

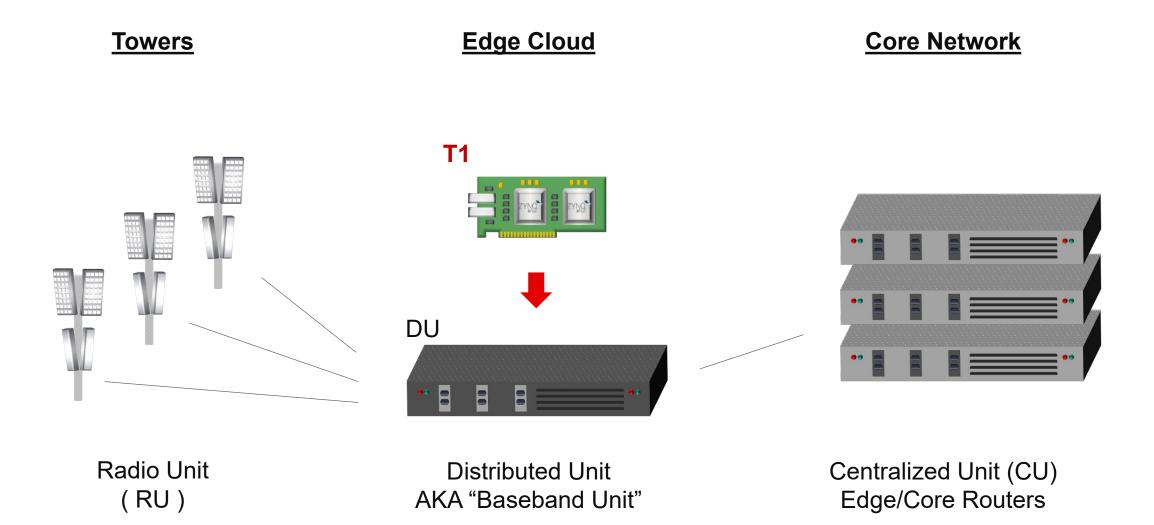
Xilinx 5G Telco Accelerator Cards

Xilinx Wired and Wireless Group

© Copyright 2020 Xilinx

Overview

 Xilinx is expanding our 5G product offering with the addition of Telco Accelerator Cards


The first card in our Telco Accelerator series is called "T1"

 T1 is a two-in-one 75W "plug and play" card that accelerates Fronthaul and L1 Functions and is already in limited sampling

The "Virtualization of 5G" provides a great opportunity to expand our existing footprint in 2nd and 3rd phases of 5G deployments

Radio Access Network

What is the Virtualization of 5G?

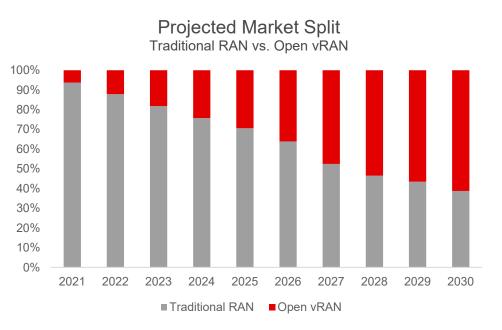
Traditional Model (LTE)

- OEM's create Proprietary equipment for Wireless Deployments
- 5G Operators are moving away from this model
 - "Vendor Lock" creates a lack of competition
 - Difficult for Operators to deploy Software Services
 - VR, Gaming, Automotive etc.

Open-RAN Model (5G)

- Virtual BBU implemented in a standard server form factor
 - Similar to what we saw with "Open Compute" 10 years ago
 - Utilize Open Interfaces for Multi-Vendor Compatibility
 - New players can drive competition and innovation
 - Software Services can now be deployed all the way to the Edge!

