup feature is used to configure the trigger settings of an ILA core in a
design .bit f ile so that it is pre-armed to trigger immediately after device startup. You do
this by taking the various trigger settings that ordinarily get applied to an ILA core running
in a design in hardware, and applying them to the ILA core in the implemented design.

IMPORTANT: The following process for using Trigger at Startup assumes that you are have a valid ILA
4.0 design working in hardware, and that the ILA 4.0 core has NOT been flattened during the synthesis
flow.

To use the Trigger at Startup feature perform the following steps:

1. Run through the f irst pass of the ILA flow as usual to set up the trigger condition.

a. Open the target, configure the device, and bring up the ILA Dashboard.

b. Enter the trigger equations for the ILA core in the ILA Dashboard.

2. From the Vivado Tcl command line, export the trigger register map file for the ILA core.
This f ile contains all of the register settings to "stamp" back on to the implemented
netlist. The output from this is a single f ile.
Vivado Programming and Debugging www.xilinx.com 104
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=104

Chapter 5: Debugging Logic Designs in Hardware
% run_hw_ila -file ila_trig.tas [get_hw_ilas hw_ila_1]

3. Go back and open the previously implemented routed design in Vivado IDE. There are
two ways to do this depending on your project flow.

a. Project Mode: Use the Flow Navigator to open the implemented design.

b. Non-Project Mode: Open your routed checkpoint: %open_checkpoint
<file>.dcp

4. At the Implemented Design Tcl console, apply the trigger settings to the current design
in memory, which is your routed netlist.

%apply_hw_ila_trigger ila_trig.tas

Note: If you see an ERROR indicating that the ILA core has been flattened during synthesis, you
will need to regenerate your design and force synthesis to preserve hierarchy for the ILA core.
Ensure that you are have a valid ILA 4.0 design working in hardware, and that the ILA 4.0 core has
NOT been flattened during the synthesis flow

5. At the Implemented Design Tcl console, write the bitstream with Trigger at Startup
settings.

IMPORTANT: To pick up the routed design changes do this at the tcl command console only:
write_bitstream trig_at_startup.bit

6. Go back to the Hardware Manger and reconfigure with the new .bit f ile that you
generated in the previous step. You will have to set the property for the updated .bit
f ile location either through the GUI or through a Tcl command. Make sure you set the
new .bit f ile as the one to use for configuration in the hardware tool.

a. Select the device in the hardware tree

b. Assign the .bit f ile generated in step 5

7. Program the device using the new .bit f ile.

Once programmed, the new ILA core should immediately arm at startup. You should see an
indication in the Trigger Capture Status for the ILA core. If trigger or capture events have
occurred, the ILA core is now populated with captured data samples.
Vivado Programming and Debugging www.xilinx.com 105
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=105

Chapter 6

Viewing ILA Probe Data in the Waveform
Viewer

Introduction
The ILA waveform viewer in the Vivado® Integrated Design Environment (IDE) provides a
powerful way to analyze data captured from the ILA Debug Core. After successfully
triggering an ILA core and capturing data, Vivado automatically populates a corresponding
waveform viewer with data collected from the ILA core. When using Vivado in project mode,
configurable waveform settings such as coloring, radix selection, and signal ordering
persist and are conveniently remembered between Vivado sessions.

ILA Data and Waveform Relationship
It is useful to understand the relationship between the hw_ila_data captured ILA data object
and the waveform, as shown in Figure 6-1.

The hw_ila Tcl object represents the ILA core in hardware. Every time an ILA core uploads
captured data, it is stored in memory in a corresponding Tcl hw_ila_data object. These
objects are named predictably so the first ILA core in hardware 'hw_ila_1' produces data
in a corresponding Tcl data object named 'hw_ila_data_1' after trigger and upload.
When working online with hardware, every waveform is backed by the in-memory
hw_ila_data object and has a 1:1 correspondence with this object illustrated by the

X-Ref Target - Figure 6-1

Figure 6-1: ILA Data and Waveform Relationship
Vivado Programming and Debugging www.xilinx.com 106
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=106

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
diagram in Figure 6-1. For each Tcl hw_ila_data object, a wave database (WDB) f ile and
wave configuration (WCFG) f ile are created and automatically tracked in a directory of the
Vivado project. Figure 6-1 illustrates the flow of data from the hardware hw_ila on the left
through to the waveform display on the right.

The combination of the wave configuration, WCFG, f ile and wave transition database, WDB,
f ile contain the waveform database and customizations displayed in the Vivado waveform
user interface. These waveform files are automatically managed in the Vivado ILA flow and
users are not expected to modify the WDB or WCFG files directly. The wave configuration
can be modif ied by changing objects in the waveform viewer (such as signal color, bus
radix, signal order, markers, etc) then clicking the Save button. This automatically saves the
wave configuration changes to the appropriate WCFG file in the Vivado project.

It is possible to archive waveform configurations and data for later viewing by using the Tcl
command write_hw_ila_data. This stores the hw_ila_data, wave database and wave
configuration in an archive for later viewing offline. See the section, Saving and Restoring
Captured Data from the ILA Core in Chapter 5 for details on using read_hw_ila_data
and write_hw_ila_data for offline storage and retrieval of waveforms.

Waveform Viewer Layout
The ILA waveform viewer (sometimes referred to as waveform configuration) is composed
of several dynamic objects working together to provide a complete visualization tool for the
captured ILA data, as shown in Figure 6-2.

X-Ref Target - Figure 6-2

Figure 6-2: Waveform Viewer Showing Captured ILA Data
Vivado Programming and Debugging www.xilinx.com 107
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=107

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
The description for the labelled objects in Figure 6-2 is as follows:

1. Net or Bus Name from the ILA probes f ile (.ltx)

2. Net or Bus Value at the cursor

3. Trigger Markers (red lines)

4. Cursor (yellow line)

5. Markers (blue line)

6. ILA capture window transitions (alternating clear/grey regions)

7. Floating measurement ruler (yellow bar)

Waveform Viewer Operation
The scalars and buses shown in the Name column of the wave viewer represent the names
of the probe design objects in the waveform (see Figure 6-3). These correspond to the
hardware probes of the ILA core (see the get_hw_probes Tcl command).

Immediately after triggering and uploading ILA data for the first time, the waveform viewer
populates with all probes connected to the ILA core. It is possible to customize probes in
the viewer in addition to removing existing probes or adding new probes to the viewer. This
section covers the basic operation of the waveform viewer.

X-Ref Target - Figure 6-3

Figure 6-3: ILA Probe Names and Values Shown in Waveform Viewer
Vivado Programming and Debugging www.xilinx.com 108
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=108

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
Removing Probes from the Waveform
All probes by default are added to the waveform during the first trigger and upload
operation. If you do not want the waveform to contain all probes, it is simple to remove
probes from the viewer.

To remove a probe from the waveform viewer, right-click the scalar or bus to delete in the
Name column and select Delete from the pop up menu. Alternatively, select the signal or
bus to delete and press the Delete key. Probe transition data is not actually deleted from
memory it is just hidden from view when probes are removed.

Adding Probes to the Waveform
To add probes to the waveform, select the Probes to add for the associated ILA core in the
Debug Probes window, right-click, and select Add Probes to Waveform from the pop-up
menu.

To add another copy of a signal or bus to the waveform window, select the signal or bus in
the waveform window. Then select Edit > Copy or type Ctrl+C. This copies the object to the
clipboard. Select Edit > Paste or type Ctrl+V to paste a copy of the object in the waveform.

Using the Zoom Features
Toolbar buttons provide quick access to waveform zooming features (see Figure 6-4).
Alternatively, use the mouse wheel combined with the CTRL key to zoom in and out of the
currently selected waveform. It is important to note the zoom level is not persistent and will
be reset between Vivado sessions.

Waveform Options Dialog Box
The waveform viewer allows you do customize the way objects are displayed.

X-Ref Target - Figure 6-4

Figure 6-4: Waveform Zoom Buttons
Vivado Programming and Debugging www.xilinx.com 109
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=109

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
When you select the Waveforms Options button the Waveform Options dialog box in
Figure 6-5 opens:

The options are as follows:

• Colors Tab: Lets you choose custom colors for waveform objects

• Default Radix: Sets the default radix for bus probes

• Draw Waveform Shadow: Displays a light green shadow under scalar '1' to help
differentiate between '1' and '0'

• Show signal indices: Display index position number to the left side of scalar and bus
names

• Show trigger markers: Show (or hide) the red trigger markers in the wave viewer

Customizing the Configuration
You can customize the Waveform configuration using the features that are listed and briefly
described in Table 6-1; the feature name links to the subsection that fully describes the
feature.

X-Ref Target - Figure 6-5

Figure 6-5: Waveform Options Dialog Box
Vivado Programming and Debugging www.xilinx.com 110
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=110

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
Cursors
Cursors are used primarily for temporary indicators of sample position and are expected to
be moved frequently, as in the case when you are measuring the distance (in samples)
between two waveform edges.

TIP: For more permanent indicators, used in situations such as establishing a time-base for multiple
measurements, add markers to the Wave window instead. See Markers, page 112 for more information.

You can place the main cursor with a single click in the Waveform window.

To place a secondary cursor, Ctrl+Click and hold the waveform, and drag either left or right.
You can see a flag that labels the location at the top of the cursor.

Alternatively, you can hold the SHIFT key and click a point in the waveform. The main cursor
remains the original position, and the other cursor is at the point in the waveform that you
clicked.

Note: To preserve the location of the secondary cursor while positioning the main cursor, hold the
Shift key while clicking. When placing the secondary cursor by dragging, you must drag a minimum
distance before the secondary cursor appears.

To move a cursor, hover over the cursor until you see the grab symbol, and click and drag
the cursor to the new location.

Table 6-1: Customization Features in the Waveform Configuration

Feature Description

Cursors The main cursor and secondary cursor in the Waveform
window let you display and measure time, and they form the
focal point for various navigation activities.

Markers You can add markers to navigate through the waveform, and
to display the waveform value at a particular time.

Dividers You can add a divider to create a visual separator of signals.

Using Groups You can add a group, that is a collection to which signals and
buses can be added in the wave configuration as a means of
organizing a set of related signals.

Using Virtual Buses You can add a virtual bus to your wave configuration, to which
you can add logic scalars and arrays.

Renaming Objects You can rename objects, signals, buses, and groups.

Radixes The default radix controls the bus radix that displays in the
wave configuration, Objects panel, and the Console panel.

Bus Bit Order You can change the Bus bit order from Most Signif icant Bit
(MSB) to Least Signif icant Bit (LSB) and vice versa.
Vivado Programming and Debugging www.xilinx.com 111
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=111

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
As you drag the cursor in the Waveform window, you see a hollow or filled-in circle if the
Snap to Transition button is selected, which is the default behavior.

• A hollow circle indicates that you are between transitions in the waveform of the
selected signal.

• A f illed-in circle indicates that you are hovering over the waveform transition of the
selected signal. A secondary cursor can be hidden by clicking anywhere in the
Waveform window where there is no cursor, marker, or floating ruler.

Markers
Use a marker when you want to mark a signif icant event within your waveform in a
permanent fashion. Markers allow you to measure distance (in samples) relevant to that
marked event.

You can add, move, and delete markers as follows:

• You add markers to the wave configuration at the location of the main cursor.

a. Place the main cursor at the sample number where you want to add the marker by
clicking in the Waveform window at the sample number or on the transition.

b. Select Edit > Markers > Add Marker, or click the Add Marker button.

A marker is placed at the cursor, or slightly offset if a marker already exists at the
location of the cursor. The sample number of the marker displays at the top of the line.

• You can move the marker to another location in the waveform using the drag and drop
method. Click the marker label (at the top of the marker) and drag it to the location.

° The drag symbol indicates that the marker can be moved. As you drag the
marker in the Waveform window, you see a hollow or f illed-in circle if the Snap to
Transition button is selected, which is the default behavior.

° A f illed-in circle indicates that you are hovering over a transition of the
waveform for the selected signal or over another marker.

° For markers, the f illed-in circle is white.

° A hollow circle indicates that are you between transitions in the waveform of the
selected signal.

° Release the mouse key to drop the marker to the new location.

• You can delete one or all markers with one command. Right-click over a marker, and do
one of the following:

° Select Delete Marker from the popup menu to delete a single marker.

° Select Delete All Markers from the popup menu to delete all markers.

Note: You can also use the Delete key to delete a selected marker.
Vivado Programming and Debugging www.xilinx.com 112
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=112

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
° Use Edit > Undo to reverse a marker deletion.

Trigger Markers
The red trigger marker (whose label is a red letter 'T') a special marker that indicates the
occurrence of the trigger event in the capture buffer. The position of the trigger marker in
the buffer directly corresponds to the Trigger Position setting (see Using the ILA Dashboard,
page 67).

Note: The trigger markers are not movable using the same technique as regular markers. Set their
position using the ILA core's Trigger Position property setting.

Dividers
Dividers create a visual separator between signals. You can add a divider to your wave
configuration to create a visual separator of signals, as follows:

1. In a Name column of the Waveform window, click a signal to add a divider below that
signal.

2. From the popup menu, select Edit > New Divider, or right-click and select New Divider.

The change is visual and nothing is added to the HDL code. The new divider is saved with
the wave configuration f ile when you save the f ile.

You can move or delete Dividers as follows:

• Move a Divider to another location in the waveform by dragging and dropping the
divider name.

• To delete a Divider, highlight the divider, and click the Delete key, or right-click and
select Delete from the popup menu.