5G vBBU (Standard Rack-Mount Server)



Open RAN Concept is Growing in Popularity... Fast

 In 2019 and prior, most Xilinx 5G customer demand came from traditional OEMs

- In 2020, demand dramatically shifted towards Open and Virtualized RAN architectures
 - O-RAN Radio Unit (O-RU)
 - O-RAN Distributed Units (O-DU)

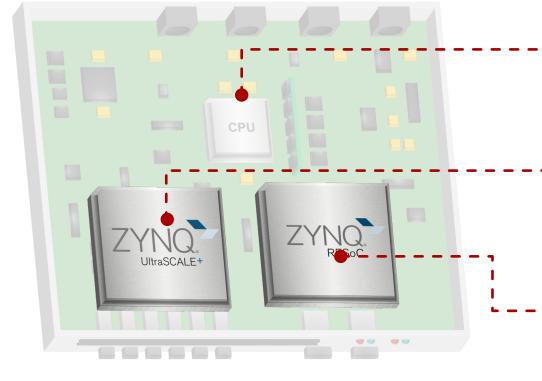
 Xilinx Telco Accelerator Cards address the O-DU portion of the Open vRAN Market

Source: Data extracted from ABI Research (www.abiresearch.com)

5G Virtualization

Traditional Base Band Unit

Traditional Baseband Unit (BBU) from an OEM


Let's look at what's inside...

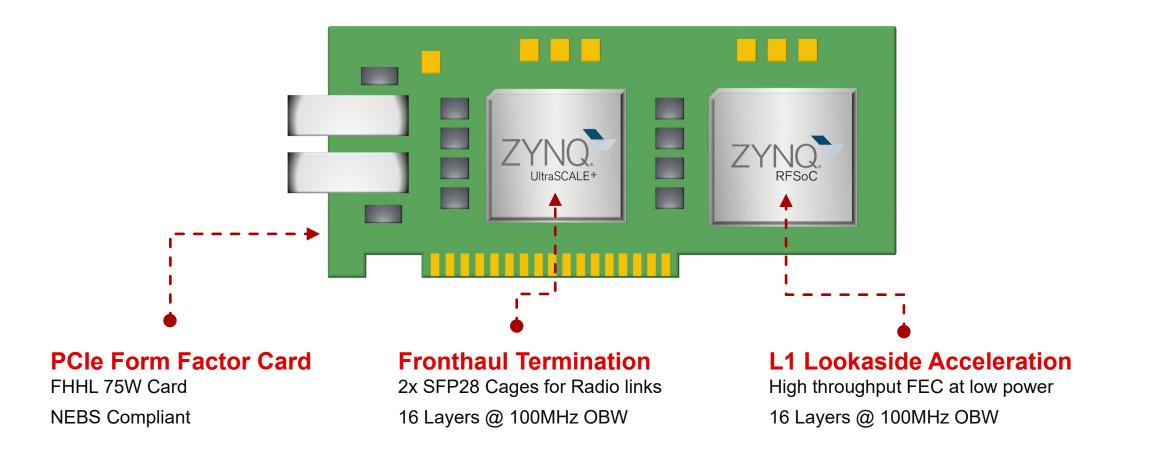
What's Inside a Traditional Base Band Unit?

Traditional BBU

Chips inside a traditional BBU

General Purpose Processor

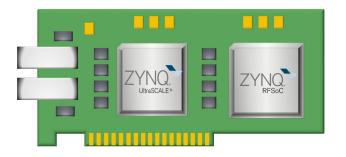
L2/L3 Protocol Layer Processing Chips Used \rightarrow x86 or ARM


Fronthaul FPGA

Terminates CPRI traffic to/from Radio Unit Chips Used \rightarrow Mid-sized FPGA's like Kintex or Zynq

Layer 1 Baseband ASIC or FPGA

Low-PHY and High-PHY Functions Chips Used \rightarrow First Deployments are FPGA, then ASIC's in 2nd Gen

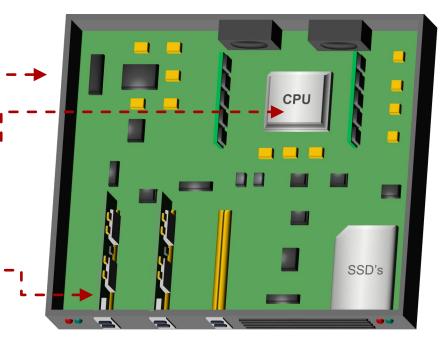

Introducing T1 – Fronthaul and L1 Offload FPGA Card

Same Chips – But in a O-RAN Compliant PCIe Card!

Frees up GPP's for Software at the Edge

O-RAN Virtual BBU in a Commodity Server

Standard Server


Can be ruggedized or not, based on environment Available from Dell, SuperMicro, HPE etc.

General Purpose Processor

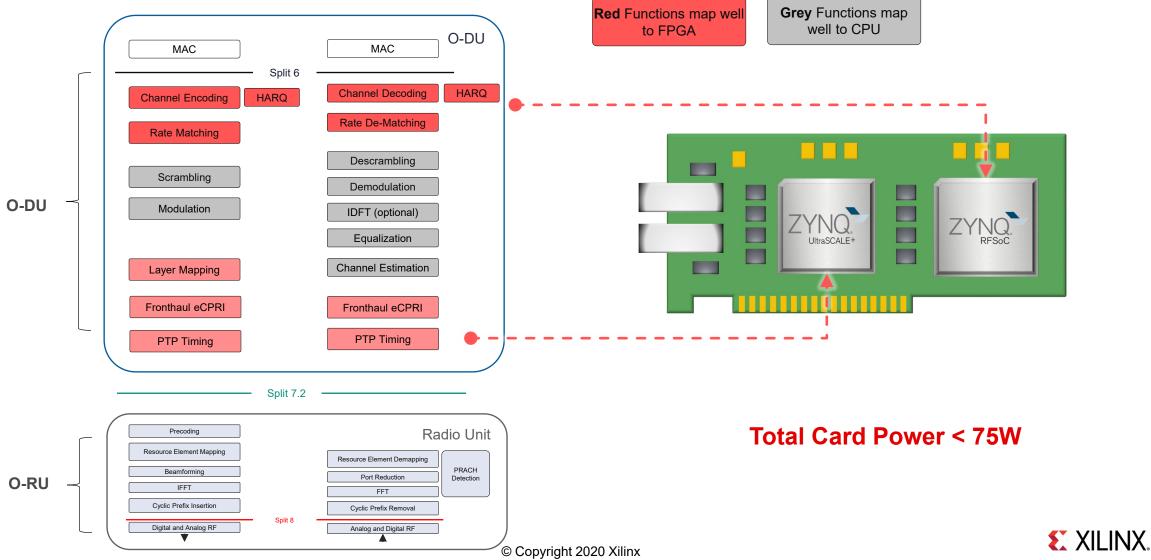
Upper-Layer Protocol Layer Processing (Open RAN etc.) Can be x86 or ARM

Fronthaul and L1 Offload in PCIe Cards • - -

Processors cannot handle high-volume 5G traffic alone L1 and Fronthaul functions managed in PCIe Cards

New Open RAN Virtual Base Band Unit (vBBU)

New vBBU Distributed Unit Open, Disaggregated, <u>FPGA Accelerated</u>!



T1 Deeper Dive

T1 Offloads Difficult Functions from the CPU

O-RAN Stack

Demonstrated T1 Performance using FlexRAN on Dell R740

Stand-Alone S	Server (No T1)
Serv	/er
MAC Split 6 Channel Encoding HARQ Rate Matching Scrambling Modulation	MAC Channel Decoding HARQ Rate De-Matching Descrambling Demodulation IDFT Equalization
Layer Mapping Fronthaul eCPRI PTP Timing	Channel Estimation Fronthaul eCPRI PTP Timing

L1: Single Thread XEON Gold in Dell R740

L1 Performance	Throughput	Latency
Encoder	0.718 Gbps	45 us
Decoder	0.183 Gbps	62.7us

FH: 4T4R @100 MHz OBW

Fronthaul	FH Bandwidth	# XEON Cores
2 Sectors w/ Redundant Port	NIC-Dependent	24
4 Sectors	NIC-Dependent	64