You can also rename Dividers; see Renaming Objects, page 115.

Using Groups
A Group is a collection of expandable and collapsible categories, to which you can add
signals and buses in the wave configuration to organize related sets of signals. The group
itself displays no waveform data but can be expanded to show its contents or collapsed to
hide them. You can add, change, and remove groups.

To add a Group:

1. In a wave configuration, select one or more signals or buses to add to a group.

Note: A group can include dividers, virtual buses, and other groups.

2. Select Edit > New Group, or right-click and select New Group from the popup menu.
Vivado Programming and Debugging www.xilinx.com 113
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=113

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
A Group that contains the selected signal or bus is added to the wave configuration.

A Group is represented with the Group button.

The change is visual and nothing is added to the ILA core.

You can move other signals or buses to the group by dragging and dropping the signal or
bus name.

You can move or remove Groups as follows:

• Move Groups to another location in the Name column by dragging and dropping the
group name.

• Remove a group, by highlighting it and selecting Edit > Wave Objects > Ungroup, or
right-click and select Ungroup from the popup menu. Signals or buses formerly in the group
are placed at the top-level hierarchy in the wave configuration.

Groups can be renamed also; see Renaming Objects, page 115.

CAUTION! The Delete key removes the group and its nested signals and buses from the wave
configuration.

Using Virtual Buses
You can add a virtual bus to your wave configuration, which is a grouping to which you can
add logic scalars and arrays. The virtual bus displays a bus waveform, which shows the
signal waveforms in the vertical order that they appear under the virtual bus, flattened to a
one-dimensional array. You can then change or remove virtual buses after adding them.

To add a virtual bus:

1. In a wave configuration, select one or more signals or buses you want to add to a virtual
bus.

2. Select Edit > New Virtual Bus, or right-click and select New Virtual Bus from the
popup menu.

The virtual bus is represented with the Virtual Bus button .

The change is visual and nothing is added to the HDL code.

You can move other signals or buses to the virtual bus by dragging and dropping the signal
or bus name. The new virtual bus and its nested signals or buses are saved when you save
the wave configuration f ile. You can also move it to another location in the waveform by
dragging and dropping the virtual bus name.

You can rename a virtual bus; see Renaming Objects.
Vivado Programming and Debugging www.xilinx.com 114
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=114

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
To remove a virtual bus, and ungroup its contents, highlight the virtual bus, and select
Edit > Wave Objects > Ungroup, or right-click and select Ungroup from the popup menu.

CAUTION! The Delete key removes the virtual bus and its nested signals and buses from the wave
configuration.

Renaming Objects
You can rename any object in the Waveform window, such as signals, dividers, groups, and
virtual buses.

1. Select the object name in the Name column.

2. Select Rename from the popup menu.

3. Replace the name with a new one.

4. Press Enter or click outside the name to make the name change take effect.

You can also double-click the object name and then type a new name. The change is
effective immediately. Object name changes in the wave configuration do not affect the
names of the nets attached to the ILA core probe inputs.

Radixes
Understanding the type of data on your bus is important. You need to recognize the
relationship between the radix setting and the data type to use the waveform options of
Digital and Analog effectively. See Bus Radixes, page 117 for more information about the
radix setting and its effect on Analog waveform analysis.

You can change the radix of an individual signal (ILA probe) in the Waveform window as
follows:

1. Right-click a bus in the Waveform window.

2. Select Radix and the format you want from the drop-down menu:

° Binary

° Hexadecimal

° Unsigned Decimal

° Signed Decimal

° Octal

° ASCII
Vivado Programming and Debugging www.xilinx.com 115
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=115

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
IMPORTANT: Changes to the radix of an item in the Objects window do not apply to values in the
Waveform window or the Tcl Console. To change the radix of an individual signal (ILA probe) in
the Waveform window, use the Waveform window popup menu.

• Maximum bus width of 64 bits on real. Incorrect values are possible for buses wider
than 64 bits.

• Floating point supports only 32- and 64-bit arrays.

Using the Floating Ruler
The floating ruler assists with sample measurements using a sample number base other than the
absolute sample numbers shown on the standard ruler at the top of the Waveform window.

You can display (or hide) a floating ruler and move it to a location in the Waveform window. The
sample base (sample 0) of the floating ruler is the secondary cursor, or, if there is no secondary
cursor, the selected marker.

The floating ruler button and the floating ruler itself are visible only when the secondary cursor (or
selected marker) is present.

1. Do either of the following to display or hide a floating ruler:

° Place the secondary cursor.

° Select a marker.

2. Select View > Floating Ruler, or click the Floating Ruler button.

You only need to follow this procedure the f irst time. The floating ruler displays
each time the secondary cursor is placed or a marker is selected.

Select the command again to hide the floating ruler.

Bus Bit Order
You can reverse the bus bit order in the wave configuration to switch between MSB-first
and LSB-first signal representation.

To reverse the bit order:

1. Select a bus.

2. Right-click and select Reverse Bit Order.

The bus bit order is reversed. The Reverse Bit Order command is marked to show that this
is the current behavior.
Vivado Programming and Debugging www.xilinx.com 116
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=116

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
Bus Radixes
Bus values are interpreted as numeric values, which are determined by the radix setting on
the bus wave object, as follows:

• Binary, octal, hexadecimal, ASCII, and unsigned decimal radixes cause the bus values to
be interpreted as unsigned integers. The format of data on the bus must match the
radix setting.

• Any non-0 or -1 bits cause the entire value to be interpreted as 0.

• The signed decimal radix causes the bus values to be interpreted as signed integers.

• Real radixes cause bus values to be interpreted as f ixed point or floating point real
numbers, as determined by the settings of the Real Settings dialog box, shown in
Figure 6-6.

The options are as follows:

• Fixed Point: Specif ies that the bits of the selected bus wave objects is interpreted as a
f ixed point, signed, or unsigned real number.

• Binary Point: Specifies how many bits to interpret as being to the right of the binary
point. If Binary Point is larger than the bit width of the wave object, wave object values
cannot be interpreted as fixed point, and when the wave object is shown in Digital

X-Ref Target - Figure 6-6

Figure 6-6: Real Settings Dialog Box

Vivado Programming and Debugging www.xilinx.com 117
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=117

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
waveform style, all values show as <Bad Radix>. When shown as analog, all values are
interpreted as 0.

• Floating Point: Specifies that the bits of the selected bus wave objects should be
interpreted as an IEEE floating point real number.

Note: Only single precision and double precision (and custom precision with values set to those
of single and double precision) are supported.

Other values result in <Bad Radix> values as in Fixed Point.
Exponent Width and Fraction Width must add up to the bit width of the wave object,
or else <Bad Radix> values result.

Viewing Analog Waveforms
To convert a digital waveform to analog, do the following:

1. In the Name area of a Waveform window, right-click the bus.

2. Select Waveform Style and then Analog Settings to choose an appropriate drawing
setting.

The digital drawing of the bus converts to an analog format.

You can adjust the height of either an analog waveform or a digital waveform by selecting
and then dragging the rows.

Figure 6-7 shows the Analog Settings dialog box with the settings for analog waveform
drawing.
Vivado Programming and Debugging www.xilinx.com 118
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=118

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
The Analog Settings dialog box options are as follows:

• Row Height: Specif ies how tall to make the select wave objects, in pixels. Changing the
row height does not change how much of a waveform is exposed or hidden vertically,
but rather stretches or contracts the height of the waveform.

When switching between Analog and Digital waveform styles, the row height is set to an
appropriate default for the style (20 for digital, 100 for analog).

• Y Range: Specifies the range of numeric values to be shown in the waveform area.

° Auto: Specifies that the range should continually expand whenever values in the
visible time range of the window are discovered to lie outside the current range.

° Fixed: Specif ies that the time range is to remain at a constant interval.

° Min: Specifies the value displays at the bottom of the waveform area.

° Max: Specif ies the value displays at the top.

Both values can be specified as floating point; however, if radix of the wave object
radix is integral, the values are truncated to integers.

X-Ref Target - Figure 6-7

Figure 6-7: Analog Settings Dialog Box

Vivado Programming and Debugging www.xilinx.com 119
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=119

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
• Interpolation Style: Specif ies how the line connecting data points is to be drawn.

° Linear : Specif ies a straight line between two data points.

° Hold: Specifies that of two data points, a horizontal line is drawn from the left point
to the X-coordinate of the right point, then another line is drawn connecting that
line to the right data point, in an L shape.

° Off Scale: Specif ies how to draw waveform values that lie outside the Y range of the
waveform area.

° Hide: Specifies that outlying values are not shown, such that a waveform that
reaches the upper or lower bound of the waveform area disappears until values are
again within the range.

° Clip: Specif ies that outlying values be altered so that they are at the top or bottom
of the waveform area, such that a waveform that reaches the upper- or lower-bound
of the waveform area follows the bound as a horizontal line until values are again
within the range.

° Overlap: Specif ies that the waveform be drawn wherever its values are, even if they
lie outside the bounds of the waveform area and overlap other waveforms, up to
the limits of the wave window itself.

• Horizontal Line: Specif ies whether to draw a horizontal rule at the given value. If the
check-box is on, a horizontal grid line is drawn at the vertical position of the specif ied Y
value, if that value is within the Y range of the waveform.

As with Min and Max, the Y value accepts a floating point number but truncates it to an
integer if the radix of the selected wave objects is integral.

IMPORTANT: Analog settings are saved in a wave configuration; however, because control of zooming
in the Y dimension is highly interactive, unlike other wave object properties such as radix, they do not
affect the modification state of the wave configuration. Consequently, zoom settings are not saved with
the wave configuration.
Vivado Programming and Debugging www.xilinx.com 120
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=120

Chapter 6: Viewing ILA Probe Data in the Waveform Viewer
Zoom Gestures
In addition to the zoom gestures supported for zooming in the X dimension, when over an
analog waveform, additional zoom gestures are available, as shown in Figure 6-8.

To invoke a zoom gesture, hold down the left mouse button and drag in the direction
indicated in the diagram, where the starting mouse position is the center of the diagram.

The additional Zoom gestures are as follows:

• Zoom Out Y: Zooms out in the Y dimension by a power of 2 determined by how far
away the mouse button is released from the starting point. The zoom is performed
such that the Y value of the starting mouse position remains stationary.

• Zoom Y Range: Draws a vertical curtain which specif ies the Y range to display when
the mouse is released.

• Zoom In Y: Zooms in toward the Y dimension by a power of 2 determined by how far
away the mouse button is released from the starting point.

The zoom is performed such that the Y value of the starting mouse position remains
stationary.

• Reset Zoom Y: Resets the Y range to that of the values currently displayed in the wave
window and sets the Y Range mode to Auto.

All zoom gestures in the Y dimension set the Y Range analog settings. Reset Zoom Y sets
the Y Range to Auto, whereas the other gestures set Y Range to Fixed.

X-Ref Target - Figure 6-8

Figure 6-8: Analog Zoom Options
Vivado Programming and Debugging www.xilinx.com 121
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=121

Chapter 7

In-System Serial I/O Debugging Flows

Introduction
The Vivado® IDE provides a quick and easy way to generate a design that helps you debug
and verify your system that uses Xilinx high-speed gigabit transceiver (GT) technology. The
in-system serial I/O debugging flow has three distinct phases:

1. IBERT Core generation phase: Customizing and generating the IBERT core that best
meets your hardware high-speed serial I/O requirements.

2. IBERT Example Design Generation and Implementation phase: Generating the example
design for the IBERT core generated in the previous step.

3. Serial I/O Analysis phase: Interacting with the IBERT IP contained in the design to debug
and verify issues in your high-speed serial I/O links.

The rest of this chapter shows how to complete the f irst two phases. The third phase is
covered in the chapter called Debugging the Serial I/O Design in Hardware.

Generating an IBERT Core using the Vivado IP
Catalog
The first phase of getting a suitable hardware design to help debug and validate your
system's high-speed serial I/O interfaces is to generate the IBERT core. The following steps
outline how to do this:

1. Open the Vivado IDE

2. On the f irst panel, choose Manage IP > New IP Location, then click Next when the
Open IP Catalog wizard opens.

3. Select the desired part, target language, target simulator, and IP location. Click Finish.

4. In the IP Catalog under Debug and Verification > Debug, you will f ind one or more
available IBERT cores as shown in Figure 7-1, depending on the device selected in the
previous step.

5. Double-click the IBERT architecture desire to open the Customize IP Wizard for that core
Vivado Programming and Debugging www.xilinx.com 122
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=122

Chapter 7: In-System Serial I/O Debugging Flows
Customize the IBERT core for your given hardware system requirements. For details on the
various IBERT cores available, see the following IP Documents: LogiCORE IP IBERT for 7 Series
GTX Transceivers, (PG132) [Ref 13], LogiCORE IP IBERT for 7 Series GTP Transceivers, (PG133) [Ref 14],
LogiCORE IP IBERT for 7 Series GTH Transceivers, (PG152) [Ref 15].

Generating and Implementing the IBERT Example
Design
After generating the IBERT IP core, it appears in the Sources window as
"ibert_7series_gtx" or something similar. To generate the example design, right-click
the IBERT IP in the Sources window and select Open IP Example Design, then specify the
desired location of the example design project in the resulting dialog window. This

X-Ref Target - Figure 7-1

Figure 7-1: IP Catalog Showing the IBERT 7 Series GTX Core
Vivado Programming and Debugging www.xilinx.com 123
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=123

Chapter 7: In-System Serial I/O Debugging Flows
command opens a new Vivado project window for the example design and adds the proper
top-level wrapper and constraints f ile to the project, as shown in Figure 7-2.

Once the example design is generated, you can implement the IBERT example design
through bitstream creation core by clicking Generate Bitstream in the Program and
Debug section of the Vivado IDE flow navigator or by running the following Tcl commands:

launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1

6. Refer to the Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 5] for
more details on the various ways you can implement your design.

X-Ref Target - Figure 7-2

Figure 7-2: IBERT Example Design
Vivado Programming and Debugging www.xilinx.com 124
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=124

Chapter 8

Debugging the Serial I/O Design in
Hardware

Introduction
Once you have IBERT core implemented, you can use the run time serial I/O analyzer
features to debug the design in hardware. Only IBERT cores version v3.0 and later can be
accessed using the serial I/O analyzer feature.

Using Vivado® Serial I/O Analyzer to Debug the
Design
The Vivado® serial I/O analyzer feature is used to interact with IBERT debug IP cores that
are in your design. To access the Vivado serial I/O analyzer feature, click the Open
Hardware Manager button in the Program and Debug section of the Flow Navigator.

The steps to debug your design in hardware are:

1. Connect to the hardware target and programming the FPGA device with the bit f ile.

2. Create Links.

3. Modify link settings and examine status.

4. Run scans as needed.

Connecting to the Hardware Target and Programming the FPGA
Device
Programming an FPGA device prior to debugging involves exactly the same steps described
in Using a Vivado Hardware Manager to Program an FPGA Device in Chapter 2. After
programming the device with the .bit f ile that contains the IBERT core, the Hardware
window now shows the components of the IBERT core that were detected when scanning
the device (see Figure 8-1).
Vivado Programming and Debugging www.xilinx.com 125
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=125

Chapter 8: Debugging the Serial I/O Design in Hardware
Creating Links and Link Groups
The IBERT core present in the design appears in the Hardware window under the target
device. If you do not see the core appear, right-click the device and select the Refresh
Hardware command. This re-scans the FPGA device and refreshes the Hardware window.

Note: If you still do not see the IBERT core after programming and/or refreshing the FPGA device,
check to make sure the device was programmed with the appropriate .bit f ile. Also check to make
sure the implemented design contains an IBERT v3.0 core.

The Vivado serial I/O analyzer feature is built around the concept of links. A link is
analogous to a channel on a board, with a transmitter and a receiver. The transmitter and
receiver may or may not be the same GT, on the same device, or be the same architecture.
To create one or more links, go to the Links tab in Vivado, and click either the Create Links
button, or right-click and choose Create Links. This causes the Create Links dialog window
to appear, as shown in Figure 8-2.

When an IBERT core is detected, the Hardware Manager notes that there are no links
present, and show a green banner at the top. Click *Create Links* to open the Create Links
dialog window, as shown in Figure 8-2.

X-Ref Target - Figure 8-1

Figure 8-1: Hardware Window Showing the IBERT Core
Vivado Programming and Debugging www.xilinx.com 126
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=126

Chapter 8: Debugging the Serial I/O Design in Hardware
Choose a TX and/or an RX from the list available. Or type in a string into the search field to
narrow down the list. Then click the Add (+) button to add the link to the list. Repeat for all
links desired.

IMPORTANT: A given TX or RX endpoint can only belong to one link.

Links can also be a part of a link group. By default, all new links are grouped together. You
can choose not to add the links to a group by unchecking Create link group check box. The
name of the link group is specif ied in the Link group description f ield.

X-Ref Target - Figure 8-2

Figure 8-2: Create Links Dialog
Vivado Programming and Debugging www.xilinx.com 127
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=127

Chapter 8: Debugging the Serial I/O Design in Hardware
Viewing and Changing Links Settings Using the Links Window
Once links are created, they are added to the Link view (see Figure 8-3) which is the primary
and best way to change link settings and view status.

Each row in the Links window represents a link. Common and useful status and controls are
enabled by default, so the health of the links can be quickly seen. The various settings that
can be viewed in the Links window’s table columns are shown in Table 8-1.

X-Ref Target - Figure 8-3

Figure 8-3: Links Window

Table 8-1: Links Window Settings

Link View Column Name Description

Name The name of the link

TX The GT location of the transmitter

RX The GT location of the receiver

Status If linked (meaning the incoming RX data as expected). Status displays the
measured line rate. Otherwise, it displays “No Link”.

Bits The measured number of bits received.

Errors The measured number of bit errors by the receiver.

BER Bit Error Ratio = (1 + Errors) / (Bits).

BERT Reset Resets the received bits and error counters.

RX Pattern Selects which pattern the receiver is expecting.

TX Pattern Selects which pattern the transmitter is sending.

TX Pre-Curser Selects the pre-curser emphasis on the transmitter.

TX Post-Cursor Selects the post-cursor emphasis on the transmitter.

TX Diff Swing Selects the differential swing values for the transmitter.

DFE Enabled Selects whether the Decision Feedback Equalizer is enabled on the receiver (not
available for all architectures).

Inject Error Injects a single bit error into the transmit path.

TX Reset Resets the transmitter.

RX Reset Resets the receiver and BERT counters (see BERT Reset).
Vivado Programming and Debugging www.xilinx.com 128
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=128

Chapter 8: Debugging the Serial I/O Design in Hardware
It is possible to change the values of a given property for all links in a link group by
changing the setting in the link group row. For instance, changing the TX Pattern to "PRBS
7-bit" in the "Link Group 0" row changes the TX Pattern of all the links to "PRBS 7-bit". If not
all the links in the group have the same setting, "Multiple" appears for that column in the
link group row.

Creating and Running Link Scans
To analyze the margin of a given link, it is often helpful to run a scan of the link using the
specialized Eye Scan hardware of the Xilinx 7 Series FPGA transceivers. The Vivado serial I/O
analyzer feature enables you to define, run, save, and recall link scans.

A scan runs on a link. To create a scan, select a link in the Link window, and either right-click
and choose Create Scan, or click the Create Scan button in the Link window toolbar. This
brings up the Create Scan dialog (see Figure 8-4). The Create Scan dialog shows the
settings for performing a scan, as shown in Table 8-2.

Loopback Mode Selects the loopback mode on the receiver GT.
Warning: Changing this value might effect the link status depending on the
system topology.

Termination Voltage Selects the termination voltage of the receiver.

RX Common Mode Selects the RX Commn Mode setting of the receiver.

TXUSERCLK Freq Shows the measured TXUSERCLK frequency in MHz.

TXUSERCLK2 Freq Shows the measured TXUSERCLK2 frequency in MHz.

RXUSERCLK Freq Shows the measured RXUSERCLK frequency in MHz.

RXUSERCLK2 Freq Shows the measured RXUSERCLK2 frequency in MHz.

TX Polarity Invert Inverts the polarity of the transmitted data.

RX Polarity Invert Inverts the polarity of the received data.

Table 8-1: Links Window Settings

Link View Column Name Description
Vivado Programming and Debugging www.xilinx.com 129
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=129

Chapter 8: Debugging the Serial I/O Design in Hardware
By default, the scan is run after it is created. If you do not want to run the scan, and only
define it, uncheck the Run Scan check box.

If a scan is created, but not run, it can be subsequently run or run by right-clicking on a scan
in the Scans window and choosing Run Scan (see Figure 8-5). While a scan is running, it can
be prematurely stopped by right-clicking on a scan and choosing Stop Scan, or clicking the
Stop Scan button in the Scans window toolbar.

X-Ref Target - Figure 8-4

Figure 8-4: Create Scan Dialog

Table 8-2: Scan Settings

Scan Setting Description

Description A user-defined name for the scan.

Scan Type The type of scan to run.

Horizontal Increment Allows you to choose to scan the eye at a reduced resolution, but at increased
speed by skipping horizontal codes.

Horizontal Range Reducing the horizontal range increases the scan speed. By default, the entire
eye is scanned (-1/2 of a unit interval to +1/2 in reference to the center of the
eye).

Vertical Increment Allows you to choose to scan the eye at a reduced resolution, but increased
speed by skipping vertical codes.

Vertical Range Reducing the vertical range increases the scan speed. By default, the entire eye
is scanned.

Dwell BER Each point in the chart is scanned for a certain amount of time. Dwell BER allows
you to choose the scan depth by selecting the desired Bit Error Ratio.

Dwell Time Dwell Time allows you to choose the scan depth by inputting the desired time
in seconds.
Vivado Programming and Debugging www.xilinx.com 130
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=130

Chapter 8: Debugging the Serial I/O Design in Hardware
Creating and Running Link Sweeps
To analyze the margin of a given link, it can be helpful to run multiple scans of the link with
different MGT settings. This helps determine which settings are the best. The Vivado serial
I/O analyzer feature enables you to define, run, save, and recall link sweeps, which are a
collection of link scans.

A sweep runs on a link. To create a sweep, select a link in the Link window, and either
right-click and choose Create Sweep, or click the Create Sweep button in the Link window
toolbar. This will bring up the Create Sweep dialog box, which looks similar to the Create
Scan dialog box, except that it has additional options for defining which properties to
sweep, and how.

X-Ref Target - Figure 8-5

Figure 8-5: Scans Window
Vivado Programming and Debugging www.xilinx.com 131
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=131

Chapter 8: Debugging the Serial I/O Design in Hardware
X-Ref Target - Figure 8-6

Figure 8-6: Create Sweep Dialog Box

Table 8-3: Sweep Settings

Sweep Setting Description

Description A user-defined name for the sweep.

Scan Type The type of scan to run.

Horizontal Increment Allows you to scan the eye at a reduced resolution, but at increased
speed by skipping horizontal codes.

Horizontal Range Reducing the horizontal range increases the scan speed. By default,
the entire eye is scanned (-1/2 of a unit interval to +1/2 in reference
to the center of the eye).
Vivado Programming and Debugging www.xilinx.com 132
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=132

Chapter 8: Debugging the Serial I/O Design in Hardware
After these settings are chosen, the next step is to choose the Sweep Properties. Any
writable properties of the link can be swept. To add a property, click the + button on the
right side to add another row to the table. Click the Property Name to choose a property
to sweep.

To change the values, click the Values to Sweep Cell, and use the chooser to select which
values to sweep. If the property does not have enumerated values, type one hex value on
each line of the text area provided.

• In the Semi Custom case shown in Figure 8-8, every combination of the properties
chosen is defined for a single scan, and that scan is performed according to the sweep
properties. The number of sweeps that are performed, and in what order can be
previewed by selecting the Preview & Scans tab.

• In the Full Custom case, the f irst choice for each of the properties listed is used for the
f irst scan, the second choice for each of the properties is used for the second scan, etc.
If one of the properties has fewer choices than other properties, the last choice will be
used for all subsequent scans. With the same properties choices but Full Custom as the
sweep Mode, only three scans would be performed.

Vertical Increment Allows the user to choose to scan the eye at a reduced resolution,
but increased speed by skipping vertical codes.

Vertical Range Reducing the vertical range increases the scan speed. By default,
the entire eye is scanned.

Dwell BER Each point in the chart is scanned for a certain amount of time.
Dwell BER allows you to choose the scan depth by selecting the
desired Bit Error Ratio (BER).

Dwell Time Dwell Time allows you to choose the scan depth by inputting the
desired time in seconds.

Sweep Mode The type of sweep to run. The choices are Semi Custom, Full
Custom, and Exhaustive.

X-Ref Target - Figure 8-7

Figure 8-7: Values to Sweep Cell

Table 8-3: Sweep Settings

Sweep Setting Description
Vivado Programming and Debugging www.xilinx.com 133
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=133

Chapter 8: Debugging the Serial I/O Design in Hardware
• In the Exhaustive case, the Values to Sweep is no longer editable, as all values are
chosen for a given property.

When all the properties are set, to run each of the scans sequentially, keep Run Sweep
checked. The list of scans is elaborated in the Scan window once you click the OK button.

During the sweep, the progress is tracked in the Scan window, and the latest Scan result is
displayed.

Displaying and Navigating the Scan Plots
After a scan is created, it automatically launches the Scan Plots window for that scan. For
2D Eyescan, the plot is a heat map of the BER value.

X-Ref Target - Figure 8-8

Figure 8-8: Sweep Properites Dialog Box
Vivado Programming and Debugging www.xilinx.com 134
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=134

Chapter 8: Debugging the Serial I/O Design in Hardware

As in other charts and displays within the Vivado IDE, the mouse gestures for zooming in
the eye scan plot window are as follows:

• Zoom Area: left-click drag from top-left to bottom-right

• Zoom Fit: left-click drag from bottom-right to top-left

• Zoom In: left-click drag from top-right to bottom-left

• Zoom Out: left-click drag from bottom-left to top-right

Also, when the mouse cursor is over the Plot, the current horizontal and vertical codes,
along with the scanned BER value is displayed in the tooltip. You can also change the plot
type by clicking the *Plot Type* button in the plot window, and choosing Show Contour
(filled), Show Contour (lines), and Heat Map.

A summary view is present at the bottom of the scan plot, stating the scan settings, along
with basic information like when the scan was performed. During the 2D Eyescan, the
number of pixels in the scan with zero errors is calculated (taking into account the
horizontal and vertical increments), and this result is displayed as Open Area. The *Scan*
window contents are sorted by Open Area by default, so the scans with the largest open
area appear at the top.