Serve	er With T1	Card
Serve	• + •r	T1 Card
MAC Channel Encoding Rate Matching Scrambling Modulation Layer Mapping Fronthaul eCPRI PTP Timing	- Split 6 HARQ Channel Rate De Descri Demo Equa Channel Frontha	AC Decoding HARQ -Matching ambling dulation PFT lization Estimation ul eCPRI Timing
L1: Single Thread	d XEON + T1 Ca	r <mark>d</mark> in Dell R740
L1 Performance	Throughput	Latency
Encoder	17.7 Gbps	14.15 us
Decoder	7.8 Gbps	16.21 us

FH: 4T4R @100 MHz OBW

Fronthaul	FH Bandwidth	# XEON Cores
2 Sectors w/ Redundant Port	2x 23.48 Gbps	1
4 Sectors	46.96 Gbps	2

T1 Provides L1 Performance **42x** Higher Encoder Throughput **24x** Higher Decoder Throughput 3.2x Lower Encoder Latency 3.8x Lower Decoder Latency

T1 Provides Real 5G Fronthaul Sub ns PTP Timestamping **ORAN Layer Mapping in NIC** HW Redundancy and Fallback *Traditional NIC's provided none of this

EXILINX.

14

Number of iteration = 8

N=3456. K= 2816

© Copyright 2020 Xilinx

Number of iteration = 8 N=3456, K= 2816

Available Reference Designs

L1 Software **BBDev API** L1 Stack QDMA Driver T1 Card PCIe Gen3 QDMA CB CRC Attach / Rate Matching / De-matching Detach LDPC Encode LDPC Decode HARQ Engine

L1 Reference Design

Fronthaul Software C/U/S/M-Plane Software DPDK API's and IQ Streaming I/F Linux TCP Stack and **QDMA** Driver T1 Card PCIe Gen3 **QDMA** S/M Plane Queues IQ Streaming IP **O-RAN Framer** Synchronization eCPRI Framer Packet Parser and Interconnect 25G + PTP 25G + PTP

Fronthaul Reference Design

Fully Operational Reference Designs

Removes adoption barriers for companies that are not FPGA savvy

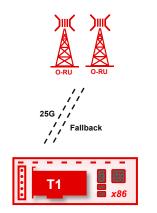
FlexRAN Software Stack

Layer-1 → BBDev standard API's Fronthaul → DPDK Drivers

Standard QDMA Interface

Same interface used by Alveo

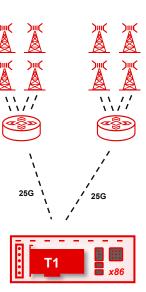
FPGA IP and Integration is already done!


No need for RTL team or additional 3rd parties

T1 Deployment Scenarios

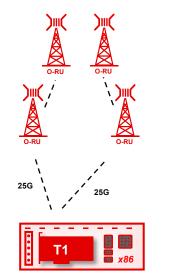
2 Sector with Redundancy

High Reliability Deployment One SFP28 for Traffic Second SFP28 for Fallback Full ORAN Classification on Card


Oversubscribed with FHGW

Highest RU / DU Ratio

Requires external FHGW for oversubscription


Moves DU closer to Core

Can merge DU and CU

4 Sector Direct to RU's

High RU / DU ratio w/o FHGW Scalable (more cards = more radios) Uses Radio Daisy Chaining

Highly Scalable

More T1 Cards = More Radios Fronthaul and L1 scale together Frees up XEON's for Operator Services

Review of T1

Replaces two incumbent cards with a single T1

Fronthaul and L1 on a single 75W card

	T1 (Sampling Now)
Form Factor	FHHL PCIe Card
Optimization	Hybrid (Fronthaul + L1)
FH Ports	2x SFP28 + 1588
FH BW	4 sectors of 4TRX @ 100HMz *
IEEE 1588	Yes – Stamp at PHY
L1 Encode	17.7 Gbps *
L1 Decode	7.8 Gbps *

T1 Performance Advantage	
42x	Higher Encoder Throughput
24x	Higher Decoder Throughput
3.2x	Lower Encoder Latency
3.8x	Lower Decoder Latency
Sub ns PTP Timestamping	
ORAN Layer Mapping in NIC	
HW Redundancy and Fallback	

XILINX_®

Thank You

© Copyright 2020 Xilinx

Xilinx Mission

Building the Adaptable, Intelligent World