X-Ref Target - Figure 8-9

Figure 8-9: Scan Plot Window
Vivado Programming and Debugging www.xilinx.com 135
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=135

Chapter 8: Debugging the Serial I/O Design in Hardware
Writing the Scan Results to a File
When scan data exists due to a partial or full 2D Eyescan, these results can be written to a
CSV f ile by clicking the Write Scan button in the Scans Window. This saves the scan results
to comma-delimited f ile, with the BER values in a block that replicated the scan plot.

Properties Window
Whenever a GT or a COMMON block in the hardware window, a Link in the Links window,
or a scan in the Scans window is selected, the properties of that object shows in the
Properties window. For GTs and COMMONs, these include all the attribute, port, and other
settings of those objects. These settings can be changed in the Properties window (see
Figure 8-10), or by writing Tcl commands to change and commit the properties. Some
properties are read-only and cannot be changed.

X-Ref Target - Figure 8-10

Figure 8-10: Properties Window
Vivado Programming and Debugging www.xilinx.com 136
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=136

Chapter 8: Debugging the Serial I/O Design in Hardware
Description of Serial I/O Analyzer Tcl Objects and Commands
You can use Tcl commands to interact with your hardware under test. The hardware is
organized in a set of hierarchical f irst class Tcl objects (see Table 8-4).

For more information about the hardware manager commands, run the help -category
hardware Tcl command in the Tcl Console.

Description of Tcl Commands to Access Hardware

Table 8-5 contains descriptions of all Tcl commands used to interact with the IBERT core.

IMPORTANT: Using the get_property or set_property command does not read or write information
to/from the IBERT core. You must use the refresh_hw_sio and commit_hw_sio commands to read and
write information from/to the hardware, respectively.

Table 8-4: Serial I/O Analyzer Tcl Objects

Tcl Object Description

hw_sio_ibert Object referring to an IBERT core. Each IBERT object can have one or more
hw_sio_gt, or hw_sio_common objects associated with it.

hw_sio_gt Object referring to a single Xilinx Gigabit Transceiver (GT).

hw_sio_gtgroups Object referring to a logical grouping of GTs, could be a Quad or an Octal.

hw_sio_common Object referring to a COMMON block.

hw_sio_tx Object referring to the transmitter side of a hw_sio_gt. Only the TX related
ports, attributes, and logic properties flows to the hw_sio_tx.

hw_sio_rx Object referring to the receiver side of a hw_sio_gt. Only the RX related ports,
attributes, and logic properties flows to the hw_sio_rx.

hw_sio_pll Object referring to a PLL in either an hw_sio_gt or an hw_sio_common object.
Only the related ports, attributes, and logic properties flow to the hw_sio_pll.

hw_sio_link Object referring to a link, a TX-RX pair.
Note: A link can also consist of a TX only or an RX only.

hw_sio_linkgroup Object referring to a group of links.

hw_sio_scan Object referring to a margin analysis scan.

Table 8-5: Descriptions of hw_server Tcl Commands

Tcl Command Description

refresh_hw_sio Read the property values out of the provided object. Works for any hw_sio
object that refers to hardware.

commit_hw_sio Writes property changes to the hardware. Works for any hw_sio object that
refers to hardware.
Vivado Programming and Debugging www.xilinx.com 137
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=137

Chapter 8: Debugging the Serial I/O Design in Hardware
Description of hw_sio_link Tcl Commands

Table 8-6 contains descriptions of all Tcl commands used to interact with links.

Description of hw_sio_linkgroup Tcl Commands

Table 8-7 contains descriptions of all Tcl commands used to interact with linkgroups.

Description of hw_sio_scan Tcl Commands

Table 8-8 contains descriptions of all Tcl commands used to interact with scans.

Table 8-6: Descriptions of hw_sio_link Tcl Commands

Tcl Command Description

create_hw_sio_link Create an hw_sio_link object with the given hw_sio_rx and/or hw_sio_tx objects.

remove_hw_sio_link Deletes the given link.

get_hw_sio_links Get list of hw_sio_links for the given object.

Table 8-7: Descriptions of hw_sio_linkgroup Tcl Commands

Tcl Command Description

create_hw_sio_linkgroup Create an hw_sio_linkgroup object with the hw_sio_link objects.

remove_hw_sio_linkgroup Deletes the given linkgroup.

get_hw_sio_linkgroups Get list of hw_sio_linkgroups for the given object.

Table 8-8: Descriptions of hw_sio_scan Tcl Commands

Tcl Command Description

create_hw_sio_scan Creates a scan object.

remove_hw_sio_scan Deletes a scan object.

run_hw_sio_scan Runs a scan.

stop_hw_sio_scan Stops a scan.

wait_on_hw_sio_scan Blocks the Tcl console prompt until a given run_hw_sio_scan operation is
complete.

display_hw_sio_scan Displays a partial or complete scan in the Scan Plot.

write_hw_sio_scan Writes the scan data to a file.

read_hw_sio_scan Reads scan data from a f ile into a scan object.

get_hw_sio_scans Get a list of hw_sio_scan objects.
Vivado Programming and Debugging www.xilinx.com 138
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=138

Chapter 8: Debugging the Serial I/O Design in Hardware
Description of Tcl Commands to Get Objects

Table 8-9 contains descriptions of all Tcl commands used to get serial I/O objects.

Using Tcl Commands to Take an IBERT Measurement
Below is an example Tcl command script that interacts with the following example system

• One KC705 board's Digilent JTAG-SMT1 cable (serial number 12345) accessible via a
hw_server running on localhost:3121

• Single IBERT core in a design running in the XC7K325T device on the KC705 board

• IBERT core has Quad 117 and Quad 118 enabled

Example Tcl Command Script

Connect to the Digilent Cable on localhost:3121
connect_hw_server -url localhost:3121
current_hw_target [get_hw_targets */digilent_plugin/SN:12345]
open_hw_target

Program and Refresh the XC7K325T Device
current_hw_device [lindex [get_hw_devices] 0]
refresh_hw_device -update_hw_probes false [lindex [get_hw_devices] 0]
set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]
program_hw_devices [lindex [get_hw_devices] 0]
refresh_hw_device [lindex [get_hw_devices] 0]

Set Up Link on first GT
set tx0 [lindex [get_hw_sio_txs] 0]
set rx0 [lindex [get_hw_sio_rxs] 0]
set link0 [create_hw_sio_link $tx0 $rx0]
set_property DESCRIPTION {Link 0} [get_hw_sio_links $link0]

Table 8-9: Descriptions of Tcl Commands to Get Objects

Tcl Command Description

get_hw_sio_iberts Get list of IBERT objects.

get_hw_sio_gts Get list of GTs.

get_hw_sio_commons Get list of COMMON blocks.

get_hw_sio_txs Get list of transmitters.

get_hw_sio_rxs Get list of receivers.

get_hw_sio_plls Get list of PLLs.

get_hw_sio_links Get list of links.

get_hw_sio_linkgroups Get list of linkgroups.

get_hw_sio_scans Get list of scans.
Vivado Programming and Debugging www.xilinx.com 139
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=139

Chapter 8: Debugging the Serial I/O Design in Hardware
Set link to use PCS Loopback, and write to hardware
set_property LOOPBACK "Near-End PCS" $link0
commit_hw_sio $link0

Create, run, display and save scan
set scan0 [create_hw_sio_scan 2d_full_eye [get_hw_sio_rxs -of $link0]]
run_hw_sio_scan $scan0
display_hw_sio_scan $scan0
write_hw_sio_scan "scan0.csv" $scan0
Vivado Programming and Debugging www.xilinx.com 140
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=140

Appendix A

Device Configuration Bitstream Settings
This table describes all of the device configuration settings available for use with the
set_property <Bitstream Setting> <Value> [current_design] Vivado® tool
Tcl command.

Table A-1: Bitstream Settings

Settings Default
Value

Possible
Values Description

BITSTREAM.CONFIG.BPI_
1ST_READ_CYCLE

1 1, 2, 3, 4 Helps synchronize BPI configuration with the timing
of page mode operations in flash devices. It allows
you to set the cycle number for a valid read of the
first page. The BPI_page_size must be set to 4 or 8 for
this option to be available.

BITSTREAM.CONFIG.BPI_
PAGE_SIZE

1 1, 4, 8 For BPI configuration, this sub-option lets you
specify the page size which corresponds to the
number of reads required per page of flash memory.

BITSTREAM.CONFIG.BPI_
SYNC_MODE

Disable Disable,
Type1,
Type2

Sets the BPI synchronous configuration mode for
different types of BPI flash devices.
• Disable (the default) disables the synchronous

configuration mode.
• Type1 enables the synchronous configuration

mode and settings to support the Micron G18(F)
family.

• Type2 enables the synchronous configuration
mode and settings to support the Micron
(Numonyx) P30 family.

BITSTREAM.CONFIG.
CCLKPINa

Pullup Pullup,
Pullnone

Adds an internal pull-up to the Cclk pin. The Pullnone
setting disables the pullup.

BITSTREAM.CONFIG.
CONFIGFALLBACK

Disable Disable,
Enable

Enables or disables the loading of a default bitstream
when a configuration attempt fails.

BITSTREAM.CONFIG.
CONFIGRATE

3 3, 6, 9, 12,
16, 22, 26,
33, 40, 50,
66

Bitstream generation uses an internal oscillator to
generate the configuration clock, Cclk, when
configuring is in a master mode. Use this sub-option
to select the rate for Cclk.

BITSTREAM.CONFIG.
D00_MOSIa

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D00_MOSI pin. Select Pullnone to disable both the
pull-up resistor and the pull-down resistor on the
D00_MOSI pin. (UltraScale)
Vivado Programming and Debugging www.xilinx.com 141
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=141

Appendix A: Device Configuration Bitstream Settings
BITSTREAM.CONFIG.
D01_DINa

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D01_DIN pin. Select Pullnone to disable both the
pull-up resistor and the pull-down resistor on the
D01_DIN pin. (UltraScale)

BITSTREAM.CONFIG.
D02a

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D02 pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the D02 pin.
(UltraScale)

BITSTREAM.CONFIG.
D03a

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
D03 pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the D03 pin.
(UltraScale)

BITSTREAM.CONFIG.
DCIUPDATEMODE

AsRequired AsRequired,
Continuous,
Quiet

Controls how often the Digitally Controlled
Impedance circuit attempts to update the impedance
match for DCI IOSTANDARDs.

BITSTREAM.CONFIG.
DONEPINa

Pullup Pullup,
Pullnone

Adds an internal pull-up to the DONE pin. The
Pullnone setting disables the pullup. Use DonePin
only if you intend to connect an external pull-up
resistor to this pin. The internal pull-up resistor is
automatically connected if you do not use DonePin.

BITSTREAM.CONFIG.
EXTMASTERCCLK_EN

Disable Disable,
div-8, div-4,
div-2, div-1

Allows an external clock to be used as the
configuration clock for all master modes. The
external clock must be connected to the
dual-purpose USERCCLK pin.

BITSTREAM.CONFIG.
INITPINa

Pullup Pullup,
Pullnone

Specifies whether you want to add a Pullup resistor
to the INIT pin, or leave the INIT pin floating.

BITSTREAM.CONFIG.
INITSIGNALSERROR

Enable Enable,
Disable

When Enabled, the INIT_B pin asserts to '0' when a
configuration error is detected.

BITSTREAM.CONFIG.
M0PINa

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
M0 pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the M0 pin.

BITSTREAM.CONFIG.
M1PINa

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
M1 pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the M1 pin.

BITSTREAM.CONFIG.
M2PINa

Pullup Pullup,
Pulldown,
Pullnone

Adds an internal pull-up, pull-down, or neither to the
M2 pin. Select Pullnone to disable both the pull-up
resistor and the pull-down resistor on the M2 pin.

BITSTREAM.CONFIG.
NEXT_CONFIG_ADDR

none <string> Sets the starting address for the next configuration in
a MultiBoot set up, which is stored in the General1
and General2 registers.

BITSTREAM.CONFIG.
NEXT_CONFIG_REBOOT

Enable Enable,
Disable

When set to Disable the IPROG command is removed
from the .bit f ile.

Table A-1: Bitstream Settings (Cont’d)

Settings Default
Value

Possible
Values Description
Vivado Programming and Debugging www.xilinx.com 142
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=142

Appendix A: Device Configuration Bitstream Settings
BITSTREAM.CONFIG.
OVERTEMPPOWERDOWN

Disable Disable,
Enable

Enables the device to shut down when the System
Monitor detects a temperature beyond the
acceptable operational maximum. An external
circuitry set up for the System Monitor is required to
use this option. (7 Series, Zynq 7000)

BITSTREAM.CONFIG.
OVERTEMPSHUTDOWN

Disable Disable,
Enable

Enables the device to shut down when the System
Monitor detects a temperature beyond the
acceptable operational maximum. An external
circuitry set up for the System Monitor is required to
use this option. (UltraScale)

BITSTREAM.CONFIG.
PERSIST

No No, Yes Prohibits use of the SelectMAP mode pins for use as
user I/O. Refer to the user guide for a description of
SelectMAP mode and the associated pins. Persist is
needed for Readback and Partial Reconfiguration
using the SelectMAP configuration pins, and should
be used when either SelectMAP or Serial modes are
used. Only the SelectMAP pins are affected, but this
option should be used for access to config pins
(other than JTAG) after configuration.

BITSTREAM.CONFIG.
PROGPINa

Pullup Pullup,
Pullnone

Adds an internal pull-up to the PROGRAM_B pin. The
Pullnone setting disables the pullup. The pullup
affects the pin after configuration. (UltraScale)

BITSTREAM.CONFIG.
PUDC_B

Pullup Pullup,
Pulldown,
Pullnone

Pull-up During Configuration. (UltraScale)

BITSTREAM.CONFIG.
RDWR_B_FCS_B

Pullup Pullup,
Pulldown,
Pullnone

Support SPI x1/x2/x4 in bank-0. (UltraScale)

BITSTREAM.CONFIG.
REVISIONSELECT

00 00, 01, 10,
11

Specifies the internal value of the RS[1:0] settings in
the Warm Boot Start Address (WBSTAR) register for
the next warm boot.

BITSTREAM.CONFIG.
REVISIONSELECT_
TRISTATE

Enable Disable,
Enable

Specifies whether the RS[1:0] 3-state is enabled by
setting the option in the Warm Boot Start Address
(WBSTAR).
• RS[1:0] pins 3-state enable.
• 0: Enable RS 3-state (default)
• 1: Disable RS 3-state

BITSTREAM.CONFIG.
SELECTMAPABORT

Enable Enable,
Disable

Enables or disables the SelectMAP mode Abort
sequence. If disabled, an Abort sequence on the
device pins is ignored.

BITSTREAM.CONFIG.
SPI_32BIT_ADDR

No No, Yes Enables SPI 32-bit address style, which is required for
SPI devices with storage of 256 Mb and larger.

BITSTREAM.CONFIG.
SPI_BUSWIDTH

NONE NONE, 1, 2,
4

Sets the SPI bus to Dual (x2) or Quad (x4) mode for
Master SPI configuration from third party SPI flash
devices.

Table A-1: Bitstream Settings (Cont’d)

Settings Default
Value

Possible
Values Description
Vivado Programming and Debugging www.xilinx.com 143
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=143

Appendix A: Device Configuration Bitstream Settings
BITSTREAM.CONFIG.
SPI_FALL_EDGE

No No, Yes Sets the FPGA to use a falling edge clock for SPI data
capture. This improves timing margins and may allow
faster clock rates for configuration.

BITSTREAM.CONFIG.
TCKPINa

Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TCK
pin, the JTAG test clock. The Pullnone setting shows
that there is no connection to either the pull-up or
the pull-down.

BITSTREAM.CONFIG.
TDIPINa

Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDI pin,
the serial data input to all JTAG instructions and JTAG
registers. The Pullnone setting shows that there is no
connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG.
TDOPINa

Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, a pull-down, or neither to the TDO
pin, the serial data output for all JTAG instruction and
data registers. The Pullnone setting shows that there
is no connection to either the pull-up or the
pull-down.

BITSTREAM.CONFIG.
TIMER_CFG

none <8-digit
hex string>

Sets the value of the Watchdog Timer in
Configuration mode. This option cannot be used at
the same time as TIMER_USR.

BITSTREAM.CONFIG.
TIMER_USR

0x00000000 <8-digit
hex string>

Sets the value of the Watchdog Timer in User mode.
This option cannot be used at the same time as
TIMER_CFG.

BITSTREAM.CONFIG.
TMSPINa

Pullup Pullup,
Pulldown,
Pullnone

Adds a pull-up, pull-down, or neither to the TMS pin,
the mode input signal to the TAP controller. The TAP
controller provides the control logic for JTAG. The
Pullnone setting shows that there is no connection to
either the pull-up or the pull-down.

BITSTREAM.CONFIG.
UNUSEDPIN

Pulldown Pulldown,
Pullup,
Pullnone

Adds a pull-up, a pull-down, or neither to unused
SelectIO pins (IOBs). It has no effect on dedicated
configuration pins. The list of dedicated
configuration pins varies depending upon the
architecture. The Pullnone setting shows that there is
no connection to either the pull-up or the pull-down.

BITSTREAM.CONFIG.
USERID

0xFFFFFFFF <8-digit
hex string>

Used to identify implementation revisions. You can
enter up to an 8-digit hexadecimal string in the User
ID register.

BITSTREAM.CONFIG.
USR_ACCESS

None none,
<8-digit
hex string>,
TIMESTAMP

Writes an 8-digit hexadecimal string, or a timestamp
into the AXSS configuration register. The format of
the timestamp value is ddddd MMMM yyyyyy hhhhh
mmmmmm ssssss : day, month, year (year 2000 =
00000), hour, minute, seconds. The contents of this
register may be directly accessed by the FPGA fabric
via the USR_ACCESS primitive.

BITSTREAM.ENCRYPTION.
ENCRYPT

No No Yes Encrypts the bitstream.

Table A-1: Bitstream Settings (Cont’d)

Settings Default
Value

Possible
Values Description
Vivado Programming and Debugging www.xilinx.com 144
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=144

Appendix A: Device Configuration Bitstream Settings
BITSTREAM.ENCRYPTION.
ENCRYPTKEYSELECT

bbram bbram,
efuse

Determines the location of the AES encryption key to
be used, either from the battery-backed RAM
(BBRAM) or the eFUSE register.
Note: This property is only available when the
Encrypt option is set to True.

BITSTREAM.ENCRYPTION.
HKEY

Pick Pick, <hex
string>

HKey sets the HMAC authentication key for bitstream
encryption. 7 series devices have an on-chip
bitstream-keyed Hash Message Authentication Code
(HMAC) algorithm implemented in hardware to
provide additional security beyond AES decryption
alone. These devices require both AES and HMAC
keys to load, modify, intercept, or clone the
bitstream.
The pick setting tells the bitstream generator to
select a random number for the value. To use this
option, you must f irst set Encrypt to Yes

BITSTREAM.ENCRYPTION.
KEY0

Pick Pick, <hex
string>

Key0 sets the AES encryption key for bitstream
encryption. The pick setting tells the bitstream
generator to select a random number for the value.
To use this option, you must f irst set Encrypt to Yes.

BITSTREAM.ENCRYPTION.
KEYFILE

none <string> Specifies the name of the input encryption f ile (with
a .nky f ile extension). To use this option, you must
first set Encrypt to Yes.

BITSTREAM.ENCRYPTION.
STARTCBC

Pick Pick,
<32-bit hex
string>

Sets the starting cipher block chaining (CBC) value.
The pick setting enables selection of a random
number for the value.

BITSTREAM.GENERAL.
COMPRESS

False True, False Uses the multiple frame write feature in the bitstream
to reduce the size of the bitstream, not just the
Bitstream (.bit) f ile. Using Compress does not
guarantee that the size of the bitstream shrinks.

BITSTREAM.GENERAL.
CRC

Enable Enable,
Disable

Controls the generation of a Cyclic Redundancy
Check (CRC) value in the bitstream. When enabled, a
unique CRC value is calculated based on bitstream
contents. If the calculated CRC value does not match
the CRC value in the bitstream, the device will fail to
configure. When CRC is disabled a constant value is
inserted in the bitstream in place of the CRC, and the
device does not calculate a CRC.

Table A-1: Bitstream Settings (Cont’d)

Settings Default
Value

Possible
Values Description
Vivado Programming and Debugging www.xilinx.com 145
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=145

Appendix A: Device Configuration Bitstream Settings
BITSTREAM.GENERAL.
DEBUGBITSTREAM

No No, Yes Lets you create a debug bitstream. A debug bitstream
is significantly larger than a standard bitstream.
DebugBitstream can be used only for master and
slave serial configurations. DebugBitstream is not
valid for Boundary Scan or Slave Parallel/SelectMAP.
In addition to a standard bitstream, a debug
bitstream offers the following features:
• Writes 32 0s to the LOUT register after the

synchronization word.
• Loads each frame individually.
• Performs a Cyclic Redundancy Check (CRC) after

each frame.
• Writes the frame address to the LOUT register after

each frame.

BITSTREAM.GENERAL.
DISABLE_JTAG

No No, Yes Disables communication to the Boundary Scan
(BSCAN) block via JTAG after configuration.

BITSTREAM.GENERAL.
JTAG_SYSMON

Enable Enable,
Disable,
StatusOnly

Enables or disables the JTAG connection to SYSMON.
(UltraScale)

BITSTREAM.GENERAL.
JTAG_XADC

Enable Enable,
Disable,
StatusOnly

Enables or disables the JTAG connection to the XADC.

BITSTREAM.GENERAL.
SYSMONPOWERDOWN

Disable Disable,
Enable

Enables the device to power down SYSMON to save
power. Only recommended for permanently
powering down SYSMON.(UltraScale)

BITSTREAM.GENERAL.
XADCENHANCEDLINEARITY

Off Off, On Disables some built-in digital calibration features
that make INL look worse than the actual analog
performance.

BITSTREAM.READBACK.
ACTIVERECONFIG

No No, Yes Prevents the assertions of GHIGH and GSR during
configuration. This is required for the active partial
reconfiguration enhancement features.

BITSTREAM.READBACK.
ICAP_SELECT

Auto Auto, Top,
Bottom

Selects between the top and bottom ICAP ports.

BITSTREAM.READBACK.
READBACK

False True, False Lets you perform the Readback function by creating
the necessary readback files.

BITSTREAM.READBACK.
SECURITY

None None,
Level1,
Level2

Specifies whether to disable Readback and
Reconfiguration.
Note: Specifying Security Level1 disables Readback.
Specifying Security Level2 disables Readback and
Reconfiguration.

BITSTREAM.READBACK.
XADCPARTIALRECONFIG

Disable Disable,
Enable

When Disabled XADC can work continuously during
Partial Reconfiguration. When Enabled XADC works
in Safe mode during partial reconfiguration.

Table A-1: Bitstream Settings (Cont’d)

Settings Default
Value

Possible
Values Description
Vivado Programming and Debugging www.xilinx.com 146
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=146

Appendix A: Device Configuration Bitstream Settings
.

BITSTREAM.STARTUP.
DONEPIPE

Yes Yes, No Tells the FPGA device to wait on the CFG_DONE
(DONE) pin to go High and then wait for the f irst
clock edge before moving to the Done state.

BITSTREAM.STARTUP.
DONE_CYCLE

4 4, 1, 2, 3, 5,
6, Keep

Selects the Startup phase that activates the FPGA
Done signal. Done is delayed when DonePipe=Yes.

BITSTREAM.STARTUP.
GTS_CYCLE

5 5, 1, 2, 3, 4,
6, Done,
Keep

Selects the Startup phase that releases the internal
3-state control to the I/O buffers.

BITSTREAM.STARTUP.
GWE_CYCLE

6 6, 1, 2, 3, 4,
5, Done,
Keep

Selects the Startup phase that asserts the internal
write enable to flip-flops, LUT RAMs, and shift
registers. GWE_cycle also enables the BRAMS. Before
the Startup phase, both block RAMs writing and
reading are disabled.

BITSTREAM.STARTUP.
LCK_CYCLE

NoWait NoWait, 0,
1, 2, 3, 4, 5,
6

Selects the Startup phase to wait until
DLLs/DCMs/PLLs lock. If you select NoWait, the
Startup sequence does not wait for DLLs/DCMs/PLLs
to lock.

BITSTREAM.STARTUP.
MATCH_CYCLE

Auto Auto,
NoWait, 0,
1, 2, 3, 4, 5,
6

Specifies a stall in the Startup cycle until digitally
controlled impedance (DCI) match signals are
asserted. DCI matching does not begin on the
Match_cycle. The Startup sequence waits in this cycle
until DCI has matched. Given that there are a number
of variables in determining how long it takes DCI to
match, the number of CCLK cycles required to
complete the Startup sequence may vary in any given
system. Ideally, the configuration solution should
continue driving CCLK until DONE goes high.
Note: When the Auto setting is specified,
write_bitstream searches the design for any DCI I/O
standards. If DCI standards exist, write_bitstream
uses BITSTREAM.STARTUP.MATCH_CYCLE=2.
Otherwise, write_bitstream uses
BITSTREAM.STARTUP.MATCH_CYCLE=NoWait.

BITSTREAM.STARTUP.
STARTUPCLK

Cclk Cclk,
UserClk,
JtagClk

The StartupClk sequence following the configuration
of a device can be synchronized to either Cclk, a User
Clock, or the JTAG Clock. The default is Cclk.
• Cclk lets you synchronize to an internal clock

provided in the FPGA device.
• UserClk lets you synchronize to a user-defined

signal connected to the CLK pin of the STARTUP
symbol.

• JtagClk lets you synchronize to the clock provided
by JTAG. This clock sequences the TAP controller
which provides the control logic for JTAG.

a. For the dedicated configuration pins Xilinx recommends that you use the bitstream setting default.

Table A-1: Bitstream Settings (Cont’d)

Settings Default
Value

Possible
Values Description
Vivado Programming and Debugging www.xilinx.com 147
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=147

Appendix B

Trigger State Machine Language
Description

The trigger state machine language is used to describe complex trigger conditions that map
to the advanced trigger logic of the ILA debug core. The trigger state machine has the
following features:

• Up to 16 states.

• One-, two-, and three-way conditional branching used for complex state transitions.

• Four built-in 16-bit counters used to count events, implement timers, etc.

• Four built-in flags used for monitoring trigger state machine execution status.

• Trigger action.

States
Each state machine program can have up to 16 states declared. Each state is composed of
a state declaration and a body:

state <state_name>:
<state_body>

Goto Action
The goto action is used to transition between states. Here is an example of using the goto
action to transition from one state to another before triggering:

state my_state_0:
goto my_state_1;

state my_state_1:
trigger;
Vivado Programming and Debugging www.xilinx.com 148
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=148

Appendix B: Trigger State Machine Language Description
Conditional Branching
The trigger state machine language supports one-, two-, and three-way conditional
branching per state.

• One-way branching involves using goto actions without any if/elseif/else/endif
constructs:

state my_state_0:
goto my_state_1;

• Two-way conditional branching uses goto actions with if/else/endif constructs:

state my_state_0:
 if (<condition1>) then
 goto my_state_1;
 else
 goto my_state_0;
 endif

• Three-way conditional branching uses goto actions with if/else/elseif/endif
constructs:

state my_state_0:
 if (<condition1>) then
 goto my_state_1;
 elseif (<condition2>) then
 goto my_state_2;
 else
 goto my_state_0;
 endif

For more information on how to construct conditional statements represented above with
<condition1> and <condition2>, refer to the section called Conditional Statements,
page 150

Counters
The four built-in 16-bit counters have f ixed names and are called $counter0, $counter1,
$counter2, $counter3. The counters can be reset, incremented, and used in conditional
statements.

• To reset a counter, use the reset_counter action:

state my_state_0:
reset_counter $counter0;

goto my_state_1;
Vivado Programming and Debugging www.xilinx.com 149
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=149

Appendix B: Trigger State Machine Language Description
• To increment a counter, use the increment_counter action:

state my_state_0:
increment_counter $counter3;

goto my_state_1;

For more information on how to use counters in conditional statements, refer to Conditional
Statements, page 150.

Flags
Flags can be used to monitor progress of the trigger state machine program as it executes.
The four built-in flags have f ixed names and are called $flag0, $flag1, $flag2, and
$flag3. The flags can be set and cleared.

• To set a flag, use the set_flag action:

state my_state_0:
set_flag $flag0;

goto my_state_1;

• To clear a flag, use the clear_flag action:

state my_state_0:
clear_flag $flag2;

goto my_state_1;

Conditional Statements

Debug Probe Conditions
Debug probe conditions can be used in two-way and three-way branching conditional
statements. Each debug probe condition consumes one trigger comparator on the PROBE
port of the ILA to which the debug probe is attached.

IMPORTANT: Each PROBE port can have from 1 to 4 trigger comparators as configured at compile time.
This means that you can only use a particular debug probe in a debug probe condition up from 1 to 4
times in the entire trigger state machine program, depending on the number of comparators on the
PROBE port. Also, if the debug probe shares a PROBE port of the ILA core with other debug probes, each
debug probe condition will count towards the use of one PROBE comparator.
Vivado Programming and Debugging www.xilinx.com 150
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=150

Appendix B: Trigger State Machine Language Description
The debug probe conditions consist of a comparison operator and a value. The valid debug
probe condition comparison operators are:

• == (equals)

• != (not equals)

• > (greater than)

• < (less than)

• >= (greater than or equal to)

• <= (less than or equal to)

Valid values are of the form:

<bit_width>'<radix><value>

Where:

• <bit width> is the width of the probe (in bits)

• <radix> is one of

° b (binary)

° h (hexadecimal)

° u (unsigned decimal)

Examples of valid debug probe condition values are:

• 1-bit binary value of 0

1'b0

• 12-bit hex value of 7A

12'h07A

• 9-bit integer value of 123

9'u123

Examples of debug probe condition statements are:

• A single-bit debug probe called abc equals 0

if (abc == 1'b0) then

• A 23-bit debug probe xyz equals 456

if (xyz >= 23'u456) then

• A 23-bit debug probe klm does not equal hex A5

if (klm != 23'h0000A5) then
Vivado Programming and Debugging www.xilinx.com 151
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=151

Appendix B: Trigger State Machine Language Description
Examples of multiple debug probe condition statements are:

• Two debug probe comparisons combined with an "OR" function:

if ((xyz >= 23'u456) || (abc == 1'b0)) then

• Two debug probe comparisons combined with an "AND" function:

if ((xyz >= 23'u456) && (abc == 1'b0)) then

• Three debug probe comparisons combined with an "OR" function:

if ((xyz >= 23'u456) || (abc == 1'b0) || (klm != 23'h0000A5)) then

• Three debug probe comparisons combined with an "AND" function:

if ((xyz >= 23'u456) && (abc == 1'b0) && (klm != 23'h0000A5)) then

Counter Conditions
Counter conditions can be used in two-way and three-way branching conditional
statements. Each counter condition consumes one counter comparator.

IMPORTANT: Each counter has only one counter comparator. This means that you can only use a
particular counter in a counter condition once in the entire trigger state machine program.

The probe port conditions consist of a comparison operator and a value. The valid probe
condition comparison operators are:

• == (equals)

• != (not equals)

IMPORTANT: Each counter is always 16 bits wide.

Examples of valid counter condition values are:

• 16-bit binary value of 0

16'b0000_0000_0000_0000
16'b0000000000000000

• 16-bit hex value of 7A

16'h007A

• 16-bit integer value of 123

16'u123
Vivado Programming and Debugging www.xilinx.com 152
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=152

Appendix B: Trigger State Machine Language Description
Examples of counter condition statements:

• Counter $counter0 equals binary 0

($counter0 == 16'b0000000000000000)

• Counter $counter2 does not equal decimal 23

($counter2 != 16'u23)

Combined Debug Probe and Counter Conditions

Debug probe conditions and counter conditions can be combined together to form a single
condition using the following rules:

• All debug probe comparisons must be combined together using the same "||" (OR) or
"&&" (AND) operators.

• The combined debug probe condition can be combined with the counter condition
using either the "||" (OR) or "&&" (AND) operators, regardless of the operator used to
combine the debug probe comparisons together.

Examples of multiple debug probe and counter condition statements are:

• Two debug probe comparisons combined with an "OR" function, then combined with
counter conditional using "AND" function:

if (((xyz >= 23'u456) || (abc == 1'b0)) && ($counter0 == 16'u0023)) then

• Two debug probe comparisons combined with an "AND" function, then combined with
counter conditional using "OR" function:

if (((xyz >= 23'u456) && (abc == 1'b0)) || ($counter0 == 16'u0023)) then

• Three debug probe comparisons combined with an "OR" function, then combined with
counter conditional using "AND" function:

if (((xyz >= 23'u456) || (abc == 1'b0) || (klm != 23'h0000A5)) && ($counter0 ==
16'u0023)) then

• Three debug probe comparisons combined with an "AND" function, then combined
with counter conditional using "OR" function:

if (((xyz >= 23'u456) && (abc == 1'b0) && (klm != 23'h0000A5)) || ($counter0 ==
16'u0023)) then
Vivado Programming and Debugging www.xilinx.com 153
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=153

Appendix B: Trigger State Machine Language Description
Trigger State Machine Language Grammar

NOTES:

• The language is case insensitive

• Comment character is hash '#' character. Anything including and after a # character is
ignored.

• 'THING' = THING is a terminal

• {<thing>} = 0 or more thing

• [<thing>] = 0 or 1 thing

<program> ::= <state_list>

<state_list> ::= <state_list> <state> | <state>

<state> ::= 'STATE' <state_label> ':' <if_condition> | <action_block>

<action_block> ::= <action_list> 'GOTO' <state_label> ';'
| <action_list> 'TRIGGER' ';'
| 'GOTO' <state_label> ';'
| 'TRIGGER' ';'

<action_list> ::= <action_statement> | <action_list> <action_statement>

<action_statement> ::= 'SET_FLAG' <flag_name> ';'
| 'CLEAR_FLAG' <flag_name> ';'
| 'INCREMENT_COUNTER' <counter_name> ';'
| 'RESET_COUNTER' <counter_name> ';'

<if_condition> ::= 'IF' '(' <condition> ')' 'THEN' <actionblock>
 ['ELSEIF' '(' <condition> ')' 'THEN' <actionblock>]
 'ELSE' <actionblock>
 'ENDIF'

<condition> ::= <probe_match_list>
| <counter_match>
| <probe_counter_match>

<probe_counter_match> ::= '(' <probe_counter_match> ')'
| <probe_match_list> <boolean_logic_op> <counter_match>
| <counter_match> <boolean_logic_op> <probe_match_list>

<probe_match_list> ::= '(' <probe_match> ')'
| <probe_match>

<probe_match> ::= <probe_match_list> <boolean_logic_op> <probe_match_list>
| <probe_name> <compare_op> <constant>
| <constant> <compare_op> <probe_name>

<counter_match> ::= '(' <counter_match> ')'
| <counter_name> <compare_op> <constant>
| <constant> <compare_op> <counter_name>
Vivado Programming and Debugging www.xilinx.com 154
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=154

Appendix B: Trigger State Machine Language Description

<constant> ::= <integer_constant>
| <hex_constant>
| <binary_constant>

<compare_op> ::= '==' | '!=' | '>' | '>=' | '<' | '<='

<boolean_logic_op> ::= '&&' | '||'

--- The following are in regular expression format to simplify expressions:
--- [A-Z0-9] means match any single character in AB...Z,0..9
--- [AB]+ means match [AB] one or more times like A, AB, ABAB, AAA, etc
--- [AB]* means match [AB] zero or more times
<probe_name> ::= [A-Z_\[\]<>/][A-Z_0-9\[\]<>/]+
<state_label> ::= [A-Z_][A-Z_0-9]+
<flag_name> ::= \$FLAG[0-3]
<counter_name> ::= \$COUNTER[0-3]
<hex_constant> ::= <integer>*'h<hex_digit>+
<binary_constant> ::= <integer>*'b<binary_digit>+
<integer_constant> ::= <integer>*'u<integer_digit>+
<integer> ::= <digit>+
<hex_digit> ::= [0-9ABCDEFBN_]
<binary_digit> ::= [01XRFBN_]
<digit> ::= [0-9]
Vivado Programming and Debugging www.xilinx.com 155
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=155

Appendix C

Configuration Memory Support
This section covers the various Flash device memories that are supported by Vivado®
software. Use this section as a guide to select the appropriate configuration memory device
for your application by Xilinx device, interface, manufacturer, Flash device, density, and data
width.

Artix®-7 Configuration Memory Devices
The Flash devices supported for configuration of Artix-7® devices that can be erased, blank
checked, programmed, and verif ied by Vivado software are shown in Table C-1.

Table C-1: Supported Flash memory devices for Artix-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)

BPI Spansion S29GL128S 128 x16

BPI Spansion S29GL256S 256 x16

BPI Spansion S29GL512S 512 x16

BPI Spansion S29GL01GS 1024 x16

BPI Micron 28F640P30T 64 x16

BPI Micron 28F640P30B 64 x16

BPI Micron 28F128P30T 128 x16

BPI Micron 28F128P30B 128 x16

BPI Micron 28F256P30T 256 x16

BPI Micron 28F256P30B 256 x16

BPI Micron 28F512P30T 512 x16

BPI Micron 28F512P30E 512 x16

BPI Micron 28F512P30B 512 x16

BPI Micron 28F00AP30T 1024 x16

BPI Micron 28F00AP30E 1024 x16

BPI Micron 28F00AP30B 1024 x16

BPI Micron 28F00BP30Ea 2048 x16

BPI Micron 28F128G18F 128 x16
Vivado Programming and Debugging www.xilinx.com 156
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=156

Appendix C: Configuration Memory Support
BPI Micron MT28GU256AAX1E
(28F256G18F)

256 x16

BPI Micron MT28GU512AAX1E
(28F512G18F)

512 x16

BPI Micron MT28GU01GAAX1E
(28F00AG18F)

1024 x16

BPI Micron 28F064M29EWH 64 x8, x16

BPI Micron 28F064M29EWL 64 x8, x16

BPI Micron 28F064M29EWT 64 x8, x16

BPI Micron 28F064M29EWB 64 x8, x16

BPI Micron 28F128M29EW 128 x8, x16

BPI Micron 28F256M29EW 256 x8, x16

BPI Micron 28F512M29EW 512 x8, x16

BPI Micron 28F00AM29EW 1024 x8, x16

BPI Micron 28F00AM29EW 1048 x8, x16

SPI Spansion S25FL032P 32 x8, x16

SPI Spansion S25FL132K 32 x1,x2,x4

SPI Spansion S25FL064P 64 x1, x2, x4

SPI Spansion S25FL164K 64 x1, x2, x4

SPI Spansion S25FL128SXXX0 128 x1, x2, x4

SPI Spansion S25FL128SXXX1 128 x1, x2, x4

SPI Spansion S25FL256SXXX0 256 x1, x2, x4

SPI Spansion S25FL256SXXX1 256 x1, x2, x4

SPI Spansion S25FL512S 512 x1, x2, x4

SPI Micron MT25QU512 512 x1, x2, x4

SPI Micron MT25QL512 512 x1, x2, x4

SPI Micron N25Q128-3.3V 128 x1, x2, x4

SPI Micron N25Q128-1.8V 128 x1, x2, x4

SPI Micron N25Q256-3.3V 256 x1, x2, x4

SPI Micron N25Q256-1.8V 256 x1, x2, x4

SPI Micron N25Q32-3.3V 32 x1, x2, x4

SPI Micron N25Q32-1.8V 32 x1, x2, x4

Table C-1: Supported Flash memory devices for Artix-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 157
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=157

Appendix C: Configuration Memory Support
Kintex®-7 Configuration Memory Devices
The Flash devices supported for configuration of Kintex-7® devices that can be erased,
blank checked, programmed, and verif ied by Vivado® software are shown in Table C-2.

SPI Micron N25Q64-3.3V 64 x1, x2, x4

SPI Micron N25Q64-1.8V 64 x1, x2, x4

a. For the 28F00BP30E, only lower 1Gb of device is programmable. Select 28F00AP30E to program.

Table C-2: Supported Flash memory devices for Kintex-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)

BPI Spansion S29GL128P 128 x8, x16

BPI Spansion S29GL256P 256 x8, x16

BPI Spansion S29GL512P 512 x8, x16

BPI Spansion S29GL01GP 1024 x8, x16

BPI Spansion S29GL128S 128 x16

BPI Spansion S29GL256S 256 x16

BPI Spansion S29GL512S 512 x16

BPI Spansion S29GL01GS 1024 x16

BPI Micron 28F640P30T 64 x16

BPI Micron 28F640P30B 64 x16

BPI Micron 28F128P30T 128 x16

BPI Micron 28F128P30B 128 x16

BPI Micron 28F256P30T 256 x16

BPI Micron 28F256P30B 256 x16

BPI Micron 28F512P30T 512 x16

BPI Micron 28F512P30E 512 x16

BPI Micron 28F512P30B 512 x16

BPI Micron 28F00AP30T 1024 x16

BPI Micron 28F00AP30E 1024 x16

BPI Micron 28F00AP30B 1024 x16

BPI Micron 28F00BP30Ea 2048 x16

BPI Micron 28F640P33T 64 x16

Table C-1: Supported Flash memory devices for Artix-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 158
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=158

Appendix C: Configuration Memory Support
BPI Micron 28F640P33B 64 x16

BPI Micron 28F128P33T 128 x16

BPI Micron 28F128P33B 128 x16

BPI Micron 28F256P33T 256 x16

BPI Micron 28F256P33B 256 x16

BPI Micron 28F512P33T 512 x16

BPI Micron 28F512P33E 512 x16

BPI Micron 28F512P33B 512 x16

BPI Micron 28F00AP33T 1024 x16

BPI Micron 28F00AP33E 1024 x16

BPI Micron 28F00AP33B 1024 x16

BPI Micron 28F128G18F 128 x16

BPI Micron MT28GU256AAX1E
(28F256G18F)

256 x16

BPI Micron MT28GU512AAX1E
(28F512G18F)

512 x16

BPI Micron MT28GU01GAAX1E
(28F00AG18F)

1024 x16

BPI Micron 28F064M29EWH 64 x8, x16

BPI Micron 28F064M29EWL 64 x8, x16

BPI Micron 28F064M29EWT 64 x8, x16

BPI Micron 28F064M29EWB 64 x8, x16

BPI Micron 28F128M29EW 128 x8, x16

BPI Micron 28F256M29EW 256 x8, x16

BPI Micron 28F512M29EW 512 x8, x16

BPI Micron 28F00AM29EW 1024 x8, x16

BPI Micron 28F00BM29EW 1048 x8, x16

SPI Spansion S25FL032P 32 x1, x2, x4

SPI Spansion S25FL064P 64 x1, x2, x4

SPI Spansion S25FL164K 64 x1, x2, x4

SPI Spansion S25FL128SXXX0 128 x1, x2, x4

SPI Spansion S25FL128SXXX1 128 x1, x2, x4

SPI Spansion S25FL256SXXX0 256 x1, x2, x4

SPI Spansion S25FL256SXXX1 256 x1, x2, x4

SPI Spansion S25FL512S 512 x1, x2, x4

Table C-2: Supported Flash memory devices for Kintex-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 159
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=159

Appendix C: Configuration Memory Support
Virtex®-7 Configuration Memory Devices
The Flash devices supported for configuration of Virtex®-7 devices that can be erased, blank checked,
programmed, and verified by Vivado software are shown in Table C-3.

SPI Micron MT25QL512 512 x1, x2, x4

SPI Micron MT25QU512 512 x1, x2, x4

SPI Micron N25Q128-3.3V 128 x1, x2, x4

SPI Micron N25Q128-1.8V 128 x1, x2, x4

SPI Micron N25Q256-3.3V 256 x1, x2, x4

SPI Micron N25Q256-1.8V 256 x1, x2, x4

SPI Micron N25Q32-3.3V 32 x1, x2, x4

SPI Micron N25Q32-1.8V 32 x1, x2, x4

SPI Micron N25Q64-3.3V 64 x1, x2, x4

SPI Micron N25Q64-1.8V 64 x1, x2, x4

a. For the 28F00BP30E, only lower 1Gb of device is programmable. Select 28F00AP30E to program.

Table C-3: Supported Flash memory devices for Virtex-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)

BPI Spansion S29GL256P 256 x8, x16

BPI Spansion S29GL512P 512 x8, x16

BPI Spansion S29GL01GP 1024 x8, x16

BPI Spansion S29GL256S 256 x16

BPI Spansion S29GL512S 512 x16

BPI Spansion S29GL01GS 1024 x16

BPI Micron 28F256P30T 256 x16

BPI Micron 28F256P30B 256 x16

BPI Micron 28F512P30T 512 x16

BPI Micron 28F512P30E 512 x16

BPI Micron 28F512P30B 512 x16

BPI Micron 28F00AP30T 1024 x16

BPI Micron 28F00AP30E 1024 x16

BPI Micron 28F00AP30B 1024 x16

Table C-2: Supported Flash memory devices for Kintex-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 160
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=160

Appendix C: Configuration Memory Support
BPI Micron 28F00BP30Ea 2048 x16

BPI Micron 28F128G18F 128 x16

BPI Micron MT28GU256AAX1E
(28F256G18F)

256 x16

BPI Micron MT28GU512AAX1E
(28F512G18F)

512 x16

BPI Micron MT28GU01GAAX1E
(28F00AG18F)

1024 x16

BPI Micron 28F256M29EW 256 x8, x16

BPI Micron 28F512M29EW 512 x8, x16

BPI Micron 28F00AM29EW 1024 x8, x16

BPI Micron 28F00BM29EW 2048 x8, x16

SPI Spansion S25FL256SXXX0 256 x1, x2, x4

SPI Spansion S25FL256SXXX1 256 x1, x2, x4

SPI Spansion S25FL512S 512 x1, x2, x4

SPI Micron MT25QU512 512 x1, x2, x4

SPI Micron N25Q256-1.8V 256 x1, x2, x4

SPI Micron N25Q32-1.8V 32 x1, x2, x4

SPI Micron N25Q64-1.8V 64 x1, x2, x4

a. For the 28F00BP30E, only lower 1Gb of device is programmable. Select 28F00AP30E to
program.

Table C-3: Supported Flash memory devices for Virtex-7 device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 161
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=161

Appendix C: Configuration Memory Support
Kintex® UltraScale™ Configuration Memory Devices
The Flash devices supported for configuration of Kintex® UltraScale™ devices that can be
erased, blank checked, programmed, and verif ied by Vivado software are shown in
Table C-4.

Table C-4: Supported Flash memory devices for Kintex UltraScale device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)

BPI Spansion S29GL128P 128 x8, x16

BPI Spansion S29GL256P 256 x8, x16

BPI Spansion S29GL512P 512 x8, x16

BPI Spansion S29GL01GP 1024 x8, x16

BPI Spansion S29GL128S 128 x16

BPI Spansion S29GL256S 256 x16

BPI Spansion S29GL512S 512 x16

BPI Spansion S29GL01GS 1024 x16

BPI Micron 28F128P30T 128 x16

BPI Micron 28F128P30B 128 x16

BPI Micron 28F256P30T 256 x16

BPI Micron 28F256P30B 256 x16

BPI Micron 28F512P30T 512 x16

BPI Micron 28F512P30E 512 x16

BPI Micron 28F512P30B 512 x16

BPI Micron 28F00AP30T 1024 x16

BPI Micron 28F00AP30E 1024 x16

BPI Micron 28F00AP30B 1024 x16

BPI Micron 28F00BP30Ea 2048 x16

BPI Micron 28F128P33T 128 x16

BPI Micron 28F128P33B 128 x16

BPI Micron 28F256P33T 256 x16

BPI Micron 28F256P33B 256 x16

BPI Micron 28F512P33T 512 x16

BPI Micron 28F512P33E 512 x16

BPI Micron 28F512P33B 512 x16

BPI Micron 28F00AP33T 1024 x16

BPI Micron 28F00AP33E 1024 x16
Vivado Programming and Debugging www.xilinx.com 162
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=162

Appendix C: Configuration Memory Support
BPI Micron 28F00AP33B 1024 x16

BPI Micron MT28GU256AAX1E
(28F256G18F)

256 x16

BPI Micron MT28GU512AAX1E
(28F512G18F)

512 x16

BPI Micron MT28GU01GAAX1E
(28F00AG18F)

1024 x16

BPI Micron 28F128M29EW 128 x8, x16

BPI Micron 28F256M29EW 256 x8, x16

BPI Micron 28F512M29EW 512 x8, x16

BPI Micron 28F00AM29EW 1024 x8, x16

BPI Micron 28F00BM29EW 2048 x8, x16

SPI Spansion S25FL128SXXX0 128 x1, x2, x4

SPI Spansion S25FL128SXXX1 128 x1, x2, x4

SPI Spansion S25FL256SXXX0 256 x1, x2, x4

SPI Spansion S25FL256SXXX1 256 x1, x2, x4

SPI Spansion S25FL512S 512 x1, x2, x4

SPI Spansion MT25QL512 512 x1, x2, x4, x8

SPI Micron MT25QU512 512 x1, x2, x4

SPI Micron N25Q128-1.8V 128 x1, x2, x4, x8

SPI Micron N25Q256-1.8V 256 x1, x2, x4, x8

SPI Micron N25Q256-1.8V 256 x1, x2, x4

a. For the 28F00BP30E, only lower 1Gb of device is programmable. Select 28F00AP30E to program.

Table C-4: Supported Flash memory devices for Kintex UltraScale device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 163
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=163

Appendix C: Configuration Memory Support
Virtex® UltraScale™ Configuration Memory Devices
The Flash devices supported for configuration of Virtex® UltraScale™ devices that can be
erased, blank checked, programmed, and verif ied by Vivado software are shown in
Table C-5.

Table C-5: Supported Flash memory devices for Virtex UltraScale device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)

BPI Spansion S29GL256P 256 x8, x16

BPI Spansion S29GL512P 512 x8, x16

BPI Spansion S29GL01GP 1024 x8, x16

BPI Spansion S29GL256S 256 x16

BPI Spansion S29GL512S 512 x16

BPI Spansion S29GL01GS 1024 x16

BPI Micron 28F256P30T 256 x16

BPI Micron 28F256P30B 256 x16

BPI Micron 28F512P30T 512 x16

BPI Micron 28F512P30E 512 x16

BPI Micron 28F512P30B 512 x16

BPI Micron 28F00AP30T 1024 x16

BPI Micron 28F00AP30E 1024 x16

BPI Micron 28F00AP30B 1024 x16

BPI Micron 28F00BP30Ea 2048 x16

BPI Micron 28F256P33T 256 x16

BPI Micron 28F256P33B 256 x16

BPI Micron 28F512P33T 512 x16

BPI Micron 28F512P33E 512 x16

BPI Micron 28F512P33B 512 x16

BPI Micron 28F00AP33T 1024 x16

BPI Micron 28F00AP33E 1024 x16

BPI Micron 28F00AP33B 1024 x16

BPI Micron MT28GU256AAX1E
(28F256G18F)

256 x16

BPI Micron MT28GU512AAX1E
(28F512G18F)

512 x16

BPI Micron MT28GU01GAAX1E
(28F00AG18F)

1024 x16
Vivado Programming and Debugging www.xilinx.com 164
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=164

Appendix C: Configuration Memory Support
BPI Micron 28F128M29EW 128 x8, x16

BPI Micron 28F256M29EW 256 x8, x16

BPI Micron 28F512M29EW 512 x8, x16

BPI Micron 28F00AM29EW 1024 x8, x16

BPI Micron 28F00BM29EW 2048 x8, x16

SPI Spansion S25FL128SXXX0 128 x1, x2, x4

SPI Spansion S25FL128SXXX1 128 x1, x2, x4

SPI Spansion S25FL256SXXX0 256 x1, x2, x4

SPI Spansion S25FL256SXXX1 256 x1, x2, x4

SPI Spansion S25FL512S 512 x1, x2, x4

SPI Spansion MT25QL512 512 x1, x2, x4, x8

SPI Micron MT25QU512 512 x1, x2, x4

SPI Micron N25Q128-1.8V 128 x1, x2, x4, x8

SPI Micron N25Q256-1.8V 256 x1, x2, x4, x8

SPI Micron N25Q256-1.8V 256 x1, x2, x4

a. For the 28F00BP30E, only lower 1Gb of device is programmable. Select 28F00AP30E to program.

Table C-5: Supported Flash memory devices for Virtex UltraScale device configuration

Interface Manufacturer Device (Alias) Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 165
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=165

Appendix C: Configuration Memory Support
Zynq®-7000 Configuration Memory Devices
The Flash devices supported for configuration of Zynq®-7000 devices that can be erased,
blank checked, programmed, and verif ied by Vivado software are shown in Table C-6.

Table C-6: Supported Flash memory devices for Zynq-7000 device configuration

Interface Manufacturer Device Density
(Mbits)

Data Widths
(bits)

NOR Micron 28F032M29EWT 32 x8

NOR Micron 28F064M29EWT 64 x8

NOR Micron 28F128M29EWH 128 x8

NOR Micron 28F256M29EWH 256 x8

NOR Micron 28F512M29EWH 512 x8

NAND Micron MT29F2G08AB 2048 x8

NAND Micron MT29F2G16AB 2048 x16

QSPI Micron N25Q64 64 x4 (single),
x8 (dual parallel)

QSPI Micron N25Q128A 128 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Micron N25Q128 128 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Micron N25Q256 256 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Micron N25Q512 512 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Micron N25Q00A 1024 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Spansion S25FL129P 128 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Spansion S25FL128S-3.3V 128 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Spansion S25FL128S-1.8V 128 x4 (single),
x4 (dual stacked),
x8 (dual parallel)
Vivado Programming and Debugging www.xilinx.com 166
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=166

Appendix C: Configuration Memory Support
QSPI Spansion S25FL256S-3.3V 256 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Spansion S25FL256S-1.8V 256 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Spansion S25FL512S 512 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

QSPI Spansion S70FL01GS_00 1024 x4 (dual stacked)

QSPI Winbond W25Q128 128 x4 (single),
x4 (dual stacked),
x8 (dual parallel)

Table C-6: Supported Flash memory devices for Zynq-7000 device configuration

Interface Manufacturer Device Density
(Mbits)

Data Widths
(bits)
Vivado Programming and Debugging www.xilinx.com 167
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=167

Appendix D

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References
These documents provide supplemental material useful with this guide:

Vivado® Design Suite Documentation

1. Vivado Design Suite User Guide: Logic Simulation (UG937)

2. Vivado Design Suite User Guide: Synthesis (UG901)

3. Vivado Design Suite User Guide: Implementation (UG904)

4. Vivado Design Suite: Release Notes, Installation and Licensing (UG973)

5. Vivado Design Suite User Guide: Design Flows Overview (UG892)

6. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

7. Vivado Design Suite Tcl Command Reference (UG835)

8. 7 Series FPGAs Configuration User Guide (UG470)

9. 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS
Analog-to-Digital Converter User Guide (UG480)
Vivado Programming and Debugging www.xilinx.com 168
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug937-vivado-design-suite-simulation-tutorial.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug892-vivado-design-flows-overview.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug904-vivado-implementation.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;t=release+notes
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug899-vivado-io-clock-planning.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug901-vivado-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug480_7Series_XADC.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=168

Appendix D: Additional Resources and Legal Notices
10. Ultrascale Architecture Configuration: Advance Specification User Guide (UG570)

11. UltraScale Architecture System Monitor: Advance Specification User Guide (UG580),

Xilinx IP Documentation

12. LogiCORE IP Virtual Input/Output (VIO) v3.0 Product Guide (PG159)

13. LogiCORE IP IBERT for 7 Series GTX Transceivers (PG132)

14. LogiCORE IP IBERT for 7 Series GTP Transceivers (PG133)

15. LogiCORE IP IBERT for 7 Series GTH Transceivers (PG152)

16. LogiCORE IP Integrated Logic Analyzer Product Guide (PG172)

17. LogiCORE IP JTAG to AXI Master v1.0 Product Guide (PG174)

Training Courses
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Vivado Design Suite Hands-on Introductory Workshop Training Course

2. Vivado Design Suite Tool Flow Training Course

3. Essentials of FPGA Design Training Course

4. Vivado Design Suite QuickTake Video: Designing with Vivado IP Integrator

5. Vivado Design Suite QuickTake Video: Targeting Zynq Devices Using Vivado IP Integrator

6. Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado Design Suite

7. Vivado Design Suite QuickTake Video: Version Control Overview

8. Debugging Techniques Using the Vivado Logic Analyzer

9. Vivado Design Suite QuickTake Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
Vivado Programming and Debugging www.xilinx.com 169
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com/support/documentation/ip_documentation/ibert_7series_gtp/v3_0/pg133-ibert-7series-gtp.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ibert_7series_gth/v3_0/pg152-ibert-7series-gth.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ibert_7series_gtx/v3_0/pg132-ibert-7series-gtx.pdf
http://www.xilinx.com/support/documentation/ip_documentation/jtag_axi/v1_0/pg174-jtag-axi.pdf
http://www.xilinx.com/support/documentation/ip_documentation/vio/v3_0/pg159-vio.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ila/v3_0/pg172-ila.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug580-ultrascale-sysmon.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-version-control-overview.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/index.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-intro-workshop.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=fpga/essentials-of-fpga-design.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/designing-with-vivado-ip-integrator.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/targeting-zynq-using-vivado-ip-integrator.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/partial-reconfiguration-in-vivado.htm
http://www.xilinx.com/training/fpga/debugging-techniques-using-vivado-logic-analyzer.htm

http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=fpga/debugging-techniques-using-vivado-logic-analyzer.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=169

Appendix D: Additional Resources and Legal Notices
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.
Vivado Programming and Debugging www.xilinx.com 170
UG908 (v2014.4) November 19, 2014

Send Feedback

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG908&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Programming%20and%20Debugging&releaseVersion=2014.4&docPage=170

	Vivado Design Suite User Guide: Programming and Debugging
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Getting Started
	Debug Terminology

	Ch. 2: Programming the Device
	Introduction
	Generating the Bitstream
	Changing the Bitstream File Format Settings
	Changing Device Configuration Bitstream Settings
	Programming Configuration Memory Devices
	Generate Bitstreams for use with Configuration Memory Devices
	Creating a Configuration Memory File
	Connect to the Hardware Target in Vivado
	Adding a Configuration Memory Device
	Programming a Configuration Memory Device
	Booting the Device

	Programming the FPGA Device
	Using a Vivado Hardware Manager to Program an FPGA Device
	Opening the Hardware Manager
	Opening Hardware Target Connections
	Connecting to a Hardware Target Using hw_server
	Opening a New Hardware Target
	Troubleshooting a Hardware Target
	Opening a Recent Hardware Target
	Opening a Hardware Target Using Tcl Commands
	Associating a Programming File with the Hardware Device
	Programming the Hardware Device
	Closing the Hardware Target
	Closing a Connection to the Hardware Server

	Readback and Verify
	Bitstream Verify and Readback
	Configuration Memory Verify and Readback

	eFUSE Operations
	Using Advanced Encryption Standard (AES-256) Keys with the Battery-Backed sRAM (BBR) Register
	Generating an Encrypted Bitstream
	Programming the AES Key
	eFUSE Bits
	Clearing Keys from the BBR Register

	FUSE_DNA: Unique Device DNA
	FUSE_USER
	FUSE_KEY
	FUSE_CNTL
	FUSE_SEC (UltraScale FPGAs only)

	System Monitor

	Ch. 3: Debugging the Design
	Introduction
	RTL-level Design Simulation
	Post-Implemented Design Simulation
	In-System Logic Design Debugging
	In-System Serial I/O Design Debugging

	Ch. 4: In-System Logic Design Debugging Flows
	Introduction
	Probing the Design for In-System Debugging
	Using the Netlist Insertion Debug Probing Flow
	Marking HDL Signals for Debug
	Vivado Synthesis mark_debug Syntax Examples
	XST mark_debug Syntax Examples
	Synplify mark_debug Syntax Examples
	Precision mark_debug Syntax Examples
	Synthesizing the Design
	Marking Nets for Debug in the Synthesized Design
	Using the Set Up Debug Wizard to Insert Debug Cores
	Using the Debug Window to Add and Customize Debug Cores
	Creating and Removing Debug Cores
	Adding, Removing, and Customizing Debug Core Ports
	Connecting and Disconnecting Nets to Debug Cores

	Modifying Properties on the Debug Cores
	Using XDC Commands to Insert Debug Cores
	Saving Constraints After Running Debug XDC Commands
	Implementing the Design
	Debug Core Insertion in Non-Project Mode

	HDL Instantiation Debug Probing Flow Overview
	The new ILA core has two distinct advantages over the legacy ILA v1.x core:

	Using the HDL Instantiation Debug Probing Flow
	Customizing and Generating the Debug Cores
	Instantiating the Debug Cores
	Synthesizing the Design Containing the Debug Cores
	Viewing the Debug Cores in the Synthesized Design
	Changing the BSCAN User Scan Chain of the Debug Core Hub

	Implementing the Design Containing the Debug Cores
	Implementing the Design

	Ch. 5: Debugging Logic Designs in Hardware
	Introduction
	Using Vivado® Logic Analyzer to Debug the Design
	Connecting to the Hardware Target and Programming the FPGA Device
	Setting up the ILA Core to Take a Measurement
	Viewing ILA Cores in the Debug Probes Window
	Writing Debug Probes Information
	Reading Debug Probes Information
	Renaming Debug Probes

	Using the ILA Dashboard
	Using Basic Trigger Mode
	Adding Probes to Basic Trigger Setup Window
	Setting Basic Trigger Compare Values
	ILA Probe Compare Value Settings
	Setting Basic Trigger Condition

	Using Advanced Trigger Mode
	Specifying the Trigger State Machine Program File
	Editing the Trigger State Machine Program
	Compiling the Trigger State Machine

	Enabling Trigger In and Out Ports
	Configuring Capture Mode Settings
	Using BASIC Capture Mode
	Configuring the Basic Capture Setup Window
	Setting the Number of Capture Windows
	Setting the Trigger Position in the Capture Window
	Setting the Data Depth of the Capture Window

	Running the Trigger
	Stopping the Trigger
	Using Auto Re-Trigger
	Viewing Trigger and Capture Status
	Partial Buffer Capture
	Basic Trigger Mode Trigger and Capture Status
	Advanced Trigger Mode Trigger and Capture Status

	Writing ILA Probes Information
	Reading ILA Probes Information
	Viewing Captured Data from the ILA Core in the Waveform Viewer
	Saving and Restoring Captured Data from the ILA Core
	Saving Captured ILA Data to a File
	Restoring Captured ILA Data from a File

	Setting Up the VIO Core to Take a Measurement
	Viewing the VIO Core Status
	Viewing VIO Cores in the Debug Probes Window
	Using the VIO Dashboard
	Interacting with VIO Core Input Probes
	Reading VIO Inputs Using the VIO Cores View
	Setting the VIO Input Display Type and Radix
	Observing and Controlling VIO Input Activity

	Interacting with VIO Core Output Probes
	Writing VIO Outputs Using the VIO Cores View
	Setting the VIO Output Display Type and Radix
	Resetting the VIO Core Output Values
	Synchronizing the VIO Core Output Values to the Vivado IDE

	Hardware System Communication Using the JTAG-to-AXI Master Debug Core
	Interacting with the JTAG-to-AXI Master Debug Core in Hardware
	Resetting the JTAG-to-AXI Master Debug Core
	Creating and Running a Read Transaction
	Creating and Running a Write Transaction

	Using Vivado Logic Analyzer in a Lab Environment
	Installing and Running the Full Vivado IDE on a Lab Machine
	Connecting to a Remote hw_server Running on a Lab Machine

	Description of Hardware Manager Tcl Objects and Commands
	Description of hw_server Tcl Commands
	Description of hw_target Tcl Commands
	Description of hw_device Tcl Commands
	Description of hw_ila Tcl Commands
	Description of hw_ila_data Tcl Commands
	Description of hw_probe Tcl Commands
	Description of hw_vio Tcl Commands
	Description of hw_axi and hw_axi_txn Tcl Commands
	Description of hw_sysmon Tcl Commands

	Using Tcl Commands to Interact with a JTAG-to-AXI Master Core
	Example Tcl Command Script

	Using Tcl Commands to Take an ILA Measurement
	Example Tcl Command Script

	Trigger At Startup

	Ch. 6: Viewing ILA Probe Data in the Waveform Viewer
	Introduction
	ILA Data and Waveform Relationship
	Waveform Viewer Layout
	Waveform Viewer Operation
	Removing Probes from the Waveform
	Adding Probes to the Waveform
	Using the Zoom Features
	Waveform Options Dialog Box

	Customizing the Configuration
	Cursors
	Markers
	Trigger Markers
	Dividers
	Using Groups
	Using Virtual Buses

	Renaming Objects
	Radixes
	Using the Floating Ruler
	Bus Bit Order

	Bus Radixes
	Viewing Analog Waveforms
	Zoom Gestures

	Ch. 7: In-System Serial I/O Debugging Flows
	Introduction
	Generating an IBERT Core using the Vivado IP Catalog
	Generating and Implementing the IBERT Example Design

	Ch. 8: Debugging the Serial I/O Design in Hardware
	Introduction
	Using Vivado® Serial I/O Analyzer to Debug the Design
	Connecting to the Hardware Target and Programming the FPGA Device
	Creating Links and Link Groups
	Viewing and Changing Links Settings Using the Links Window
	Creating and Running Link Scans
	Creating and Running Link Sweeps
	Displaying and Navigating the Scan Plots
	Writing the Scan Results to a File
	Properties Window
	Description of Serial I/O Analyzer Tcl Objects and Commands
	Description of Tcl Commands to Access Hardware
	Description of hw_sio_link Tcl Commands
	Description of hw_sio_linkgroup Tcl Commands
	Description of hw_sio_scan Tcl Commands
	Description of Tcl Commands to Get Objects

	Using Tcl Commands to Take an IBERT Measurement
	Example Tcl Command Script

	Appx. A: Device Configuration Bitstream Settings
	Appx. B: Trigger State Machine Language Description
	States
	Goto Action
	Conditional Branching
	Counters
	Flags
	Conditional Statements
	Debug Probe Conditions
	Counter Conditions
	Combined Debug Probe and Counter Conditions
	Trigger State Machine Language Grammar

	Appx. C: Configuration Memory Support
	Artix®-7 Configuration Memory Devices
	Kintex®-7 Configuration Memory Devices
	Virtex®-7 Configuration Memory Devices
	Kintex® UltraScale™ Configuration Memory Devices
	Virtex® UltraScale™ Configuration Memory Devices
	Zynq®-7000 Configuration Memory Devices

	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Training Courses
	Please Read: Important Legal Notices

